1
|
Furlanetto V, Kalyani DC, Kostelac A, Puc J, Haltrich D, Hällberg BM, Divne C. Structural and Functional Characterization of a Gene Cluster Responsible for Deglycosylation of C-glucosyl Flavonoids and Xanthonoids by Deinococcus aerius. J Mol Biol 2024; 436:168547. [PMID: 38508304 DOI: 10.1016/j.jmb.2024.168547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+β subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2β2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).
Collapse
Affiliation(s)
- Valentina Furlanetto
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Dayanand C Kalyani
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Anja Kostelac
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria; Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Jolanta Puc
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christina Divne
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| |
Collapse
|
2
|
Taborda A, Frazão T, Rodrigues MV, Fernández-Luengo X, Sancho F, Lucas MF, Frazão C, Melo EP, Ventura MR, Masgrau L, Borges PT, Martins LO. Mechanistic insights into glycoside 3-oxidases involved in C-glycoside metabolism in soil microorganisms. Nat Commun 2023; 14:7289. [PMID: 37963862 PMCID: PMC10646112 DOI: 10.1038/s41467-023-42000-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
C-glycosides are natural products with important biological activities but are recalcitrant to degradation. Glycoside 3-oxidases (G3Oxs) are recently identified bacterial flavo-oxidases from the glucose-methanol-coline (GMC) superfamily that catalyze the oxidation of C-glycosides with the concomitant reduction of O2 to H2O2. This oxidation is followed by C-C acid/base-assisted bond cleavage in two-step C-deglycosylation pathways. Soil and gut microorganisms have different oxidative enzymes, but the details of their catalytic mechanisms are largely unknown. Here, we report that PsG3Ox oxidizes at 50,000-fold higher specificity (kcat/Km) the glucose moiety of mangiferin to 3-keto-mangiferin than free D-glucose to 2-keto-glucose. Analysis of PsG3Ox X-ray crystal structures and PsG3Ox in complex with glucose and mangiferin, combined with mutagenesis and molecular dynamics simulations, reveal distinctive features in the topology surrounding the active site that favor catalytically competent conformational states suitable for recognition, stabilization, and oxidation of the glucose moiety of mangiferin. Furthermore, their distinction to pyranose 2-oxidases (P2Oxs) involved in wood decay and recycling is discussed from an evolutionary, structural, and functional viewpoint.
Collapse
Grants
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Fundação para a Ciência e Tecnologia, Portugal, grants 2022.02027.PTDC, UIDB/04612/2020 and UIDP/04612/2020, LA/P/0087/2020, PTDC/BII-BBF/29564/2017, and AAC 01/SAICT/2016 Fundação para a Ciência e Tecnologia, Portugal, Ph.D. fellowships 2020.07928, 2022.13872, and 2022.09426 Ministry of Science and Innovation, Spain, grant PID2021-126897NB-I00 and fellowship PRE2019-088412, funded by the MCIN/AEI/10.13039/501100011033/ FEDER, EU
- Fundação para a Ciência e Tecnologia (FCT), Portugal, grants UIDB/04326/2020, UIDP/043226/2020 and LA/P/0101/2020
Collapse
Affiliation(s)
- André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Tomás Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Miguel V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | | | - Ferran Sancho
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | | | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Eduardo P Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139, Faro, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Laura Masgrau
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
3
|
Gatreddi S, Sui D, Hausinger RP, Hu J. Irreversible inactivation of lactate racemase by sodium borohydride reveals reactivity of the nickel-pincer nucleotide cofactor. ACS Catal 2023; 13:1441-1448. [PMID: 37886035 PMCID: PMC10599654 DOI: 10.1021/acscatal.2c05461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The nickel-pincer nucleotide (NPN) cofactor discovered in lactate racemase from Lactiplantibacillus plantarum (LarALp) is essential for the activities of racemases/epimerases in the highly diverse LarA superfamily. Prior mechanistic studies have established a proton-coupled hydride-transfer mechanism for LarALp, but direct evidence showing that hydride attacks the C4 atom in the pyridinium ring of NPN has been lacking. Here, we show that sodium borohydride (NaBH4) irreversibly inactivates LarALp accompanied by a rapid color change of the enzyme. The altered ultraviolet-visible spectra during NaBH4 titration supported hydride transfer to C4 of NPN, and the concomitant Ni loss unraveled by mass spectrometry experiments accounted for the irreversible inactivation. High resolution structures of LarALp revealed a substantially weakened C-Ni bond in the metastable sulfite-NPN adduct where the NPN cofactor is in the reduced state. These findings allowed us to propose a mechanism of LarALp inactivation by NaBH4 that provides key insights into the enzyme-catalyzed reaction and sheds light on the reactivity of small molecule NPN mimetics.
Collapse
Affiliation(s)
- Santhosh Gatreddi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Robert P. Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
4
|
Sriwaiyaphram K, Punthong P, Sucharitakul J, Wongnate T. Structure and function relationships of sugar oxidases and their potential use in biocatalysis. Enzymes 2020; 47:193-230. [PMID: 32951824 DOI: 10.1016/bs.enz.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Several sugar oxidases that catalyze the oxidation of sugars have been isolated and characterized. These enzymes can be classified as flavoenzyme due to the presence of flavin adenine dinucleotide (FAD) as a cofactor. Sugar oxidases have been proposed to be the key biocatalyst in biotransformation of carbohydrates which can potentially convert sugars to provide a pool of intermediates for synthesis of rare sugars, fine chemicals and drugs. Moreover, sugar oxidases have been applied in biosensing of various biomolecules in food industries, diagnosis of diseases and environmental pollutant detection. This review provides the discussions on general properties, current mechanistic understanding, structural determination, biocatalytic application, and biosensor integration of representative sugar oxidase enzymes, namely pyranose 2-oxidase (P2O), glucose oxidase (GO), hexose oxidase (HO), and oligosaccharide oxidase. The information regarding the relationship between structure and function of these sugar oxidases points out the key properties of this particular group of enzymes that can be modified by engineering, which had resulted in a remarkable economic importance.
Collapse
Affiliation(s)
- Kanokkan Sriwaiyaphram
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Pangrum Punthong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
5
|
Doubayashi D, Oki M, Mikami B, Uchida H. The microenvironment surrounding FAD mediates its conversion to 8-formyl-FAD in Aspergillus oryzae RIB40 formate oxidase. J Biochem 2019; 166:67-75. [PMID: 30715389 DOI: 10.1093/jb/mvz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022] Open
Abstract
Aspergillus oryzae RIB40 formate oxidase has Arg87 and Arg554 near the formyl group and O(4) atom of 8-formyl-flavin adenine dinucleotide (FAD), respectively, with Asp396 neighbouring Arg554. Herein, we probed the roles of these three residues in modification of FAD to 8-formyl-FAD. Replacement of Arg87 or Arg554 with Lys or Ala decreased and abolished the modification, respectively. Replacement of Asp396 with Ala or Asn lowered the modification rate. The observation of unusual effects of maintaining pH 7.0 on the modification in R87K, R554K and D396 variants indicates initial and subsequent processes with different pH dependencies. Comparison of the initial process at pH 4.5 and 7.0 suggests that the microenvironment around Arg87 and the protonation state of Asp396 affect the initial process in the native enzyme. Comparison of the crystal structures of native and R554 variants showed that the replacements had minimal effect on catalytic site structure. The positively charged Arg87 might contribute to the formation of an anionic quinone-methide tautomer intermediate, while the positively charged Arg554, in collaboration with the negatively charged Asp396, might stabilize this intermediate and form a hydrogen bonding network with the N(5)/O(4) region, thereby facilitating efficient FAD modification.
Collapse
Affiliation(s)
- Daiju Doubayashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| | - Bunzo Mikami
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Ujishi, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| |
Collapse
|
6
|
Herzog PL, Sützl L, Eisenhut B, Maresch D, Haltrich D, Obinger C, Peterbauer CK. Versatile Oxidase and Dehydrogenase Activities of Bacterial Pyranose 2-Oxidase Facilitate Redox Cycling with Manganese Peroxidase In Vitro. Appl Environ Microbiol 2019; 85:e00390-19. [PMID: 31028028 PMCID: PMC6581175 DOI: 10.1128/aem.00390-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
Pyranose 2-oxidase (POx) has long been accredited a physiological role in lignin degradation, but evidence to provide insights into the biochemical mechanisms and interactions is insufficient. There are ample data in the literature on the oxidase and dehydrogenase activities of POx, yet the biological relevance of this duality could not be established conclusively. Here we present a comprehensive biochemical and phylogenetic characterization of a novel pyranose 2-oxidase from the actinomycetous bacterium Kitasatospora aureofaciens (KaPOx) as well as a possible biomolecular synergism of this enzyme with peroxidases using phenolic model substrates in vitro A phylogenetic analysis of both fungal and bacterial putative POx-encoding sequences revealed their close evolutionary relationship and supports a late horizontal gene transfer of ancestral POx sequences. We successfully expressed and characterized a novel bacterial POx gene from K. aureofaciens, one of the putative POx genes closely related to well-known fungal POx genes. Its biochemical characteristics comply with most of the classical hallmarks of known fungal pyranose 2-oxidases, i.e., reactivity with a range of different monosaccharides as electron donors as well as activity with oxygen, various quinones, and complexed metal ions as electron acceptors. Thus, KaPOx shows the pronounced duality of oxidase and dehydrogenase similar to that of fungal POx. We further performed efficient redox cycling of aromatic lignin model compounds between KaPOx and manganese peroxidase (MnP). In addition, we found a Mn(III) reduction activity in KaPOx, which, in combination with its ability to provide H2O2, implies this and potentially other POx as complementary enzymatic tools for oxidative lignin degradation by specialized peroxidases.IMPORTANCE Establishment of a mechanistic synergism between pyranose oxidase and (manganese) peroxidases represents a vital step in the course of elucidating microbial lignin degradation. Here, the comprehensive characterization of a bacterial pyranose 2-oxidase from Kitasatospora aureofaciens is of particular interest for several reasons. First, the phylogenetic analysis of putative pyranose oxidase genes reveals a widespread occurrence of highly similar enzymes in bacteria. Still, there is only a single report on a bacterial pyranose oxidase, stressing the need of closing this gap in the scientific literature. In addition, the relatively small K. aureofaciens proteome supposedly supplies a limited set of enzymatic functions to realize lignocellulosic biomass degradation. Both enzyme and organism therefore present a viable model to study the mechanisms of bacterial lignin decomposition, elucidate physiologically relevant interactions with specialized peroxidases, and potentially realize biotechnological applications.
Collapse
Affiliation(s)
- Peter L Herzog
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Leander Sützl
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Beate Eisenhut
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens K Peterbauer
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
7
|
Rankin JA, Mauban RC, Fellner M, Desguin B, McCracken J, Hu J, Varganov SA, Hausinger RP. Lactate Racemase Nickel-Pincer Cofactor Operates by a Proton-Coupled Hydride Transfer Mechanism. Biochemistry 2018; 57:3244-3251. [PMID: 29489337 DOI: 10.1021/acs.biochem.8b00100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactate racemase (LarA) of Lactobacillus plantarum contains a novel organometallic cofactor with nickel coordinated to a covalently tethered pincer ligand, pyridinium-3-thioamide-5-thiocarboxylic acid mononucleotide, but its function in the enzyme mechanism has not been elucidated. This study presents direct evidence that the nickel-pincer cofactor facilitates a proton-coupled hydride transfer (PCHT) mechanism during LarA-catalyzed lactate racemization. No signal was detected by electron paramagnetic resonance spectroscopy for LarA in the absence or presence of substrate, consistent with a +2 metal oxidation state and inconsistent with a previously proposed proton-coupled electron transfer mechanism. Pyruvate, the predicted intermediate for a PCHT mechanism, was observed in quenched solutions of LarA. A normal substrate kinetic isotope effect ( kH/ kD of 3.11 ± 0.17) was established using 2-α-2H-lactate, further supporting a PCHT mechanism. UV-visible spectroscopy revealed a lactate-induced perturbation of the cofactor spectrum, notably increasing the absorbance at 340 nm, and demonstrated an interaction of the cofactor with the inhibitor sulfite. A crystal structure of LarA provided greater resolution (2.4 Å) than previously reported and revealed sulfite binding to the pyridinium C4 atom of the reduced pincer cofactor, mimicking hydride reduction during a PCHT catalytic cycle. Finally, computational modeling supports hydride transfer to the cofactor at the C4 position or to the nickel atom, but with formation of a nickel-hydride species requiring dissociation of the His200 metal ligand. In aggregate, these studies provide compelling evidence that the nickel-pincer cofactor acts by a PCHT mechanism.
Collapse
Affiliation(s)
| | - Robert C Mauban
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | | | - Benoît Desguin
- Institute of Life Sciences , Université catholique de Louvain , B-1348 Louvain-La-Neuve , Belgium
| | | | | | - Sergey A Varganov
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | | |
Collapse
|
8
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
9
|
Lugsanangarm K, Nueangaudom A, Pianwanit S, Kokpol S, Nunthaboot N, Tanaka F, Taniguchi S, Chosrowjan H. Dynamics of the protein structure of T169S pyranose 2-oxidase in solution: Molecular dynamics simulation. Proteins 2017; 85:1913-1924. [DOI: 10.1002/prot.25345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Kiattisak Lugsanangarm
- Program of Chemistry, Faculty of Science and Technology; Bansomdejchaopraya Rajabhat University; Bangkok 10600 Thailand
| | - Arthit Nueangaudom
- Program of General Science, Faculty of Science and Technology; Thepsatri Rajabhat University; Lopburi 15000 Thailand
| | - Somsak Pianwanit
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Nadtanet Nunthaboot
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Mahasarakham University; Mahasarakham 44150 Thailand
| | - Fumio Tanaka
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
- Division of Laser Biochemistry; Institute for Laser Technology; Osaka 550-0004 Japan
| | - Seiji Taniguchi
- Division of Laser Biochemistry; Institute for Laser Technology; Osaka 550-0004 Japan
| | - Haik Chosrowjan
- Division of Laser Biochemistry; Institute for Laser Technology; Osaka 550-0004 Japan
| |
Collapse
|
10
|
|
11
|
Graf MMH, Sucharitakul J, Bren U, Chu DB, Koellensperger G, Hann S, Furtmüller PG, Obinger C, Peterbauer CK, Oostenbrink C, Chaiyen P, Haltrich D. Reaction of pyranose dehydrogenase from Agaricus meleagris with its carbohydrate substrates. FEBS J 2015; 282:4218-41. [PMID: 26284701 PMCID: PMC4950071 DOI: 10.1111/febs.13417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/04/2015] [Accepted: 08/13/2015] [Indexed: 01/25/2023]
Abstract
Monomeric Agaricus meleagris pyranose dehydrogenase (AmPDH) belongs to the glucose-methanol-choline family of oxidoreductases. An FAD cofactor is covalently tethered to His103 of the enzyme. AmPDH can double oxidize various mono- and oligosaccharides at different positions (C1 to C4). To study the structure/function relationship of selected active-site residues of AmPDH pertaining to substrate (carbohydrate) turnover in more detail, several active-site variants were generated, heterologously expressed in Pichia pastoris, and characterized by biochemical, biophysical and computational means. The crystal structure of AmPDH shows two active-site histidines, both of which could take on the role as the catalytic base in the reductive half-reaction. Steady-state kinetics revealed that His512 is the only catalytic base because H512A showed a reduction in (kcat /KM )glucose by a factor of 10(5) , whereas this catalytic efficiency was reduced by two or three orders of magnitude for His556 variants (H556A, H556N). This was further corroborated by transient-state kinetics, where a comparable decrease in the reductive rate constant was observed for H556A, whereas the rate constant for the oxidative half-reaction (using benzoquinone as substrate) was increased for H556A compared to recombinant wild-type AmPDH. Steady-state kinetics furthermore indicated that Gln392, Tyr510, Val511 and His556 are important for the catalytic efficiency of PDH. Molecular dynamics (MD) simulations and free energy calculations were used to predict d-glucose oxidation sites, which were validated by GC-MS measurements. These simulations also suggest that van der Waals interactions are the main driving force for substrate recognition and binding.
Collapse
Affiliation(s)
- Michael M H Graf
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Urban Bren
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
- Laboratory for Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Slovenia
| | - Dinh Binh Chu
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
- School of Chemical Engineering, Department of Analytical Chemistry, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Stephan Hann
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Paul G Furtmüller
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Clemens K Peterbauer
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| |
Collapse
|
12
|
Lugsanangarm K, Nueangaudom A, Kokpol S, Pianwanit S, Nunthaboot N, Tanaka F, Taniguchi S, Chosrowjan H. Heterogeneous subunit structures in the pyranose 2-oxidase homotetramer revealed by theoretical analysis of the rates of photoinduced electron transfer from a tryptophan to the excited flavin. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Chai AF, Bulloch EMM, Evans GL, Lott JS, Baker EN, Johnston JM. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket. ACTA ACUST UNITED AC 2015; 71:862-72. [PMID: 25849397 DOI: 10.1107/s1399004715001650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/25/2015] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.
Collapse
Affiliation(s)
- Ai-Fen Chai
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Esther M M Bulloch
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Genevieve L Evans
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - J Shaun Lott
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Edward N Baker
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jodie M Johnston
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Golden E, Karton A, Vrielink A. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization. ACTA ACUST UNITED AC 2014; 70:3155-66. [PMID: 25478834 DOI: 10.1107/s139900471402286x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/09/2023]
Abstract
Cholesterol oxidase (CO) is a flavoenzyme that catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The reductive half reaction occurs via a hydride transfer from the substrate to the FAD cofactor. The structures of CO reduced with dithionite under aerobic conditions and in the presence of the substrate 2-propanol under both aerobic and anaerobic conditions are presented. The 1.32 Å resolution structure of the dithionite-reduced enzyme reveals a sulfite molecule covalently bound to the FAD cofactor. The isoalloxazine ring system displays a bent structure relative to that of the oxidized enzyme, and alternate conformations of a triad of aromatic residues near to the cofactor are evident. A 1.12 Å resolution anaerobically trapped reduced enzyme structure in the presence of 2-propanol does not show a similar bending of the flavin ring system, but does show alternate conformations of the aromatic triad. Additionally, a significant difference electron-density peak is observed within a covalent-bond distance of N5 of the flavin moiety, suggesting that a hydride-transfer event has occurred as a result of substrate oxidation trapping the flavin in the electron-rich reduced state. The hydride transfer generates a tetrahedral geometry about the flavin N5 atom. High-level density-functional theory calculations were performed to correlate the crystallographic findings with the energetics of this unusual arrangement of the flavin moiety. These calculations suggest that strong hydrogen-bond interactions between Gly120 and the flavin N5 centre may play an important role in these structural features.
Collapse
Affiliation(s)
- Emily Golden
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Amir Karton
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
15
|
Lugsanangarm K, Kokpol S, Nueangaudom A, Pianwanit S, Nunthaboot N, Tanaka F. Structural heterogeneity among four subunits in pyranose 2-oxidase: A molecular dynamics simulation study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614400100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The homotetramer pyranose 2-oxidase (P2O) from Tetrametes multicolor contains flavin adenine dinucleotide (FAD) as a cofactor, and displays two conformers with different transient fluorescence spectra and lifetimes (ca. 0.1 ps and 360 ps). The ultrashort lifetimes of isoalloxazine (Iso) are ascribed to the photoinduced electron transfer (ET) from Trp168 to the excited Iso. Here, the structural heterogeneity among the four subunits in solution was studied by means of molecular dynamics simulation (MDS). The ET donor–acceptor distances in crystal and solution were compared. The distribution of the H-bond distances between Iso and the surrounding amino acids revealed appreciable differences among the four subunits. The structural fluctuations in two distant places were examined for the Iso-P and Iso-Q distances (where P and Q are Trp or Tyr) with the correlation coefficients between Iso-P and Iso-Q distances, revealing cooperative motions even though P and Q were more than 1 nm apart and located in different subunits. Moreover, distributions of the distances between Iso and its closest ionic amino acids markedly differed among the four subunits. Electrostatic (ES) energies between the Iso anion and the ionic amino acids in the entire protein were obtained using a static dielectric constant of 1. The ES energy in each subunit was strongly influenced by the other subunits, whilst the distributions of the ES energies greatly differed among the four subunits. This heterogeneous distribution of the ES energy between subunits may contribute to the large differences in the experimentally detected ET rates.
Collapse
Affiliation(s)
- Kiattisak Lugsanangarm
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arthit Nueangaudom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsak Pianwanit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nadtanet Nunthaboot
- Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Fumio Tanaka
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Laser BioScience, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan
| |
Collapse
|
16
|
Tan TC, Spadiut O, Gandini R, Haltrich D, Divne C. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion. PLoS One 2014; 9:e86736. [PMID: 24466218 PMCID: PMC3897772 DOI: 10.1371/journal.pone.0086736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022] Open
Abstract
Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.
Collapse
Affiliation(s)
- Tien Chye Tan
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Oliver Spadiut
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Rosaria Gandini
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christina Divne
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden ; School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
17
|
Wongnate T, Surawatanawong P, Visitsatthawong S, Sucharitakul J, Scrutton NS, Chaiyen P. Proton-Coupled Electron Transfer and Adduct Configuration Are Important for C4a-Hydroperoxyflavin Formation and Stabilization in a Flavoenzyme. J Am Chem Soc 2013; 136:241-53. [DOI: 10.1021/ja4088055] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thanyaporn Wongnate
- Department
of Biochemistry and Center of Excellence in Protein Structure and
Function, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Panida Surawatanawong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400 Thailand
| | - Surawit Visitsatthawong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400 Thailand
| | - Jeerus Sucharitakul
- Department
of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant
Road, Patumwan, Bangkok, 10300 Thailand
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, Manchester M1 7DN United Kingdom
| | - Pimchai Chaiyen
- Department
of Biochemistry and Center of Excellence in Protein Structure and
Function, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
18
|
Beaupre BA, Carmichael BR, Hoag MR, Shah DD, Moran GR. Renalase is an α-NAD(P)H oxidase/anomerase. J Am Chem Soc 2013; 135:13980-7. [PMID: 23964689 DOI: 10.1021/ja407384h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renalase is a protein hormone secreted into the blood by the kidney that is reported to lower blood pressure and slow heart rate. Since its discovery in 2005, renalase has been the subject of conjecture pertaining to its catalytic function. While it has been widely reported that renalase is the third monoamine oxidase (monoamine oxidase C) that oxidizes circulating catecholamines such as epinephrine, there has been no convincing demonstration of this catalysis in vitro. Renalase is a flavoprotein whose structural topology is similar to known oxidases, lysine demethylases, and monooxygenases, but its active site bears no resemblance to that of any known flavoprotein. We have identified the catalytic activity of renalase as an α-NAD(P)H oxidase/anomerase, whereby low equilibrium concentrations of the α-anomer of NADPH and NADH initiate rapid reduction of the renalase flavin cofactor. The reduced cofactor then reacts with dioxygen to form hydrogen peroxide and releases nicotinamide dinucleotide product in the β-form. These processes yield an apparent turnover number (0.5 s(-1) in atmospheric dioxygen) that is at least 2 orders of magnitude more rapid than any reported activity with catechol neurotransmitters. This highly novel activity is the first demonstration of a role for naturally occurring α-NAD(P)H anomers in mammalian physiology and the first report of a flavoprotein catalyzing an epimerization reaction.
Collapse
Affiliation(s)
- Brett A Beaupre
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee , 3210 N. Cramer Street, Milwaukee, Wisconsin 53211-3209, United States
| | | | | | | | | |
Collapse
|
19
|
Wongnate T, Chaiyen P. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily. FEBS J 2013; 280:3009-27. [DOI: 10.1111/febs.12280] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Thanyaporn Wongnate
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science; Mahidol University; Bangkok; Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science; Mahidol University; Bangkok; Thailand
| |
Collapse
|
20
|
Molecular dynamics simulations give insight into D-glucose dioxidation at C2 and C3 by Agaricus meleagris pyranose dehydrogenase. J Comput Aided Mol Des 2013; 27:295-304. [PMID: 23591812 PMCID: PMC3657087 DOI: 10.1007/s10822-013-9645-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/04/2013] [Indexed: 11/11/2022]
Abstract
The flavin-dependent sugar oxidoreductase pyranose dehydrogenase (PDH) from the plant litter-degrading fungus Agaricus meleagris oxidizes d-glucose (GLC) efficiently at positions C2 and C3. The closely related pyranose 2-oxidase (P2O) from Trametes multicolor oxidizes GLC only at position C2. Consequently, the electron output per molecule GLC is twofold for PDH compared to P2O making it a promising catalyst for bioelectrochemistry or for introducing novel carbonyl functionalities into sugars. The aim of this study was to rationalize the mechanism of GLC dioxidation employing molecular dynamics simulations of GLC–PDH interactions. Shape complementarity through nonpolar van der Waals interactions was identified as the main driving force for GLC binding. Together with a very diverse hydrogen-bonding pattern, this has the potential to explain the experimentally observed promiscuity of PDH towards different sugars. Based on geometrical analysis, we propose a similar reaction mechanism as in P2O involving a general base proton abstraction, stabilization of the transition state, an alkoxide intermediate, through interaction with a protonated catalytic histidine followed by a hydride transfer to the flavin N5 atom. Our data suggest that the presence of the two potential catalytic bases His-512 and His-556 increases the versatility of the enzyme, by employing the most suitably oriented base depending on the substrate and its orientation in the active site. Our findings corroborate and rationalize the experimentally observed dioxidation of GLC by PDH and its promiscuity towards different sugars.
Collapse
|
21
|
Prongjit M, Sucharitakul J, Palfey BA, Chaiyen P. Oxidation mode of pyranose 2-oxidase is controlled by pH. Biochemistry 2013; 52:1437-45. [PMID: 23356577 DOI: 10.1021/bi301442x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O₂ as an electron acceptor to form the corresponding 2-keto-sugars and H₂O₂. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O₂ to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H₂O₂. At pH 8.0 and higher, the majority of the reduced P2O reacts with O₂ via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.
Collapse
Affiliation(s)
- Methinee Prongjit
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
22
|
Tan TC, Spadiut O, Wongnate T, Sucharitakul J, Krondorfer I, Sygmund C, Haltrich D, Chaiyen P, Peterbauer CK, Divne C. The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate. PLoS One 2013; 8:e53567. [PMID: 23326459 PMCID: PMC3541233 DOI: 10.1371/journal.pone.0053567] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack.
Collapse
Affiliation(s)
- Tien Chye Tan
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Spadiut
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thanyaporn Wongnate
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Iris Krondorfer
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Sygmund
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Clemens K. Peterbauer
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christina Divne
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
23
|
Taniguchi S, Chosrowjan H, Wongnate T, Sucharitakul J, Chaiyen P, Tanaka F. Ultrafast fluorescence dynamics of flavin adenine dinucleotide in pyranose 2-oxidases variants and their complexes with acetate: Conformational heterogeneity with different dielectric constants. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Chaiyen P, Fraaije MW, Mattevi A. The enigmatic reaction of flavins with oxygen. Trends Biochem Sci 2012; 37:373-80. [DOI: 10.1016/j.tibs.2012.06.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
25
|
Chosrowjan H, Taniguchi S, Wongnate T, Sucharitakul J, Chaiyen P, Tanaka F. Conformational heterogeneity in pyranose 2-oxidase from Trametes multicolor revealed by ultrafast fluorescence dynamics. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2011.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wongnate T, Sucharitakul J, Chaiyen P. Identification of a Catalytic Base for Sugar Oxidation in the Pyranose 2-Oxidase Reaction. Chembiochem 2011; 12:2577-86. [DOI: 10.1002/cbic.201100564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Indexed: 11/10/2022]
|
27
|
Tan TC, Haltrich D, Divne C. Regioselective Control of β-d-Glucose Oxidation by Pyranose 2-Oxidase Is Intimately Coupled to Conformational Degeneracy. J Mol Biol 2011; 409:588-600. [DOI: 10.1016/j.jmb.2011.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/01/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
28
|
Sucharitakul J, Wongnate T, Chaiyen P. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group. J Biol Chem 2011; 286:16900-9. [PMID: 21454569 DOI: 10.1074/jbc.m111.222976] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C4a-hydroperoxyflavin is found commonly in the reactions of flavin-dependent monooxygenases, in which it plays a key role as an intermediate that incorporates an oxygen atom into substrates. Only recently has evidence for its involvement in the reactions of flavoprotein oxidases been reported. Previous studies of pyranose 2-oxidase (P2O), an enzyme catalyzing the oxidation of pyranoses using oxygen as an electron acceptor to generate oxidized sugars and hydrogen peroxide (H(2)O(2)), have shown that C4a-hydroperoxyflavin forms in P2O reactions before it eliminates H(2)O(2) as a product (Sucharitakul, J., Prongjit, M., Haltrich, D., and Chaiyen, P. (2008) Biochemistry 47, 8485-8490). In this report, the solvent kinetic isotope effects (SKIE) on the reaction of reduced P2O with oxygen were investigated using transient kinetics. Our results showed that D(2)O has a negligible effect on the formation of C4a-hydroperoxyflavin. The ensuing step of H(2)O(2) elimination from C4a-hydroperoxyflavin was shown to be modulated by an SKIE of 2.8 ± 0.2, and a proton inventory analysis of this step indicates a linear plot. These data suggest that a single-proton transfer process causes SKIE at the H(2)O(2) elimination step. Double and single mixing stopped-flow experiments performed in H(2)O buffer revealed that reduced flavin specifically labeled with deuterium at the flavin N5 position generated kinetic isotope effects similar to those found with experiments performed with the enzyme pre-equilibrated in D(2)O buffer. This suggests that the proton at the flavin N5 position is responsible for the SKIE and is the proton-in-flight that is transferred during the transition state. The mechanism of H(2)O(2) elimination from C4a-hydroperoxyflavin is consistent with a single proton transfer from the flavin N5 to the peroxide leaving group, possibly via the formation of an intramolecular hydrogen bridge.
Collapse
Affiliation(s)
- Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Patumwan, Bangkok 10300, Thailand
| | | | | |
Collapse
|