1
|
Shi X, Li H, Yao S, Ding Y, Lin X, Xu H, Liu Y, Zhao C, Zhang T, Wang J. A CRISPR/Cas12a-assisted bacteria quantification platform combined with magnetic covalent organic frameworks and hybridization chain reaction. Food Chem 2024; 440:138196. [PMID: 38104450 DOI: 10.1016/j.foodchem.2023.138196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The total bacterial count is an important indicator of food contamination in food safety supervision and management. Recently, the CRISPR/Cas12a system integrated with nucleic acid amplification has increasingly shown tremendous potential in microorganism detection. However, a general quantification strategy for total bacteria count based on the CRISPR/Cas12a system has not yet been developed. Herein, we established a sensitive bacterial quantification strategy based on the CRISPR/Cas12a system combined with magnetic covalent organic frameworks (MCOFs) and hybridization chain reaction (HCR). MCOFs acted as a carrier, adsorbing the ssDNA as HCR trigger sequence through π-π stacking. Then, the HCR circuit produces DNA duplexes containing the PAM sequences that activate the trans-cleavage activity of Cas12a for further signal amplification. Under the optimal conditions, the proposed method can quantify total bacteria in 50 min with a minimum detection concentration of 10 CFU/mL. The successful applications in food samples confirmed the feasibility and broad application prospects.
Collapse
Affiliation(s)
- Xuening Shi
- School of Public Health, Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130021,China.
| | - Hang Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Yukun Ding
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Xiuzhu Lin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Hui Xu
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Yi Liu
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130021,China.
| |
Collapse
|
2
|
Lin ES, Huang YH, Huang CY. Characterization of the Chimeric PriB-SSBc Protein. Int J Mol Sci 2021; 22:ijms221910854. [PMID: 34639195 PMCID: PMC8509808 DOI: 10.3390/ijms221910854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/27/2023] Open
Abstract
PriB is a primosomal protein required for the replication fork restart in bacteria. Although PriB shares structural similarity with SSB, they bind ssDNA differently. SSB consists of an N-terminal ssDNA-binding/oligomerization domain (SSBn) and a flexible C-terminal protein–protein interaction domain (SSBc). Apparently, the largest difference in structure between PriB and SSB is the lack of SSBc in PriB. In this study, we produced the chimeric PriB-SSBc protein in which Klebsiella pneumoniae PriB (KpPriB) was fused with SSBc of K. pneumoniae SSB (KpSSB) to characterize the possible SSBc effects on PriB function. The crystal structure of KpSSB was solved at a resolution of 2.3 Å (PDB entry 7F2N) and revealed a novel 114-GGRQ-117 motif in SSBc that pre-occupies and interacts with the ssDNA-binding sites (Asn14, Lys74, and Gln77) in SSBn. As compared with the ssDNA-binding properties of KpPriB, KpSSB, and PriB-SSBc, we observed that SSBc could significantly enhance the ssDNA-binding affinity of PriB, change the binding behavior, and further stimulate the PriA activity (an initiator protein in the pre-primosomal step of DNA replication), but not the oligomerization state, of PriB. Based on these experimental results, we discuss reasons why the properties of PriB can be retrofitted when fusing with SSBc.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No. 193, Sec.1, San-Min Rd., Taichung City 403, Taiwan;
| | - Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Windgassen TA, Leroux M, Sandler SJ, Keck JL. Function of a strand-separation pin element in the PriA DNA replication restart helicase. J Biol Chem 2018; 294:2801-2814. [PMID: 30593500 DOI: 10.1074/jbc.ra118.006870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/26/2018] [Indexed: 11/06/2022] Open
Abstract
DNA helicases are motor proteins that couple the chemical energy of nucleoside triphosphate hydrolysis to the mechanical functions required for DNA unwinding. Studies of several helicases have identified strand-separating "pin" structures that are positioned to intercept incoming dsDNA and promote strand separation during helicase translocation. However, pin structures vary among helicases and it remains unclear whether they confer a conserved unwinding mechanism. Here, we tested the biochemical and cellular roles of a putative pin element within the Escherichia coli PriA DNA helicase. PriA orchestrates replication restart in bacteria by unwinding the lagging-strand arm of abandoned DNA replication forks and reloading the replicative helicase with the help of protein partners that combine with PriA to form what is referred to as a primosome complex. Using in vitro protein-DNA cross-linking, we localized the putative pin (a β-hairpin within a zinc-binding domain in PriA) near the ssDNA-dsDNA junction of the lagging strand in a PriA-DNA replication fork complex. Removal of residues at the tip of the β-hairpin eliminated PriA DNA unwinding, interaction with the primosome protein PriB, and cellular function. We isolated a spontaneous intragenic suppressor mutant of the priA β-hairpin deletion mutant in which 22 codons around the deletion site were duplicated. This suppressor variant and an Ala-substituted β-hairpin PriA variant displayed wildtype levels of DNA unwinding and PriB binding in vitro These results suggest essential but sequence nonspecific roles for the PriA pin element and coupling of PriA DNA unwinding to its interaction with PriB.
Collapse
Affiliation(s)
- Tricia A Windgassen
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Maxime Leroux
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Steven J Sandler
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
4
|
Windgassen TA, Wessel SR, Bhattacharyya B, Keck JL. Mechanisms of bacterial DNA replication restart. Nucleic Acids Res 2018; 46:504-519. [PMID: 29202195 PMCID: PMC5778457 DOI: 10.1093/nar/gkx1203] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved 'DNA replication restart' pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT).
Collapse
Affiliation(s)
- Tricia A Windgassen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sarah R Wessel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Biochemistry, Vanderbilt School of Medicine, Nashville, TN 37205, USA
| | - Basudeb Bhattacharyya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
5
|
Bujalowski W, Jezewska MJ, Bujalowski PJ. Signal and binding. I. Physico-chemical response to macromolecule-ligand interactions. Biophys Chem 2017; 222:7-24. [PMID: 28092802 DOI: 10.1016/j.bpc.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 11/27/2022]
Abstract
Obtaining a detailed knowledge about energetics of ligand-macromolecule interactions is a prerequisite for elucidation of the nature, behavior, and activities of the formed complexes. The most commonly used methods in characterizing molecular interactions are physico-chemical techniques based mainly on spectroscopic, calorimetric, hydrodynamic, etc., measurements. The major advantage of the physico-chemical methods is that they do not require large quantities of material and, if performed carefully, do not perturb examined reactions. Applications of several different physico-chemical approaches, commonly encountered in analyses of biochemical interactions, are here reviewed and discussed, using examples of simple binding reactions. It is stressed that without determination of the relationship between the measured signal and the total average degree of binding, the performed analysis of a single physico-chemical titration curve may provide only fitting parameters, instead of meaningful interaction parameters, already for the binding systems with only two ligand molecules. Some possible pitfalls in the analyses of single titration curves are discussed.
Collapse
Affiliation(s)
- Wlodzimierz Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA; The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA.
| | - Maria J Jezewska
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA; The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA
| | - Paul J Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA; The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA
| |
Collapse
|
6
|
Huang YH, Lien Y, Huang CC, Huang CY. Characterization of Staphylococcus aureus Primosomal DnaD Protein: Highly Conserved C-Terminal Region Is Crucial for ssDNA and PriA Helicase Binding but Not for DnaA Protein-Binding and Self-Tetramerization. PLoS One 2016; 11:e0157593. [PMID: 27304067 PMCID: PMC4909229 DOI: 10.1371/journal.pone.0157593] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
The role of DnaD in the recruitment of replicative helicase has been identified. However, knowledge of the DNA, PriA, and DnaA binding mechanism of this protein for the DnaA- and PriA-directed replication primosome assemblies is limited. We characterized the DNA-binding properties of DnaD from Staphylococcus aureus (SaDnaD) and analyzed its interactions with SaPriA and SaDnaA. The gel filtration chromatography analysis of purified SaDnaD and its deletion mutant proteins (SaDnaD1-195, SaDnaD1-200 and SaDnaD1-204) showed a stable tetramer in solution. This finding indicates that the C-terminal region aa 196-228 is not crucial for SaDnaD oligomerization. SaDnaD forms distinct complexes with ssDNA of different lengths. In fluorescence titrations, SaDnaD bound to ssDNA with a binding-site size of approximately 32 nt. A stable complex of SaDnaD1-195, SaDnaD1-200, and SaDnaD1-204 with ssDNA dT40 was undetectable, indicating that the C-terminal region of SaDnaD (particularly aa 205-228) is crucial for ssDNA binding. The SPR results revealed that SaDnaD1-195 can interact with SaDnaA but not with SaPriA, which may indicate that DnaD has different binding sites for PriA and DnaA. Both SaDnaD and SaDnaDY176A mutant proteins, but not SaDnaD1-195, can significantly stimulate the ATPase activity of SaPriA. Hence, the stimulation effect mainly resulted from direct contact within the protein-protein interaction, not via the DNA-protein interaction. Kinetic studies revealed that the SaDnaD-SaPriA interaction increases the Vmax of the SaPriA ATPase fivefold without significantly affecting the Km. These results indicate that the conserved C-terminal region is crucial for ssDNA and PriA helicase binding, but not for DnaA protein-binding and self-tetramerization.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Yi Lien
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Chien-Chih Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Abstract
Elucidation of ligand - macromolecule interactions requires detailed knowledge of energetics of the formed complexes. Spectroscopic methods are most commonly used in characterizing molecular interactions in solution. The methods do not require large quantities of material and most importantly, do not perturb the studied reactions. However, spectroscopic methods absolutely require the determination of the relationship between the observed signal and the degree of binding in order to obtain meaningful interaction parameters. In other words, the meaningful, thermodynamic interaction parameters can be only determined if the relationship between the observed signal and the degree of binding is determined and not assumed, based on an ad hoc model of the relationship. The approaches discussed here allow an experimenter to quantitatively determine the degree of binding and the free ligand concentration, i.e., they enable to construct thermodynamic binding isotherms in a model-independent fashion.
Collapse
Affiliation(s)
- Wlodzimierz Bujalowski
- Department of Obstetrics and Gynecology, The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555-1053
| | - Maria J Jezewska
- Department of Biochemistry and Molecular Biology, The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555-1053
| |
Collapse
|
8
|
Structural insight into the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT. BIOMED RESEARCH INTERNATIONAL 2014; 2014:195162. [PMID: 25136561 PMCID: PMC4129139 DOI: 10.1155/2014/195162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023]
Abstract
Replication restart primosome is a complex dynamic system that is essential for bacterial survival. This system uses various proteins to reinitiate chromosomal DNA replication to maintain genetic integrity after DNA damage. The replication restart primosome in Escherichia coli is composed of PriA helicase, PriB, PriC, DnaT, DnaC, DnaB helicase, and DnaG primase. The assembly of the protein complexes within the forked DNA responsible for reloading the replicative DnaB helicase anywhere on the chromosome for genome duplication requires the coordination of transient biomolecular interactions. Over the last decade, investigations on the structure and mechanism of these nucleoproteins have provided considerable insight into primosome assembly. In this review, we summarize and discuss our current knowledge and recent advances on the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT.
Collapse
|
9
|
Fujiyama S, Abe Y, Takenawa T, Aramaki T, Shioi S, Katayama T, Ueda T. Involvement of histidine in complex formation of PriB and single-stranded DNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:299-307. [PMID: 24200676 DOI: 10.1016/j.bbapap.2013.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
PriB is a basic 10-kDa protein that acts as a facilitator in PriA-dependent replication restart in Escherichia coli. PriB has an OB-fold dimer structure and exhibits single-stranded DNA (ssDNA)-binding activities similar to single-stranded binding protein (SSB). In this study, we examined PriB's interaction with ssDNA (oligo-dT35, -dT15, and -dT7) using heteronuclear NMR analysis. Interestingly, (1)H or (15)N chemical shift changes of the PriB main-chain showed two distinct modes using oligo-dT35. The chemical shift perturbation sites in the primary mode were consistent with the main contact site in PriB-ssDNA, which was previously determined by crystal structure analysis. The results also suggested that approximately 8nt in ssDNA was the main contact site to PriB. In the secondary mode, residues in the α-helix region (His57-Ser65) and in β4-loop3-β5 were mainly perturbed. On the other hand, we examined the state of ssDNA by FRET using 5'-Cy3- and 3'-Cy5-modified oligo-dT35. As the PriB concentration increased, two-step saturation curves were observed in the FRET assay, suggesting a compact structure of ssDNA. Moreover, we confirmed two-step PriB binding to oligo-dT35 using EMSA. The pH dependence of FRET suggested contribution of the His residues. Therefore, we prepared His mutants of PriB and found that His64 in the α-helix region contributed to the second interaction between PriB and ssDNA using FRET and EMSA. Thus, from a structural standpoint, we suggested the role of His64 on the compactness of the PriB-ssDNA complex and on the positive cooperativity of PriB.
Collapse
Affiliation(s)
- Saki Fujiyama
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshito Abe
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taichi Takenawa
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiko Aramaki
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seijiro Shioi
- Radioisotope Center, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
10
|
Huang YH, Lin MJ, Huang CY. DnaT is a single-stranded DNA binding protein. Genes Cells 2013; 18:1007-19. [PMID: 24118681 DOI: 10.1111/gtc.12095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/11/2013] [Indexed: 01/26/2023]
Abstract
DnaT is one of the replication restart primosomal proteins required for reinitiating chromosomal DNA replication in bacteria. In this study, we identified and characterized the single-stranded DNA (ssDNA)-binding properties of DnaT using electrophoretic mobility shift analysis (EMSA), bioinformatic tools and two deletion mutant proteins, namely, DnaT26-179 and DnaT42-179. ConSurf analysis indicated that the N-terminal region of DnaT is highly variable. The analysis of purified DnaT and the deletion mutant protein DnaT42-179 by gel filtration chromatography showed a stable trimer in solution, indicating that the N-terminal region, amino acid 1-41, is not crucial for the oligomerization of DnaT. Contrary to PriB, which forms a single complex with a series of ssDNA homopolymers, DnaT, DnaT26-179 and DnaT42-179 form distinct complexes with ssDNA of different lengths and the size of binding site of 26 ± 2 nucleotides (nt). Using bioinformatic programs (ps)(2) and the analysis of the positively charged/hydrophobic residue distribution, as well as the biophysical results in this study, we propose a binding model for the DnaT trimer-ssDNA complex, in which 25-nt-long ssDNA is tethered on the surface groove located in the highly conserved C-terminal domain of DnaT. These results constitute the first study regarding ssDNA-binding activity of DnaT. Consequently, a hand-off mechanism for primosome assembly was modified.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd, Taichung, Taiwan
| | | | | |
Collapse
|
11
|
Yeast Two-Hybrid Analysis of PriB-Interacting Proteins in Replication Restart Primosome: A Proposed PriB–SSB Interaction Model. Protein J 2013; 32:477-83. [DOI: 10.1007/s10930-013-9509-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Szymanski MR, Jezewska MJ, Bujalowski W. The Escherichia coli primosomal DnaT protein exists in solution as a monomer-trimer equilibrium system. Biochemistry 2013; 52:1845-57. [PMID: 23418648 PMCID: PMC3686320 DOI: 10.1021/bi301568w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The oligomerization reaction of the Escherichia coli DnaT protein has been quantitatively examined using fluorescence anisotropy and analytical ultracentrifugation methods. In solution, DnaT exists as a monomer-trimer equilibrium system. At the estimated concentration in the E. coli cell, DnaT forms a mixture of the monomer and trimer states with a 3:1 molar ratio. In spite of the modest affinity, the trimerization is a highly cooperative process, without the detectable presence of the intervening dimer. The DnaT monomer consists of a large N-terminal core domain and a small C-terminal region. The removal of the C-terminal region dramatically affects the oligomerization process. The isolated N-terminal domain forms a dimer instead of the trimer. These results indicate that the DnaT monomer possesses two structurally different, interacting sites. One site is located on the N-terminal domain, and two monomers, in the trimer, are associated through their binding sites located on that domain. The C-terminal region forms the other interacting site. The third monomer is engaged through the C-terminal regions. Surprisingly, the high affinity of the N-terminal domain dimer indicates that the DnaT monomer undergoes a conformational transition upon oligomerization, involving the C-terminal region. These data and the high specificity of the trimerization reaction, i.e., lack of any oligomers higher than a trimer, indicate that each monomer in the trimer is in contact with the two remaining monomers. A model of the global structure of the DnaT trimer based on the thermodynamic and hydrodynamic data is discussed.
Collapse
Affiliation(s)
| | | | - Wlodzimierz Bujalowski
- Department of Obstetrics and Gynecology, The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555-1053
| |
Collapse
|
13
|
Szymanski MR, Jezewska MJ, Bujalowski W. Energetics of the Escherichia coli DnaT protein trimerization reaction. Biochemistry 2013; 52:1858-73. [PMID: 23418702 DOI: 10.1021/bi3015696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thermodynamic and structural characteristics of the Escherichia coli DnaT protein trimerization reaction have been quantitatively examined using fluorescence anisotropy and analytical ultracentrifugation methods. Binding of magnesium to the DnaT monomers regulates the intrinsic affinity of the DnaT trimerization reaction. Comparison between the DnaT trimer and the isolated N-terminal core domain suggests that magnesium binds to the N-terminal domain but does not associate with the C-terminal region of the protein. The magnesium binding process is complex and involves approximately three Mg(2+) cations per protein monomer. The observed effect seems to be specific for Mg(2+). In the examined salt concentration range, monovalent cations and anions do not affect the trimer assembly process. However, magnesium affects neither the cooperativity of the trimerization reaction nor the GnHCl-induced trimer dissociation, strongly indicating that Mg(2+) indirectly stabilizes the trimer through the induced changes in the monomer structures. Nevertheless, formation of the trimer also involves specific conformational changes of the monomers, which are independent of the presence of magnesium. Binding of Mg(2+) cations dramatically changes the thermodynamic functions of the DnaT trimerization, transforming the reaction from a temperature-dependent to temperature-independent process. Highly cooperative dissociation of the trimer by GnHCl indicates that both interacting sites of the monomer, located on the N-terminal core domain and formed by the small C-terminal region, are intimately integrated with the entire protein structure. In the intact protein, the C-terminal region most probably interacts with the corresponding binding site on the N-terminal domain of the monomer. Functional implications of these findings are discussed.
Collapse
Affiliation(s)
- Michal R Szymanski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555-1053, United States
| | | | | |
Collapse
|
14
|
A single residue determines the cooperative binding property of a primosomal DNA replication protein, PriB, to single-stranded DNA. Biosci Biotechnol Biochem 2012; 76:1110-5. [PMID: 22790931 DOI: 10.1271/bbb.110938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PriB is a primosomal protein required for re-initiation of replication in bacteria. We characterized and compared the DNA-binding properties of PriB from Salmonella enterica serovar Typhimurium LT2 (StPriB) and Escherichia coli (EcPriB). Only one residue of EcPriB, V6, was different in StPriB (replaced by A6). Previous structural information revealed that this residue is located on the putative dimer-dimer interface of PriB and is not involved in single-stranded DNA (ssDNA) binding. The cooperative binding mechanism of StPriB to DNA is, however, very different from that of EcPriB. Unlike EcPriB, which forms a single complex with ssDNAs of various lengths, StPriB forms two or more distinct complexes. Based on these results, as well as information on structure, binding modes for forming a stable complex of PriB with ssDNA of 25 nucleotides (nt), (EcPriB)25, and (StPriB)25 are proposed.
Collapse
|
15
|
Huang YH, Lo YH, Huang W, Huang CY. Crystal structure and DNA-binding mode of Klebsiella pneumoniae primosomal PriB protein. Genes Cells 2012; 17:837-49. [PMID: 22938024 DOI: 10.1111/gtc.12001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/28/2012] [Indexed: 01/01/2023]
Abstract
PriB is a primosomal DNA replication protein required for the re-initiation of replication in bacteria. In this study, we investigated the gene expression of PriB in Klebsiella pneumoniae (KpPriB) and characterized the gene product through crystal structural and functional analyses. Quantitative polymerase chain reaction analysis (Q-PCR) indicated that the 104-aa priB was expressed in K. pneumoniae with a C(T) value of 22.4. The crystal structure of KpPriB (Protein Data Bank entry: 4APV) determined at a resolution of 2.1 Å was similar to that of Escherichia coli PriB (EcPriB). KpPriB formed a single complex with single-stranded DNA (ssDNA) of different lengths, suggesting a highly cooperative process. Structure-based mutational analysis revealed that substitution at K18, F42, R44, W47, K82, K84, or K89 but not R34 in KpPriB had a significant effect on both ssDNA and double-stranded DNA (dsDNA) binding. Based on these findings, the known ssDNA interaction sites of PriB were expanded to include R44 and F42, thus allowing nucleic acids to wrap around the whole PriB protein.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd, Taichung City, Taiwan
| | | | | | | |
Collapse
|
16
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
17
|
Szymanski MR, Bujalowski PJ, Jezewska MJ, Gmyrek AM, Bujalowski W. The N-terminal domain of the Escherichia coli PriA helicase contains both the DNA- and nucleotide-binding sites. Energetics of domain--DNA interactions and allosteric effect of the nucleotide cofactors. Biochemistry 2011; 50:9167-83. [PMID: 21888358 DOI: 10.1021/bi201100k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional interactions of the Escherichia coli PriA helicase 181N-terminal domain with the DNA and nucleotide cofactors have been quantitatively examined. The isolated 181N-terminal domain forms a stable dimer in solution, most probably reflecting the involvement of the domain in specific cooperative interactions of the intact PriA protein--double-stranded DNA (dsDNA) complex. Only one monomer of the domain dimer binds the DNA; i.e., the dimer has one effective DNA-binding site. Although the total site size of the dimer--single-stranded DNA (ssDNA) complex is ~13 nucleotides, the DNA-binding subsite engages in direct interactions with approximately five nucleotides. A small number of interacting nucleotides indicates that the DNA-binding subsites of the PriA helicase, i.e., the strong subsite on the helicase domain and the weak subsite on the N-terminal domain, are spatially separated in the intact enzyme. Contrary to current views, the subsite has an only slight preference for the 3'-end OH group of the ssDNA and lacks any significant base specificity, although it has a significant dsDNA affinity. Unlike the intact helicase, the DNA-binding subsite of the isolated domain is in an open conformation, indicating the presence of the direct helicase domain--N-terminal domain interactions. The discovery that the 181N-terminal domain possesses a nucleotide-binding site places the allosteric, weak nucleotide-binding site of the intact PriA on the N-terminal domain. The specific effect of ADP on the domain DNA-binding subsite indicates that in the intact helicase, the bound ADP not only opens the DNA-binding subsite but also increases its intrinsic DNA affinity.
Collapse
Affiliation(s)
- Michal R Szymanski
- Department of Biochemistry and Molecular Biology, Department of Obstetrics and Gynecology, The Sealy Center for Structural Biology, and The Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1053, United States
| | | | | | | | | |
Collapse
|
18
|
Szymanski MR, Jezewska MJ, Bujalowski PJ, Bussetta C, Ye M, Choi KH, Bujalowski W. Full-length Dengue virus RNA-dependent RNA polymerase-RNA/DNA complexes: stoichiometries, intrinsic affinities, cooperativities, base, and conformational specificities. J Biol Chem 2011; 286:33095-108. [PMID: 21725087 PMCID: PMC3190876 DOI: 10.1074/jbc.m111.255034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/30/2011] [Indexed: 12/22/2022] Open
Abstract
Fundamental aspects of interactions of the Dengue virus type 3 full-length polymerase with the single-stranded and double-stranded RNA and DNA have been quantitatively addressed. The polymerase exists as a monomer with an elongated shape in solution. In the absence of magnesium, the total site size of the polymerase-ssRNA complex is 26 ± 2 nucleotides. In the presence of Mg(2+), the site size increases to 29 ± 2 nucleotides, indicating that magnesium affects the enzyme global conformation. The enzyme shows a preference for the homopyrimidine ssRNAs. Positive cooperativity in the binding to homopurine ssRNAs indicates that the type of nucleic acid base dramatically affects the enzyme orientation in the complex. Both the intrinsic affinity and the cooperative interactions are accompanied by a net ion release. The polymerase binds the dsDNA with an affinity comparable with the ssRNAs affinity, indicating that the binding site has an open conformation in solution. The lack of detectable dsRNA or dsRNA-DNA hybrid affinities indicates that the entry to the binding site is specific for the sugar-phosphate backbone and/or conformation of the duplex.
Collapse
Affiliation(s)
- Michal R. Szymanski
- From the Department of Biochemistry and Molecular Biology
- the Sealy Center for Structural Biology, and
- the Sealy Center for Cancer Cell Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1053
| | - Maria J. Jezewska
- From the Department of Biochemistry and Molecular Biology
- the Sealy Center for Structural Biology, and
- the Sealy Center for Cancer Cell Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1053
| | - Paul J. Bujalowski
- From the Department of Biochemistry and Molecular Biology
- the Sealy Center for Structural Biology, and
- the Sealy Center for Cancer Cell Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1053
| | - Cecile Bussetta
- From the Department of Biochemistry and Molecular Biology
- the Sealy Center for Structural Biology, and
| | - Mengyi Ye
- From the Department of Biochemistry and Molecular Biology
- the Sealy Center for Structural Biology, and
| | - Kyung H. Choi
- From the Department of Biochemistry and Molecular Biology
- the Sealy Center for Structural Biology, and
| | - Wlodzimierz Bujalowski
- From the Department of Biochemistry and Molecular Biology
- the Department of Obstetrics and Gynecology
- the Sealy Center for Structural Biology, and
- the Sealy Center for Cancer Cell Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1053
| |
Collapse
|
19
|
Feng C, Sunchu B, Greenwood ME, Lopper ME. A bacterial PriB with weak single-stranded DNA binding activity can stimulate the DNA unwinding activity of its cognate PriA helicase. BMC Microbiol 2011; 11:189. [PMID: 21861872 PMCID: PMC3179954 DOI: 10.1186/1471-2180-11-189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/23/2011] [Indexed: 12/05/2022] Open
Abstract
Background Bacterial DNA replication restart pathways facilitate reinitiation of DNA replication following disruptive encounters of a replisome with DNA damage, thereby allowing complete and faithful duplication of the genome. In Neisseria gonorrhoeae, the primosome proteins that catalyze DNA replication restart differ from the well-studied primosome proteins of E. coli with respect to the number of proteins involved and the affinities of their physical interactions: the PriA:PriB interaction is weak in E. coli, but strong in N. gonorrhoeae, and the PriB:DNA interaction is strong in E. coli, but weak in N. gonorrhoeae. In this study, we investigated the functional consequences of this affinity reversal. Results We report that N. gonorrhoeae PriA's DNA binding and unwinding activities are similar to those of E. coli PriA, and N. gonorrhoeae PriA's helicase activity is stimulated by its cognate PriB, as it is in E. coli. This finding is significant because N. gonorrhoeae PriB's single-stranded DNA binding activity is weak relative to that of E. coli PriB, and in E. coli, PriB's single-stranded DNA binding activity is important for PriB stimulation of PriA helicase. Furthermore, a N. gonorrhoeae PriB variant defective for binding single-stranded DNA can stimulate PriA's helicase activity, suggesting that DNA binding by PriB might not be important for PriB stimulation of PriA helicase in N. gonorrhoeae. We also demonstrate that N. gonorrhoeae PriB stimulates ATP hydrolysis catalyzed by its cognate PriA. This activity of PriB has not been observed in E. coli, and could be important for PriB stimulation of PriA helicase in N. gonorrhoeae. Conclusions The results of this study demonstrate that a bacterial PriB homolog with weak single-stranded DNA binding activity can stimulate the DNA unwinding activity of its cognate PriA helicase. While it remains unclear if N. gonorrhoeae PriB's weak DNA binding activity is required for PriB stimulation of PriA helicase, the ability of PriB to stimulate PriA-catalyzed ATP hydrolysis could play an important role. Thus, the weak interaction between N. gonorrhoeae PriB and DNA might be compensated for by the strong interaction between PriB and PriA, which could result in allosteric activation of PriA's ATPase activity.
Collapse
Affiliation(s)
- Cui Feng
- Department of Chemistry, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | | | | | | |
Collapse
|
20
|
Szymanski MR, Jezewska MJ, Bujalowski W. Binding of two PriA-PriB complexes to the primosome assembly site initiates primosome formation. J Mol Biol 2011; 411:123-42. [PMID: 21641914 DOI: 10.1016/j.jmb.2011.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 11/19/2022]
Abstract
A direct quantitative analysis of the initial steps in primosome assembly, involving PriA and PriB proteins and the minimal primosome assembly site (PAS) of phage ϕX174, has been performed using fluorescence intensity, fluorescence anisotropy titration, and fluorescence resonance energy transfer techniques. We show that two PriA molecules bind to the PAS at both strong and weak binding sites on the DNA, respectively, without detectable cooperative interactions. Binding of the PriB dimer to the PriA-PAS complex dramatically increases PriA's affinity for the strong site, but only slightly affects its affinity for the weak site. Associations with the strong and weak sites are driven by apparent entropy changes, with binding to the strong site accompanied by a large unfavorable enthalpy change. The PriA-PriB complex, formed independently of the DNA, is able to directly recognize the PAS without the preceding the binding of PriA to the PAS. Thus, the high-affinity state of PriA for PAS is generated through PriA-PriB interactions. The effect of PriB is specific for PriA-PAS association, but not for PriA-double-stranded DNA or PriA-single-stranded DNA interactions. Only complexes containing two PriA molecules can generate a profound change in the PAS structure in the presence of ATP. The obtained results provide a quantitative framework for the elucidation of further steps in primosome assembly and for quantitative analyses of other molecular machines of cellular metabolism.
Collapse
Affiliation(s)
- Michal R Szymanski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1053, USA
| | | | | |
Collapse
|
21
|
Macromolecular competition titration method accessing thermodynamics of the unmodified macromolecule-ligand interactions through spectroscopic titrations of fluorescent analogs. Methods Enzymol 2011. [PMID: 21195223 DOI: 10.1016/b978-0-12-381268-1.00002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand-macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein-nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein-nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein-nucleic acid interactions, it can generally be applied to any ligand-macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined.
Collapse
|
22
|
Interactions of the DNA polymerase X from African Swine Fever Virus with the ssDNA. Properties of the total DNA-binding site and the strong DNA-binding subsite. Biophys Chem 2011; 158:26-37. [PMID: 21601347 DOI: 10.1016/j.bpc.2011.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/08/2011] [Accepted: 04/18/2011] [Indexed: 01/24/2023]
Abstract
Interactions of the polymerase X from the African Swine Fever Virus with the ssDNA have been studied, using quantitative fluorescence titration and fluorescence resonance energy transfer techniques. The primary DNA-binding subsite of the enzyme, independent of the DNA conformation, is located on the C-terminal domain. Association of the bound DNA with the catalytic N-terminal domain finalizes the engagement of the total DNA-binding site of the enzyme and induces a large topological change in the structure of the bound ssDNA. The free energy of binding includes a conformational transition of the protein. Large positive enthalpy changes accompanying the ASFV pol X-ssDNA association indicate that conformational changes of the complex are induced by the engagement of the N-terminal domain. The enthalpy changes are offset by large entropy changes accompanying the DNA binding to the C-terminal domain and the total DNA-binding site, predominantly resulting from the release of water molecules.
Collapse
|
23
|
The primary DNA-binding subsite of the rat pol β. Energetics of interactions of the 8-kDa domain of the enzyme with the ssDNA. Biophys Chem 2011; 156:115-27. [PMID: 21382659 DOI: 10.1016/j.bpc.2011.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 11/20/2022]
Abstract
Interactions of the 8-kDa domain of the rat pol β and the intact enzyme with the ssDNA have been studied, using the quantitative fluorescence titration technique. The 8-kDa domain induces large topological changes in the bound DNA structure and engages much larger fragments of the DNA than when embedded in the intact enzyme. The DNA affinity of the domain is predominantly driven by entropy changes, dominated by the water release from the protein. The thermodynamic characteristics dramatically change when the domain is embedded in the intact polymerase, indicating the presence of significant communication between the 8-kDa domain and the catalytic 31-kDa domain. The diminished water release from the 31-kDa domain strongly contributes to its dramatically lower DNA affinity, as compared to the 8-kDa domain. Unlike the 8-kDa domain, the DNA binding of the intact pol β is driven by entropy changes, originating from the structural changes of the formed complexes.
Collapse
|
24
|
Hsieh HC, Huang CY. Identification of a novel protein, PriB, in Klebsiella pneumoniae. Biochem Biophys Res Commun 2010; 404:546-51. [PMID: 21144832 DOI: 10.1016/j.bbrc.2010.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 01/23/2023]
Abstract
PriB is a primosomal protein required for the reinitiation of replication in bacteria. Here, we report the identification and characterization of a novel PriB protein in Klebsiella pneumoniae (KPN_04595; KpPriB). Unlike the well-studied Escherichia coli PriB protein (EcPriB), which exists as a homodimer comprising 104-aa polypeptides, KpPriB forms a monomer of only 55 aa, due to the absence of the 49 aa N-terminus in KpPriB. Although this N-terminal region (1-49 aa) in EcPriB contains several important residues, such as K18, R34, and W47, which are crucial for ssDNA binding, we found that KpPriB binds ssDNA, but not ssRNA, with comparable affinity as that for EcPriB. Results from filter-binding assays demonstrate that the KpPriB-ssDNA interaction is cooperative and salt-sensitive. Substituting the residue K33 in KpPriB with alanine, the position corresponding to the classic ssDNA-binding residue K82 of EcPriB located in loop L(45), significantly reduced ssDNA-binding activity and cooperativity. These results reveal that the 1-49 aa region of the classical PriB protein is unnecessary for ssDNA binding. On the basis of these findings, the structure-function relationships of KpPriB are discussed.
Collapse
Affiliation(s)
- Hui-Chuan Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | | |
Collapse
|
25
|
The Escherichia coli PriA helicase-double-stranded DNA complex: location of the strong DNA-binding subsite on the helicase domain of the protein and the affinity control by the two nucleotide-binding sites of the enzyme. J Mol Biol 2010; 402:344-62. [PMID: 20624397 DOI: 10.1016/j.jmb.2010.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/02/2010] [Accepted: 07/03/2010] [Indexed: 11/20/2022]
Abstract
The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5±1 bp, that is, dramatically lower than 20±3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA. The strong DNA-binding subsite of the enzyme is located on the helicase domain of the PriA protein. The dsDNA intrinsic affinity is considerably higher than the ssDNA affinity and the binding process is accompanied by a significant positive cooperativity. Association of cofactors with strong and weak nucleotide-binding sites of the protein profoundly affects the intrinsic affinity and the cooperativity, without affecting the stoichiometry. ATP analog binding to either site diminishes the intrinsic affinity but preserves the cooperativity. ADP binding to the strong site leads to a dramatic increase of the cooperativity and only slightly affects the affinity, while saturation of both sites with ADP strongly increases the affinity and eliminates the cooperativity. Thus, the coordinated action of both nucleotide-binding sites on the PriA-dsDNA interactions depends on the structure of the phosphate group. The significance of these results for the enzyme activities in recognizing primosome assembly sites or the ssDNA gaps is discussed.
Collapse
|