1
|
Chenal A, Minton AP. The effect of Ficoll 70 on thermally-induced and chemically-induced conformational transitions of an RTX protein is quantitatively accounted for by a unified excluded volume model. Phys Chem Chem Phys 2024; 26:24461-24469. [PMID: 39263711 DOI: 10.1039/d4cp02213k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A unified excluded volume model based upon the effective hard particle approximation is developed and used to quantitatively model previously published experimental measurements of the effect of adding high concentrations of an "inert" polymer, Ficoll 70, on conformational transitions of the toxin protein RCL that are induced by addition of calcium at constant temperature or by increasing temperature in the absence and presence of high calcium concentrations. The best-fit of this model, which accounts quantitatively for all of the published data to within experimental precision, yields an estimate of the volume of solution excluded to Ficoll by each of four identified conformational states of RCL: H - the most compact conformation adopted in the limits of high calcium concentration and low temperature, H* - the conformation adopted in the limits of high calcium concentration and high temperature, A - the conformation adopted in the limits of low (or no) calcium at low temperature, and A* - the conformation adopted in the limits of low calcium and high temperature. Ficoll exclusion volumes increase in the order H < H* < A < A*. These results are discussed in the context of the physiological functions of the RTX proteins, which are involved in the secretion process and the calcium-induced folding of bacterial virulence factors.
Collapse
Affiliation(s)
- Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, F75015 Paris, France.
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Abettan A, Nguyen MH, Ladant D, Monticelli L, Chenal A. CyaA translocation across eukaryotic cell membranes. Front Mol Biosci 2024; 11:1359408. [PMID: 38584704 PMCID: PMC10995232 DOI: 10.3389/fmolb.2024.1359408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Amiel Abettan
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, Lyon, France
| | - Minh-Ha Nguyen
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, Paris, France
| | - Daniel Ladant
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
| |
Collapse
|
3
|
Wang H, Miao X, Zhai C, Chen Y, Lin Z, Zhou X, Guo M, Chai Z, Wang R, Shen W, Li H, Hu C. Mechanistic Insights into the Folding Mechanism of Region V in Ice-Binding Protein Secreted by Marinomonas primoryensis Revealed by Single-Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16128-16137. [PMID: 37916685 DOI: 10.1021/acs.langmuir.3c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Gram-negative bacteria Marinomonas primoryensis secrete an ice-binding protein (MpIBP), which is a vital bacterial adhesin facilitating the adaptation and survival of the bacteria in the harsh Antarctic environment. The C-terminal region of MpIBP, known as region V (RV), is the first domain to be exported into the Ca2+-rich extracellular environment and acts as a folding nucleus for the entire adhesin. However, the mechanisms underlying the secretion and folding of RV remain poorly understood. Here, we used optical tweezers (OT) to investigate the secretion and folding mechanisms of RV at the single-molecule level. In the absence of Ca2+, apo-RV remains unstructured, while Ca2+-bound RV folds into a mechanically stable structure. The folding of RV could occur via the formation of an intermediate state. Even though this folding intermediate is "hidden" during the folding process of wild type RV in vitro, it likely forms in vivo and plays an important role in facilitating protein secretion. Additionally, our results revealed that the N-terminal part of the RV can significantly stabilize its C-terminal structure. Our study paves the way for further investigations into the structure and functions of MpIBP that help bacteria survive in challenging environments.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaopu Miao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Cong Zhai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yulu Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zuzeng Lin
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaowei Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Mengdi Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhongyan Chai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ruifen Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Wanfu Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Chen G, Wang H, Bumba L, Masin J, Sebo P, Li H. The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity. J Biol Chem 2023; 299:105150. [PMID: 37567473 PMCID: PMC10511787 DOI: 10.1016/j.jbc.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, Raoux-Barbot D, Davi M, Hoos S, Weber P, Vachette P, Durand D, Haouz A, Guijarro JI, Ladant D, Chenal A. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. BMC Biol 2022; 20:176. [PMID: 35945584 PMCID: PMC9361521 DOI: 10.1186/s12915-022-01381-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.
Collapse
Affiliation(s)
- Corentin Léger
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Irène Pitard
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Nicolas Carvalho
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Sébastien Brier
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Ariel Mechaly
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Dorothée Raoux-Barbot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrick Weber
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrice Vachette
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - J Iñaki Guijarro
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
6
|
Wang H, Chen G, Li H. Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy. Nat Commun 2022; 13:2784. [PMID: 35589788 PMCID: PMC9120197 DOI: 10.1038/s41467-022-30448-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
The RTX (repeats-in-toxin) domain of the bacterial toxin adenylate cyclase (CyaA) contains five RTX blocks (RTX-i to RTX-v) and its folding is essential for CyaA’s functions. It was shown that the C-terminal capping structure of RTX-v is critical for the whole RTX to fold. However, it is unknown how the folding signal transmits within the RTX domain. Here we use optical tweezers to investigate the interplay between the folding of RTX-iv and RTX-v. Our results show that RTX-iv alone is disordered, but folds into a Ca2+-loaded-β-roll structure in the presence of a folded RTX-v. Folding trajectories of RTX-iv-v reveal that the folding of RTX-iv is strictly conditional upon the folding of RTX-v, suggesting that the folding of RTX-iv is templated by RTX-v. This templating effect allows RTX-iv to fold rapidly, and provides significant mutual stabilization. Our study reveals a possible mechanism for transmitting the folding signal within the RTX domain. The authors use optical tweezers to show that the folding of repeats-in-toxin (RTX) block-iv in adenylate cyclase is templated by the folded RTX block-v. The findings suggest a possible mechanism for transmitting the folding signal in the RTX domain.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.,State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
7
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
8
|
Ataeian M, Vadlamani A, Haines M, Mosier D, Dong X, Kleiner M, Strous M, Hawley AK. Proteome and strain analysis of cyanobacterium Candidatus "Phormidium alkaliphilum" reveals traits for success in biotechnology. iScience 2021; 24:103405. [PMID: 34877483 PMCID: PMC8633866 DOI: 10.1016/j.isci.2021.103405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria encompass a diverse group of photoautotrophic bacteria with important roles in nature and biotechnology. Here we characterized Candidatus “Phormidium alkaliphilum,” an abundant member in alkaline soda lake microbial communities globally. The complete, circular whole-genome sequence of Ca. “P. alkaliphilum” was obtained using combined Nanopore and Illumina sequencing of a Ca. “P. alkaliphilum” consortium. Strain-level diversity of Ca. “P. alkaliphilum” was shown to contribute to photobioreactor robustness under different operational conditions. Comparative genomics of closely related species showed that adaptation to high pH was not attributed to specific genes. Proteomics at high and low pH showed only minimal changes in gene expression, but higher productivity in high pH. Diverse photosystem antennae proteins, and high-affinity terminal oxidase, compared with other soda lake cyanobacteria, appear to contribute to the success of Ca. “P. alkaliphilum” in photobioreactors and biotechnology applications. Closed genome of the cyanobacteria Ca. P. alkaliphilum from high-pH photobioreactor Genetic factors lead this Phormidium to outcompete other cyanobacteria in photobioreactor Adaptation to high pH and alkalinity is not linked to specific genes Strain-level diversity contributes Ca. P. alkaliphilum success in changing conditions
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | | | - Marianne Haines
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
- Corresponding author
| |
Collapse
|
9
|
Voegele A, Sadi M, O'Brien DP, Gehan P, Raoux‐Barbot D, Davi M, Hoos S, Brûlé S, Raynal B, Weber P, Mechaly A, Haouz A, Rodriguez N, Vachette P, Durand D, Brier S, Ladant D, Chenal A. A High-Affinity Calmodulin-Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003630. [PMID: 33977052 PMCID: PMC8097335 DOI: 10.1002/advs.202003630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.
Collapse
Affiliation(s)
- Alexis Voegele
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
- Université de ParisSorbonne Paris CitéParis75006France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
- Université de ParisSorbonne Paris CitéParis75006France
| | - Darragh Patrick O'Brien
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Pauline Gehan
- Sorbonne UniversitéÉcole normale supérieurePSL UniversityCNRSLaboratoire des biomoléculesLBMParis75005France
| | - Dorothée Raoux‐Barbot
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Sylviane Hoos
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Sébastien Brûlé
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Bertrand Raynal
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Patrick Weber
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Ariel Mechaly
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Ahmed Haouz
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Nicolas Rodriguez
- Sorbonne UniversitéÉcole normale supérieurePSL UniversityCNRSLaboratoire des biomoléculesLBMParis75005France
| | - Patrice Vachette
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Dominique Durand
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Sébastien Brier
- Biological NMR Technological PlateformCenter for Technological Resources and ResearchDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| |
Collapse
|
10
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
11
|
Bugge K, Brakti I, Fernandes CB, Dreier JE, Lundsgaard JE, Olsen JG, Skriver K, Kragelund BB. Interactions by Disorder - A Matter of Context. Front Mol Biosci 2020; 7:110. [PMID: 32613009 PMCID: PMC7308724 DOI: 10.3389/fmolb.2020.00110] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms depend on timely and organized interactions between proteins linked in interactomes of high complexity. The recent increased precision by which protein interactions can be studied, and the enclosure of intrinsic structural disorder, suggest that it is time to zoom out and embrace protein interactions beyond the most central points of physical encounter. The present paper discusses protein-protein interactions in the view of structural disorder with an emphasis on flanking regions and contexts of disorder-based interactions. Context constitutes an overarching concept being of physicochemical, biomolecular, and physiological nature, but it also includes the immediate molecular context of the interaction. For intrinsically disordered proteins, which often function by exploiting short linear motifs, context contributes in highly regulatory and decisive manners and constitute a yet largely unrecognized source of interaction potential in a multitude of biological processes. Through selected examples, this review emphasizes how multivalency, charges and charge clusters, hydrophobic patches, dynamics, energetic frustration, and ensemble redistribution of flanking regions or disordered contexts are emerging as important contributors to allosteric regulation, positive and negative cooperativity, feedback regulation and negative selection in binding. The review emphasizes that understanding context, and in particular the role the molecular disordered context and flanking regions take on in protein interactions, constitute an untapped well of energetic modulation potential, also of relevance to drug discovery and development.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Inna Brakti
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catarina B. Fernandes
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper E. Dreier
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe E. Lundsgaard
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johan G. Olsen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Wang H, Gao X, Li H. Single Molecule Force Spectroscopy Reveals the Mechanical Design Governing the Efficient Translocation of the Bacterial Toxin Protein RTX. J Am Chem Soc 2019; 141:20498-20506. [DOI: 10.1021/jacs.9b11281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaoqing Gao
- State Key Laboratory of Precision Measuring Technology and Instruments School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
O'Brien DP, Cannella SE, Voegele A, Raoux-Barbot D, Davi M, Douché T, Matondo M, Brier S, Ladant D, Chenal A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J 2019; 33:10065-10076. [PMID: 31226003 DOI: 10.1096/fj.201802442rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The adenylate cyclase (CyaA) toxin is a major virulence factor of Bordetella pertussis, the causative agent of whooping cough. CyaA is synthetized as a pro-toxin, pro-CyaA, and converted into its cytotoxic form upon acylation of two lysines. After secretion, CyaA invades eukaryotic cells and produces cAMP, leading to host defense subversion. To gain further insights into the effect of acylation, we compared the functional and structural properties of pro-CyaA and CyaA proteins. HDX-MS results show that the refolding process of both proteins upon progressive urea removal is initiated by calcium binding to the C-terminal RTX domain. We further identified a critical hydrophobic segment, distal from the acylation region, that folds at higher urea concentration in CyaA than in pro-CyaA. Once refolded into monomers, CyaA is more compact and stable than pro-CyaA, due to a complex set of interactions between domains. Our HDX-MS data provide direct evidence that the presence of acyl chains in CyaA induces a significant stabilization of the apolar segments of the hydrophobic domain and of most of the acylation region. We propose a refolding model dependent on calcium and driven by local and distal acylation-dependent interactions within CyaA. Therefore, CyaA acylation is not only critical for cell intoxication, but also for protein refolding into its active conformation. Our data shed light on the complex relationship between post-translational modifications, structural disorder and protein folding. Coupling calcium-binding and acylation-driven folding is likely pertinent for other repeat-in-toxin cytolysins produced by many Gram-negative bacterial pathogens.-O'Brien, D. P., Cannella, S. E., Voegele, A., Raoux-Barbot, D., Davi, M., Douché, T., Matondo, M., Brier, S., Ladant, D., Chenal, A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Sara E Cannella
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Alexis Voegele
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France.,Université Paris Diderot Paris VII, Sorbonne Paris Cité, Paris, France
| | - Dorothée Raoux-Barbot
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Marilyne Davi
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Paris, France
| | - Sébastien Brier
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France.,Biological NMR Technical Platform, Center for Technological Resources and Research, UMR CNRS 3528, Paris, France
| | - Daniel Ladant
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Alexandre Chenal
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| |
Collapse
|
14
|
Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB, Schmitt L. Type I Secretion Systems-One Mechanism for All? Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0003-2018. [PMID: 30848237 PMCID: PMC11588160 DOI: 10.1128/microbiolspec.psib-0003-2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Type I secretion systems (T1SS) are widespread in Gram-negative bacteria, especially in pathogenic bacteria, and they secrete adhesins, iron-scavenger proteins, lipases, proteases, or pore-forming toxins in the unfolded state in one step across two membranes without any periplasmic intermediate into the extracellular space. The substrates of T1SS are in general characterized by a C-terminal secretion sequence and nonapeptide repeats, so-called GG repeats, located N terminal to the secretion sequence. These GG repeats bind Ca2+ ions in the extracellular space, which triggers folding of the entire protein. Here we summarize our current knowledge of how Gram-negative bacteria secrete these substrates, which can possess a molecular mass of up to 1,500 kDa. We also describe recent findings that demonstrate that the absence of periplasmic intermediates, the "classic" mode of action, does not hold true for all T1SS and that we are beginning to realize modifications of a common theme.
Collapse
Affiliation(s)
- Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, University of Paris-Sud, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Bulutoglu B, Banta S. Calcium-Dependent RTX Domains in the Development of Protein Hydrogels. Gels 2019; 5:E10. [PMID: 30823512 PMCID: PMC6473919 DOI: 10.3390/gels5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
The RTX domains found in some pathogenic proteins encode repetitive peptide sequences that reversibly bind calcium and fold into the unique the β-roll secondary structure. Several of these domains have been studied in isolation, yielding key insights into their structure/function relationships. These domains are increasingly being used in protein engineering applications, where the calcium-induced control over structure can be exploited to gain new functions. Here we review recent advances in the use of RTX domains in the creation of calcium responsive biomaterials.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
16
|
Voegele A, Sadi M, Raoux-Barbot D, Douché T, Matondo M, Ladant D, Chenal A. The Adenylate Cyclase (CyaA) Toxin from Bordetella pertussis Has No Detectable Phospholipase A (PLA) Activity In Vitro. Toxins (Basel) 2019; 11:E111. [PMID: 30781809 PMCID: PMC6409671 DOI: 10.3390/toxins11020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
The adenylate cyclase (CyaA) toxin produced in Bordetella pertussis is the causative agent of whooping cough. CyaA exhibits the remarkable capacity to translocate its N-terminal adenyl cyclase domain (ACD) directly across the plasma membrane into the cytosol of eukaryotic cells. Once translocated, calmodulin binds and activates ACD, leading to a burst of cAMP that intoxicates the target cell. Previously, Gonzalez-Bullon et al. reported that CyaA exhibits a phospholipase A activity that could destabilize the membrane to facilitate ACD membrane translocation. However, Bumba and collaborators lately reported that they could not replicate these results. To clarify this controversy, we assayed the putative PLA activity of two CyaA samples purified in two different laboratories by using two distinct fluorescent probes reporting either PLA2 or both PLA1 and PLA2 activities, as well as in various experimental conditions (i.e., neutral or negatively charged membranes in different buffers.) However, we could not detect any PLA activity in these CyaA batches. Thus, our data independently confirm that CyaA does not possess any PLA activity.
Collapse
Affiliation(s)
- Alexis Voegele
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
- Université Paris Diderot Paris VII, 75013 Paris, France.
| | - Mirko Sadi
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
| | - Dorothée Raoux-Barbot
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
| | - Thibaut Douché
- Mass Spectrometry for Biology Unit, Proteomics Platform, Institut Pasteur, USR CNRS 2000, CEDEX 15, 75724 Paris, France.
| | - Mariette Matondo
- Mass Spectrometry for Biology Unit, Proteomics Platform, Institut Pasteur, USR CNRS 2000, CEDEX 15, 75724 Paris, France.
| | - Daniel Ladant
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
| | - Alexandre Chenal
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
| |
Collapse
|
17
|
Voegele A, O'Brien DP, Subrini O, Sapay N, Cannella SE, Enguéné VYN, Hessel A, Karst J, Hourdel V, Perez ACS, Davi M, Veneziano R, Chopineau J, Vachette P, Durand D, Brier S, Ladant D, Chenal A. Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis. Pathog Dis 2018; 76:5188676. [PMID: 30452651 DOI: 10.1093/femspd/fty085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/16/2018] [Indexed: 01/19/2023] Open
Abstract
The adenylate cyclase toxin (CyaA) is a multi-domain protein secreted by Bordetella pertussis, the causative agent of whooping cough. CyaA is involved in the early stages of respiratory tract colonization by Bordetella pertussis. CyaA is produced and acylated in the bacteria, and secreted via a dedicated secretion system. The cell intoxication process involves a unique mechanism of transport of the CyaA toxin catalytic domain (ACD) across the plasma membrane of eukaryotic cells. Once translocated, ACD binds to and is activated by calmodulin and produces high amounts of cAMP, subverting the physiology of eukaryotic cells. Here, we review our work on the identification and characterization of a critical region of CyaA, the translocation region, required to deliver ACD into the cytosol of target cells. The translocation region contains a segment that exhibits membrane-active properties, i.e. is able to fold upon membrane interaction and permeabilize lipid bilayers. We proposed that this region is required to locally destabilize the membrane, decreasing the energy required for ACD translocation. To further study the translocation process, we developed a tethered bilayer lipid membrane (tBLM) design that recapitulate the ACD transport across a membrane separating two hermetic compartments. We showed that ACD translocation is critically dependent on calcium, membrane potential, CyaA acylation and on the presence of calmodulin in the trans compartment. Finally, we describe how calmodulin-binding triggers key conformational changes in ACD, leading to its activation and production of supraphysiological concentrations of cAMP.
Collapse
Affiliation(s)
- Alexis Voegele
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,Université Paris Diderot Paris VII, 75013 Paris, France
| | - Darragh P O'Brien
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,University of Oxford, United Kingdom
| | - Orso Subrini
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Nicolas Sapay
- Bioaster Technology Research Institute, 69007 Lyon, France
| | - Sara E Cannella
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,University of Oxford, United Kingdom
| | - Véronique Yvette Ntsogo Enguéné
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Audrey Hessel
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Johanna Karst
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Véronique Hourdel
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Ana Cristina Sotomayor Perez
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Marilyne Davi
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Rémi Veneziano
- ICGM, UMR 5253 Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France.,Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030-4422, USA
| | - Joel Chopineau
- ICGM, UMR 5253 Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Patrice Vachette
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Sébastien Brier
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Daniel Ladant
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Alexandre Chenal
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| |
Collapse
|
18
|
Brown AC, Boesze-Battaglia K, Balashova NV, Mas Gómez N, Speicher K, Tang HY, Duszyk ME, Lally ET. Membrane localization of the Repeats-in-Toxin (RTX) Leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans. PLoS One 2018; 13:e0205871. [PMID: 30335797 PMCID: PMC6193665 DOI: 10.1371/journal.pone.0205871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane.
Collapse
Affiliation(s)
- Angela C. Brown
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nataliya V. Balashova
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nestor Mas Gómez
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kaye Speicher
- Wistar Institute, Philadelphia, PA, United States of America
| | - Hsin-Yao Tang
- Wistar Institute, Philadelphia, PA, United States of America
| | - Margaret E. Duszyk
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Edward T. Lally
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
19
|
O'Brien DP, Perez ACS, Karst J, Cannella SE, Enguéné VYN, Hessel A, Raoux-Barbot D, Voegele A, Subrini O, Davi M, Guijarro JI, Raynal B, Baron B, England P, Hernandez B, Ghomi M, Hourdel V, Malosse C, Chamot-Rooke J, Vachette P, Durand D, Brier S, Ladant D, Chenal A. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough. Toxicon 2018; 149:37-44. [DOI: 10.1016/j.toxicon.2018.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
20
|
Kanonenberg K, Spitz O, Erenburg IN, Beer T, Schmitt L. Type I secretion system—it takes three and a substrate. FEMS Microbiol Lett 2018; 365:4966979. [DOI: 10.1093/femsle/fny094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Membrane-Active Properties of an Amphitropic Peptide from the CyaA Toxin Translocation Region. Toxins (Basel) 2017; 9:toxins9110369. [PMID: 29135925 PMCID: PMC5705984 DOI: 10.3390/toxins9110369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
The adenylate cyclase toxin CyaA is involved in the early stages of infection by Bordetella pertussis, the causative agent of whooping cough. CyaA intoxicates target cells by a direct translocation of its catalytic domain (AC) across the plasma membrane and produces supraphysiological levels of cAMP, leading to cell death. The molecular process of AC translocation remains largely unknown, however. We have previously shown that deletion of residues 375–485 of CyaA selectively abrogates AC translocation into eukaryotic cells. We further identified within this “translocation region” (TR), P454 (residues 454–484), a peptide that exhibits membrane-active properties, i.e., is able to bind and permeabilize lipid vesicles. Here, we analyze various sequences from CyaA predicted to be amphipatic and show that although several of these peptides can bind membranes and adopt a helical conformation, only the P454 peptide is able to permeabilize membranes. We further characterize the contributions of the two arginine residues of P454 to membrane partitioning and permeabilization by analyzing the peptide variants in which these residues are substituted by different amino acids (e.g., A, K, Q, and E). Our data shows that both arginine residues significantly contribute, although diversely, to the membrane-active properties of P454, i.e., interactions with both neutral and anionic lipids, helix formation in membranes, and disruption of lipid bilayer integrity. These results are discussed in the context of the translocation process of the full-length CyaA toxin.
Collapse
|
22
|
O'Brien DP, Brier S, Ladant D, Durand D, Chenal A, Vachette P. SEC-SAXS and HDX-MS: A powerful combination. The case of the calcium-binding domain of a bacterial toxin. Biotechnol Appl Biochem 2017; 65:62-68. [DOI: 10.1002/bab.1577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Darragh P. O'Brien
- Institut Pasteur; UMR CNRS 3528; Chemistry and Structural Biology Department; Paris France
| | - Sébastien Brier
- Institut Pasteur; USR CNRS 2000; CITECH; Chemistry and Structural Biology Department; Paris France
| | - Daniel Ladant
- Institut Pasteur; UMR CNRS 3528; Chemistry and Structural Biology Department; Paris France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, UMR 9198; Université Paris-Sud; Orsay France
| | - Alexandre Chenal
- Institut Pasteur; UMR CNRS 3528; Chemistry and Structural Biology Department; Paris France
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198; Université Paris-Sud; Orsay France
| |
Collapse
|
23
|
Bulutoglu B, Banta S. Block V RTX Domain of Adenylate Cyclase from Bordetella pertussis: A Conformationally Dynamic Scaffold for Protein Engineering Applications. Toxins (Basel) 2017; 9:E289. [PMID: 28926974 PMCID: PMC5618222 DOI: 10.3390/toxins9090289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/27/2023] Open
Abstract
The isolated Block V repeats-in-toxin (RTX) peptide domain of adenylate cyclase (CyaA) from Bordetella pertussis reversibly folds into a β-roll secondary structure upon calcium binding. In this review, we discuss how the conformationally dynamic nature of the peptide is being engineered and employed as a switching mechanism to mediate different protein functions and protein-protein interactions. The peptide has been used as a scaffold for diverse applications including: a precipitation tag for bioseparations, a cross-linking domain for protein hydrogel formation and as an alternative scaffold for biomolecular recognition applications. Proteins and peptides such as the RTX domains that exhibit natural stimulus-responsive behavior are valuable building blocks for emerging synthetic biology applications.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
24
|
Bulutoglu B, Dooley K, Szilvay G, Blenner M, Banta S. Catch and Release: Engineered Allosterically Regulated β-Roll Peptides Enable On/Off Biomolecular Recognition. ACS Synth Biol 2017; 6:1732-1741. [PMID: 28520402 DOI: 10.1021/acssynbio.7b00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alternative scaffolds for biomolecular recognition are being developed to overcome some of the limitations associated with immunoglobulin domains. The repeat-in-toxin (RTX) domain is a repeat protein sequence that reversibly adopts the β-roll secondary structure motif specifically upon calcium binding. This conformational change was exploited for controlled biomolecular recognition. Using ribosome display, an RTX peptide library was selected to identify binders to a model protein, lysozyme, exclusively in the folded state of the peptide. Several mutants were identified with low micromolar dissociation constants. After concatenation of the mutants, a 500-fold increase in the overall affinity for lysozyme was achieved leading to a peptide with an apparent dissociation constant of 65 nM. This mutant was immobilized for affinity chromatography experiments, and the on/off nature of the molecular recognition was demonstrated as the target is captured from a mixture in the presence of calcium and is released in the absence of calcium as the RTX peptides lose their β-roll structure. This work presents the design of a new stimulus-responsive scaffold that can be used for environmentally responsive specific molecular recognition and self-assembly.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kevin Dooley
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Géza Szilvay
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Mark Blenner
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
25
|
Structural and functional dissection reveals distinct roles of Ca2+-binding sites in the giant adhesin SiiE of Salmonella enterica. PLoS Pathog 2017; 13:e1006418. [PMID: 28558023 PMCID: PMC5466336 DOI: 10.1371/journal.ppat.1006418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/09/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022] Open
Abstract
The giant non-fimbrial adhesin SiiE of Salmonella enterica mediates the first contact to the apical site of epithelial cells and enables subsequent invasion. SiiE is a 595 kDa protein composed of 53 repetitive bacterial immunoglobulin (BIg) domains and the only known substrate of the SPI4-encoded type 1 secretion system (T1SS). The crystal structure of BIg50-52 of SiiE revealed two distinct Ca2+-binding sites per BIg domain formed by conserved aspartate or glutamate residues. In a mutational analysis Ca2+-binding sites were disrupted by aspartate to serine exchange at various positions in the BIg domains of SiiE. Amounts of secreted SiiE diminish with a decreasing number of intact Ca2+-binding sites. BIg domains of SiiE contain distinct Ca2+-binding sites, with type I sites being similar to other T1SS-secreted proteins and type II sites newly identified in SiiE. We functionally and structurally dissected the roles of type I and type II Ca2+-binding sites in SiiE, as well as the importance of Ca2+-binding sites in various positions of SiiE. Type I Ca2+-binding sites were critical for efficient secretion of SiiE and a decreasing number of type I sites correlated with reduced secretion. Type II sites were less important for secretion, stability and surface expression of SiiE, however integrity of type II sites in the C-terminal portion was required for the function of SiiE in mediating adhesion and invasion. The interaction of Salmonella enterica with polarized epithelial cells depends on the function of SiiE, a 595 kDa adhesin containing 53 repeats of a bacterial immunoglobulin (BIg) domain. SiiE is secreted and surface-expressed by a cognate type I secretion system (T1SS). We found that BIg domains contain amino acid (aa) residues forming binding sites for Ca2+ ions. Two types of Ca2+-binding sites can be distinguished, termed type I and type II sites. We performed a structural and functional dissection of Ca2+-binding sites of SiiE. After mutation of aa residues forming type I and/or type II Ca2+-binding sites, we investigated the secretion, surface expression and function as adhesin for interaction with polarized epithelial cells of the SiiE variants. We found that Ca2+-binding sites are critical for supporting the secretion of SiiE. Integrity of type I sites in any position of SiiE is essential for efficient secretion and surface expression. In contrast integrity of type II sites is less important for secretion. However, loss of type II in the C-terminal, most distal portion of SiiE ablated SiiE-mediated adhesion, while loss of the type II sites in middle or N-terminal portions of SiiE had less or no effect on SiiE function. We propose a novel mechanism of Ca2+-dependent secretion and conformational fine tuning of SiiE as a large T1SS substrate with a central role in the interaction of S. enterica with host cells.
Collapse
|
26
|
Cannella SE, Ntsogo Enguéné VY, Davi M, Malosse C, Sotomayor Pérez AC, Chamot-Rooke J, Vachette P, Durand D, Ladant D, Chenal A. Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis. Sci Rep 2017; 7:42065. [PMID: 28186111 PMCID: PMC5301233 DOI: 10.1038/srep42065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins.
Collapse
Affiliation(s)
- Sara E. Cannella
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | | | - Marilyne Davi
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Christian Malosse
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | | | - Julia Chamot-Rooke
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Daniel Ladant
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Alexandre Chenal
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| |
Collapse
|
27
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Masin J, Osickova A, Sukova A, Fiser R, Halada P, Bumba L, Linhartova I, Osicka R, Sebo P. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci Rep 2016; 6:29137. [PMID: 27581058 PMCID: PMC5007505 DOI: 10.1038/srep29137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.
Collapse
Affiliation(s)
- Jiri Masin
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Sukova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Halada
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Irena Linhartova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
29
|
Yeruva VC, Kulkarni A, Khandelwal R, Sharma Y, Raghunand TR. The PE_PGRS Proteins of Mycobacterium tuberculosis Are Ca2+ Binding Mediators of Host–Pathogen Interaction. Biochemistry 2016; 55:4675-87. [DOI: 10.1021/acs.biochem.6b00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veena C. Yeruva
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Apoorva Kulkarni
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
30
|
Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:215-60. [DOI: 10.1007/978-3-319-20164-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Zhang L, Morrison AJ, Thibodeau PH. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens. PLoS One 2015; 10:e0138419. [PMID: 26378460 PMCID: PMC4574703 DOI: 10.1371/journal.pone.0138419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/30/2015] [Indexed: 11/20/2022] Open
Abstract
The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and their folding is regulated by calcium binding to a C-terminal domain that defines the RTX family of proteins. Previous studies have suggested that interactions between N-terminal sequences and this C-terminal domain are important for the high thermal and chemical stabilities of the RTX proteases. Extending from this, stabilization of these interactions in the native structure may lead to hyperstabilization of the folded protein. To test this hypothesis, cysteine pairs were introduced into the N-terminal helix and the RTX domain and protease folding and activity were assessed. Under stringent pH and temperature conditions, the disulfide-bonded mutant showed increased protease activity and stability. This activity was dependent on the redox environment of the refolding reaction and could be blocked by selective modification of the cysteine residues before protease refolding. These data demonstrate that the thermal and chemical stability of these proteases is, in part, mediated by binding between the RTX domain and the N-terminal helix and demonstrate that stabilization of this interaction can further stabilize the active protease, leading to additional pH and thermal tolerance.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Anneliese J. Morrison
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Patrick H. Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
- * E-mail:
| |
Collapse
|
32
|
O'Brien DP, Hernandez B, Durand D, Hourdel V, Sotomayor-Pérez AC, Vachette P, Ghomi M, Chamot-Rooke J, Ladant D, Brier S, Chenal A. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion. Sci Rep 2015; 5:14223. [PMID: 26374675 PMCID: PMC4642704 DOI: 10.1038/srep14223] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/20/2015] [Indexed: 01/28/2023] Open
Abstract
Many Gram-negative bacteria use Type I secretion systems, T1SS, to secrete virulence factors that contain calcium-binding Repeat-in-ToXin (RTX) motifs. Here, we present structural models of an RTX protein, RD, in both its intrinsically disordered calcium-free Apo-state and its folded calcium-bound Holo-state. Apo-RD behaves as a disordered polymer chain comprising several statistical elements that exhibit local rigidity with residual secondary structure. Holo-RD is a folded multi-domain protein with an anisometric shape. RTX motifs thus appear remarkably adapted to the structural and mechanistic constraints of the secretion process. In the low calcium environment of the bacterial cytosol, Apo-RD is an elongated disordered coil appropriately sized for transport through the narrow secretion machinery. The progressive folding of Holo-RD in the extracellular calcium-rich environment as it emerges form the T1SS may then favor its unidirectional export through the secretory channel. This process is relevant for hundreds of bacterial species producing virulent RTX proteins.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Belen Hernandez
- Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 74 rue Marcel Cachin, 93017 Bobigny Cedex, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Véronique Hourdel
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | | | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Mahmoud Ghomi
- Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 74 rue Marcel Cachin, 93017 Bobigny Cedex, France
| | - Julia Chamot-Rooke
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Daniel Ladant
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Sébastien Brier
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Alexandre Chenal
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| |
Collapse
|
33
|
Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. mBio 2015; 6:mBio.00324-15. [PMID: 25827415 PMCID: PMC4453568 DOI: 10.1128/mbio.00324-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a seafood-borne pathogen that destroys the intestinal epithelium, leading to rapid bacterial dissemination and death. The most important virulence factor is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin comprised of effector domains in the center region flanked by long repeat-containing regions which are well conserved among MARTX toxins and predicted to translocate effector domains. Here, we examined the role of the repeat-containing regions using a modified V. vulnificus MARTX (MARTXVv) toxin generated by replacing all the internal effector domains with β-lactamase (Bla). Bla activity was detected in secretions from the bacterium and also in the cytosol of intoxicated epithelial cells. The modified MARTXVv toxin without effector domains retained its necrotic activity but lost its cell-rounding activity. Further, deletion of the carboxyl-terminal repeat-containing region blocked toxin secretion from the bacterium. Deletion of the amino-terminal repeat-containing region had no effect on secretion but completely abolished translocation and necrosis. Neither secretion nor translocation was affected by enzymatically inactivating the cysteine protease domain of the toxin. These data demonstrate that the amino-terminal and carboxyl-terminal repeat-containing regions of the MARTXVv toxin are necessary and sufficient for the delivery of effector domains and epithelial cell lysis in vitro but that effector domains are required for other cytopathic functions. Furthermore, Ca2+-dependent secretion of the modified MARTXVv toxin suggests that nonclassical RTX-like repeats found in the carboxyl-terminal repeat-containing region are functionally similar to classical RTX repeats found in other RTX proteins. Up to 95% of deaths from seafood-borne infections in the United States are due solely to one pathogen, V. vulnificus. Among its various virulence factors, the MARTXVv toxin has been characterized as a critical exotoxin for successful pathogenesis of V. vulnificus in mouse infection models. Similarly to MARTX toxins of other pathogens, MARTXVv toxin is comprised of repeat-containing regions, central effector domains, and an autoprocessing cysteine protease domain. Yet how each of these regions contributes to essential activities of the toxins has not been fully identified for any of MARTX toxins. Using modified MARTXVv toxin fused with β-lactamase as a reporter enzyme, the portion(s) responsible for toxin secretion from bacteria, effector domain translocation into host cells, rapid host cell rounding, and necrotic host cell death was identified. The results are relevant for understanding how MARTXVv toxin serves as both a necrotic pore-forming toxin and an effector delivery platform.
Collapse
|
34
|
Disorder-to-order transition in the CyaA toxin RTX domain: implications for toxin secretion. Toxins (Basel) 2014; 7:1-20. [PMID: 25559101 PMCID: PMC4303809 DOI: 10.3390/toxins7010001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/24/2014] [Indexed: 11/23/2022] Open
Abstract
The past decade has seen a fundamental reappraisal of the protein structure-to-function paradigm because it became evident that a significant fraction of polypeptides are lacking ordered structures under physiological conditions. Ligand-induced disorder-to-order transition plays a key role in the biological functions of many proteins that contain intrinsically disordered regions. This trait is exhibited by RTX (Repeat in ToXin) motifs found in more than 250 virulence factors secreted by Gram-negative pathogenic bacteria. We have investigated several RTX-containing polypeptides of different lengths, all derived from the Bordetella pertussis adenylate cyclase toxin, CyaA. Using a combination of experimental approaches, we showed that the RTX proteins exhibit the hallmarks of intrinsically disordered proteins in the absence of calcium. This intrinsic disorder mainly results from internal electrostatic repulsions between negatively charged residues of the RTX motifs. Calcium binding triggers a strong reduction of the mean net charge, dehydration and compaction, folding and stabilization of secondary and tertiary structures of the RTX proteins. We propose that the intrinsically disordered character of the RTX proteins may facilitate the uptake and secretion of virulence factors through the bacterial secretion machinery. These results support the hypothesis that the folding reaction is achieved upon protein secretion and, in the case of proteins containing RTX motifs, could be finely regulated by the calcium gradient across bacterial cell wall.
Collapse
|
35
|
Hendrix J, Read T, Lalonde JF, Jensen PK, Heymann W, Lovelace E, Zimmermann SA, Brasino M, Rokicki J, Dowell RD. Engineered calcium-precipitable restriction enzyme. ACS Synth Biol 2014; 3:969-71. [PMID: 25524101 DOI: 10.1021/sb500042m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a simple system for tagging and purifying proteins. Recent experiments have demonstrated that RTX (Repeat in Toxin) motifs from the adenylate cyclase toxin gene (CyaA) of B. pertussis undergo a conformational change upon binding calcium, resulting in precipitation of fused proteins and making this method a viable alternative for bioseparation. We have designed an iGEM Biobrick comprised of an RTX tag that can be easily fused to any protein of interest. In this paper, we detail the process of creating an RTX tagged version of the restriction enzyme EcoRI and describe a method for expression and purification of the functional enzyme.
Collapse
Affiliation(s)
- Josephina Hendrix
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Timothy Read
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Jean-Francois Lalonde
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Phillip K. Jensen
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - William Heymann
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Elijah Lovelace
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Sarah A. Zimmermann
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael Brasino
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Joseph Rokicki
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Robin D. Dowell
- Department
of Molecular, Cellular, and Developmental Biology, ‡Department of Chemical
and Biological Engineering, §Department of Chemistry and Biochemistry, ∥BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
36
|
Wang X, Gray MC, Hewlett EL, Maynard JA. The Bordetella adenylate cyclase repeat-in-toxin (RTX) domain is immunodominant and elicits neutralizing antibodies. J Biol Chem 2014; 290:3576-91. [PMID: 25505186 DOI: 10.1074/jbc.m114.585281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The adenylate cyclase toxin (ACT) is a multifunctional virulence factor secreted by Bordetella species. Upon interaction of its C-terminal hemolysin moiety with the cell surface receptor αMβ2 integrin, the N-terminal cyclase domain translocates into the host cell cytosol where it rapidly generates supraphysiological cAMP concentrations, which inhibit host cell anti-bacterial activities. Although ACT has been shown to induce protective immunity in mice, it is not included in any current acellular pertussis vaccines due to protein stability issues and a poor understanding of its role as a protective antigen. Here, we aimed to determine whether any single domain could recapitulate the antibody responses induced by the holo-toxin and to characterize the dominant neutralizing antibody response. We first immunized mice with ACT and screened antibody phage display libraries for binding to purified ACT. The vast majority of unique antibodies identified bound the C-terminal repeat-in-toxin (RTX) domain. Representative antibodies binding two nonoverlapping, neutralizing epitopes in the RTX domain prevented ACT association with J774A.1 macrophages and soluble αMβ2 integrin, suggesting that these antibodies inhibit the ACT-receptor interaction. Sera from mice immunized with the RTX domain showed similar neutralizing activity as ACT-immunized mice, indicating that this domain induced an antibody response similar to that induced by ACT. These data demonstrate that RTX can elicit neutralizing antibodies and suggest it may present an alternative to ACT.
Collapse
Affiliation(s)
| | - Mary C Gray
- Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Erik L Hewlett
- Division of Infectious Diseases and International Health, Deparment of Medicine, University of Virginia, Charlottesville, Virginia, 22908
| | - Jennifer A Maynard
- Division of Infectious Diseases and International Health, Deparment of Medicine, University of Virginia, Charlottesville, Virginia, 22908
| |
Collapse
|
37
|
Zhang L, Franks J, Stolz DB, Conway JF, Thibodeau PH. Inducible polymerization and two-dimensional assembly of the repeats-in-toxin (RTX) domain from the Pseudomonas aeruginosa alkaline protease. Biochemistry 2014; 53:6452-62. [PMID: 25232897 PMCID: PMC4204888 DOI: 10.1021/bi5007546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Self-assembling proteins represent
potential scaffolds for the
organization of enzymatic activities. The alkaline protease repeats-in-toxin
(RTX) domain from Pseudomonas aeruginosa undergoes
multiple structural transitions in the presence and absence of calcium,
a native structural cofactor. In the absence of calcium, this domain
is capable of spontaneous, ordered polymerization, producing amyloid-like
fibrils and large two-dimensional protein sheets. This polymerization
occurs under near-physiological conditions, is rapid, and can be controlled
by regulating calcium in solution. Fusion of the RTX domain to a soluble
protein results in the incorporation of engineered protein function
into these macromolecular assemblies. Applications of this protein
sequence in bacterial adherence and colonization and the generation
of biomaterials are discussed.
Collapse
Affiliation(s)
- Liang Zhang
- Departments of Cell Biology and ‡Structural Biology, The University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | |
Collapse
|
38
|
Karst JC, Ntsogo Enguéné VY, Cannella SE, Subrini O, Hessel A, Debard S, Ladant D, Chenal A. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J Biol Chem 2014; 289:30702-30716. [PMID: 25231985 DOI: 10.1074/jbc.m114.580852] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.
Collapse
Affiliation(s)
- Johanna C Karst
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - V Yvette Ntsogo Enguéné
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sara E Cannella
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Orso Subrini
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Audrey Hessel
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sylvain Debard
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Daniel Ladant
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Alexandre Chenal
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
39
|
Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. J Bacteriol 2014; 196:2775-88. [PMID: 24837291 DOI: 10.1128/jb.01629-14] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins.
Collapse
|
40
|
Subrini O, Sotomayor-Pérez AC, Hessel A, Spiaczka-Karst J, Selwa E, Sapay N, Veneziano R, Pansieri J, Chopineau J, Ladant D, Chenal A. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J Biol Chem 2013; 288:32585-32598. [PMID: 24064217 PMCID: PMC3820891 DOI: 10.1074/jbc.m113.508838] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/09/2013] [Indexed: 12/27/2022] Open
Abstract
Bordetella pertussis, the pathogenic bacteria responsible for whooping cough, secretes several virulence factors, among which is the adenylate cyclase toxin (CyaA) that plays a crucial role in the early stages of human respiratory tract colonization. CyaA invades target cells by translocating its catalytic domain directly across the plasma membrane and overproduces cAMP, leading to cell death. The molecular process leading to the translocation of the catalytic domain remains largely unknown. We have previously shown that the catalytic domain per se, AC384, encompassing residues 1-384 of CyaA, did not interact with lipid bilayer, whereas a longer polypeptide, AC489, spanning residues 1-489, binds to membranes and permeabilizes vesicles. Moreover, deletion of residues 375-485 within CyaA abrogated the translocation of the catalytic domain into target cells. Here, we further identified within this region a peptidic segment that exhibits membrane interaction properties. A synthetic peptide, P454, corresponding to this sequence (residues 454-485 of CyaA) was characterized by various biophysical approaches. We found that P454 (i) binds to membranes containing anionic lipids, (ii) adopts an α-helical structure oriented in plane with respect to the lipid bilayer, and (iii) permeabilizes vesicles. We propose that the region encompassing the helix 454-485 of CyaA may insert into target cell membrane and induce a local destabilization of the lipid bilayer, thus favoring the translocation of the catalytic domain across the plasma membrane.
Collapse
Affiliation(s)
- Orso Subrini
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Ana-Cristina Sotomayor-Pérez
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Audrey Hessel
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Johanna Spiaczka-Karst
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Edithe Selwa
- the Institut Pasteur, CNRS UMR 3528, Unité de Bio-Informatique Structurale, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Nicolas Sapay
- the Commissariat à l'Energie Atomique, Direction des Sciences de la Vie, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Chimie et Biologie des Métaux, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, France
| | - Rémi Veneziano
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France
| | - Jonathan Pansieri
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France
| | - Joel Chopineau
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France; the Université de Nîmes, Rue Docteur Georges Salan, 30021 Nîmes, France
| | - Daniel Ladant
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France,.
| | - Alexandre Chenal
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France,.
| |
Collapse
|
41
|
Charge-dependent secretion of an intrinsically disordered protein via the autotransporter pathway. Proc Natl Acad Sci U S A 2013; 110:E4246-55. [PMID: 24145447 DOI: 10.1073/pnas.1310345110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autotransporters are a large class of virulence proteins produced by Gram-negative bacteria. They contain an N-terminal extracellular ("passenger") domain that folds into a β-helical structure and a C-terminal β-barrel ("β") domain that anchors the protein to the outer membrane. Because the periplasm lacks ATP, the source of energy that drives passenger domain secretion is unknown. The prevailing model postulates that vectorial folding of the β-helix in the extracellular space facilitates unidirectional secretion of the passenger domain. In this study we used a chimeric protein composed of the 675-residue receptor-binding domain (RD) of the Bordetella pertussis adenylate cyclase toxin CyaA fused to the C terminus of the Escherichia coli O157:H7 autotransporter EspP to test this hypothesis. The RD is a highly acidic, repetitive polypeptide that is intrinsically disordered in the absence of calcium. Surprisingly, we found that the RD moiety was efficiently secreted when it remained in an unfolded conformation. Furthermore, we found that neutralizing or reversing the charge of acidic amino acid clusters stalled translocation in the vicinity of the altered residues. These results challenge the vectorial folding model and, together with the finding that naturally occurring passenger domains are predominantly acidic, provide evidence that a net negative charge plays a significant role in driving the translocation reaction.
Collapse
|
42
|
Zhou XR, Ge R, Luo SZ. Self-assembly of pH and calcium dual-responsive peptide-amphiphilic hydrogel. J Pept Sci 2013; 19:737-44. [DOI: 10.1002/psc.2569] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Xi-Rui Zhou
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Rui Ge
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
43
|
Sotomayor-Pérez AC, Subrini O, Hessel A, Ladant D, Chenal A. Molecular Crowding Stabilizes Both the Intrinsically Disordered Calcium-Free State and the Folded Calcium-Bound State of a Repeat in Toxin (RTX) Protein. J Am Chem Soc 2013; 135:11929-34. [DOI: 10.1021/ja404790f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana-Cristina Sotomayor-Pérez
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| | - Orso Subrini
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| | - Audrey Hessel
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| | - Daniel Ladant
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| | - Alexandre Chenal
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| |
Collapse
|
44
|
Shur O, Banta S. Rearranging and concatenating a native RTX domain to understand sequence modularity. Protein Eng Des Sel 2012; 26:171-80. [PMID: 23173179 DOI: 10.1093/protein/gzs092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of repetitive peptide sequences forming predictable secondary structures has been a key paradigm in recent efforts to engineer biomolecular recognition. The modularity and predictability of these scaffolds enables precise identification and mutation of the active interface, providing a level of control which non-repetitive scaffolds often lack. However, the majority of these scaffolds are well-folded stable structures. If the structures had a stimulus-responsive character, this would enable the allosteric regulation of their function. The calcium-responsive beta roll-forming repeats in toxin (RTX) domain potentially offer both of these properties. To further develop this scaffold, we synthesized a set of RTX peptides ranging in size from 5 to 17 repeats, with and without C-terminal capping. We found that while the number of repeats can be altered to tune the size of the RTX face, repeat ordering and C-terminal capping are critical for successful folding. Comparing all of the constructs, we also observed that native configuration with nine repeats exhibited the highest affinity for calcium. In addition, we performed a comparison on a set of known RTX-containing proteins and find that C-terminal repeats often possess deviations from the consensus RTX sequence which may be essential for proper folding. We further find that there seems to be a narrow size range in which RTX domains exist. These results demonstrate that the deviations from the consensus RTX sequence that are observed in natural proteins are important for high-affinity calcium binding and folding. Therefore, the RTX scaffolds will be less modular as compared with other, non-responsive scaffolds, and the sequence-dependent interactions between different repeats will need to be retained in these scaffolds as they are developed in future protein-engineering efforts.
Collapse
Affiliation(s)
- Oren Shur
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY 10027, USA
| | | |
Collapse
|
45
|
Cheng M, Angkawidjaja C, Koga Y, Kanaya S. Requirement of lid2 for interfacial activation of a family I.3 lipase with unique two lid structures. FEBS J 2012; 279:3727-3737. [DOI: 10.1111/j.1742-4658.2012.08734.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/28/2012] [Accepted: 07/30/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Cheng
- Department of Material and Life Science; Graduate School of Engineering; Osaka University Japan
| | - Clement Angkawidjaja
- Department of Material and Life Science; Graduate School of Engineering; Osaka University Japan
- International College; Osaka University; Japan
| | - Yuichi Koga
- Department of Material and Life Science; Graduate School of Engineering; Osaka University Japan
| | - Shigenori Kanaya
- Department of Material and Life Science; Graduate School of Engineering; Osaka University Japan
| |
Collapse
|
46
|
Estimation of intrinsically disordered protein shape and time-averaged apparent hydration in native conditions by a combination of hydrodynamic methods. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 896:163-77. [PMID: 22821523 DOI: 10.1007/978-1-4614-3704-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Size exclusion chromatography coupled online to a Tetra Detector Array in combination with analytical ultracentrifugation (or with quasi-elastic light scattering) is a useful methodology to characterize hydrodynamic properties of macromolecules, including intrinsically disordered proteins. The time-averaged apparent hydration and the shape factor of proteins can be estimated from the measured parameters (molecular mass, intrinsic viscosity, hydrodynamic radius) by these techniques. Here we describe in detail this methodology and its application to characterize hydrodynamic and conformational changes in proteins.
Collapse
|
47
|
Ouellette SP, Karimova G, Subtil A, Ladant D. Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 2012; 85:164-78. [PMID: 22624979 DOI: 10.1111/j.1365-2958.2012.08100.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium.
Collapse
Affiliation(s)
- Scot P Ouellette
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Paris, France.
| | | | | | | |
Collapse
|
48
|
Karst JC, Barker R, Devi U, Swann MJ, Davi M, Roser SJ, Ladant D, Chenal A. Identification of a region that assists membrane insertion and translocation of the catalytic domain of Bordetella pertussis CyaA toxin. J Biol Chem 2012; 287:9200-12. [PMID: 22241477 DOI: 10.1074/jbc.m111.316166] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenylate cyclase (CyaA) toxin, one of the virulence factors secreted by Bordetella pertussis, the pathogenic bacteria responsible for whooping cough, plays a critical role in the early stages of respiratory tract colonization by this bacterium. The CyaA toxin is able to invade eukaryotic cells by translocating its N-terminal catalytic domain directly across the plasma membrane of the target cells, where, activated by endogenous calmodulin, it produces supraphysiological levels of cAMP. How the catalytic domain is transferred from the hydrophilic extracellular medium into the hydrophobic environment of the membrane and then to the cell cytoplasm remains an unsolved question. In this report, we have characterized the membrane-interacting properties of the CyaA catalytic domain. We showed that a protein covering the catalytic domain (AC384, encompassing residues 1-384 of CyaA) displayed no membrane association propensity. However, a longer polypeptide (AC489), encompassing residues 1-489 of CyaA, exhibited the intrinsic property to bind to membranes and to induce lipid bilayer destabilization. We further showed that deletion of residues 375-485 within CyaA totally abrogated the toxin's ability to increase intracellular cAMP in target cells. These results indicate that, whereas the calmodulin dependent enzymatic domain is restricted to the amino-terminal residues 1-384 of CyaA, the membrane-interacting, translocation-competent domain extends up to residue 489. This thus suggests an important role of the region adjacent to the catalytic domain of CyaA in promoting its interaction with and its translocation across the plasma membrane of target cells.
Collapse
Affiliation(s)
- Johanna C Karst
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wojtas M, Kapłon TM, Dobryszycki P, Ożyhar A. The effect of counter ions on the conformation of intrinsically disordered proteins studied by size-exclusion chromatography. Methods Mol Biol 2012; 896:319-330. [PMID: 22821534 DOI: 10.1007/978-1-4614-3704-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Counter ions are able to change the conformation of intrinsically disordered proteins (IDPs) to a more compact structure via the reduction of electrostatic repulsion. When the extended IDP conformation is transformed into a more ordered one, the value of the Stokes radius should decrease. Size-exclusion chromatography is a simple method for the determination of the Stokes radius, which describes the hydrodynamic properties of protein molecules. In our paper size-exclusion chromatography experiments of Starmaker (a highly acidic IDP), in the presence of various counter ions, are presented as an example of a simple experimental method, which provides valuable information about subtle counter ions-induced conformational changes in IDP.
Collapse
Affiliation(s)
- Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | | | | | | |
Collapse
|
50
|
Chenal A, Vendrely C, Vitrac H, Karst JC, Gonneaud A, Blanchet CE, Pichard S, Garcia E, Salin B, Catty P, Gillet D, Hussy N, Marquette C, Almunia C, Forge V. Amyloid Fibrils Formed by the Programmed Cell Death Regulator Bcl-xL. J Mol Biol 2012; 415:584-99. [DOI: 10.1016/j.jmb.2011.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/07/2011] [Accepted: 11/13/2011] [Indexed: 12/21/2022]
|