1
|
Xiong Y, Wang T, Wang W, Zhang Y, Zhang F, Yuan J, Qin F, Wang X. Plasma proteome analysis implicates novel proteins as potential therapeutic targets for chronic kidney disease: A proteome-wide association study. Heliyon 2024; 10:e31704. [PMID: 38828357 PMCID: PMC11140797 DOI: 10.1016/j.heliyon.2024.e31704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Chronic kidney disease (CKD) is prevalent globally with limited therapeutic drugs available. To systemically identify novel proteins involved in the pathogenesis of CKD and possible therapeutic targets, we integrated human plasma proteomes with the genome-wide association studies (GWASs) of CKD, estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN) to perform proteome-wide association study (PWAS), Mendelian Randomization and Bayesian colocalization analyses. The single-cell RNA sequencing data of healthy human and mouse kidneys were analyzed to explore the cell-type specificity of identified genes. Functional enrichment analysis was conducted to investigate the involved signaling pathways. The PWAS identified 22 plasma proteins significantly associated with CKD. Of them, the significant associations of three proteins (INHBC, LMAN2, and SNUPN) were replicated in the GWASs of eGFR, and BUN. Mendelian Randomization analyses showed that INHBC and SNUPN were causally associated with CKD, eGFR, and BUN. The Bayesian colocalization analysis identified shared causal variants for INHBC in CKD, eGFR, and BUN (all PP4 > 0.75). The single-cell RNA sequencing revealed that the INHBC gene was sparsely scattered within the kidney cells. This proteomic study revealed that INHBC, LMAN2, and SNUPN may be involved in the pathogenesis of CKD, which represent novel therapeutic targets and warrant further exploration in future research.
Collapse
Affiliation(s)
- Yang Xiong
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Tianhong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Wei Wang
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Yangchang Zhang
- Department of Public Health, Capital Medical University, Beijing, 100000, China
| | - Fuxun Zhang
- Department of Urology, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, 710000, China
| | - Jiuhong Yuan
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Feng Qin
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Xianding Wang
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
- Kidney Transplant Center, Transplant Center, West China Hospital, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
2
|
López-Rivera F, Chuang J, Spatt D, Gopalakrishnan R, Winston F. Suppressor mutations that make the essential transcription factor Spn1/Iws1 dispensable in Saccharomyces cerevisiae. Genetics 2022; 222:iyac125. [PMID: 35977387 PMCID: PMC9526074 DOI: 10.1093/genetics/iyac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Spn1/Iws1 is an essential eukaryotic transcription elongation factor that is conserved from yeast to humans as an integral member of the RNA polymerase II elongation complex. Several studies have shown that Spn1 functions as a histone chaperone to control transcription, RNA splicing, genome stability, and histone modifications. However, the precise role of Spn1 is not understood, and there is little understanding of why it is essential for viability. To address these issues, we have isolated 8 suppressor mutations that bypass the essential requirement for Spn1 in Saccharomyces cerevisiae. Unexpectedly, the suppressors identify several functionally distinct complexes and activities, including the histone chaperone FACT, the histone methyltransferase Set2, the Rpd3S histone deacetylase complex, the histone acetyltransferase Rtt109, the nucleosome remodeler Chd1, and a member of the SAGA coactivator complex, Sgf73. The identification of these distinct groups suggests that there are multiple ways in which Spn1 bypass can occur, including changes in histone acetylation and alterations in other histone chaperones. Thus, Spn1 may function to overcome repressive chromatin by multiple mechanisms during transcription. Our results suggest that bypassing a subset of these functions allows viability in the absence of Spn1.
Collapse
Affiliation(s)
| | - James Chuang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Spatt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Ehara H, Kujirai T, Shirouzu M, Kurumizaka H, Sekine SI. Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT. Science 2022; 377:eabp9466. [PMID: 35981082 DOI: 10.1126/science.abp9466] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During gene transcription, RNA polymerase II (RNAPII) traverses nucleosomes in chromatin, but its mechanism has remained elusive. Using cryo-electron microscopy, we obtained structures of the RNAPII elongation complex (EC) passing through a nucleosome, in the presence of transcription elongation factors Spt6, Spn1, Elf1, Spt4/5, and Paf1C and the histone chaperone FACT. The structures show snapshots of EC progression on DNA, mediating downstream nucleosome disassembly followed by its reassembly upstream of the EC, facilitated by FACT. FACT dynamically adapts to successively occurring subnucleosome intermediates, forming an interface with the EC. Spt6, Spt4/5, and Paf1C form a "cradle" at the EC DNA-exit site, and support the upstream nucleosome reassembly. These structures explain the mechanism by which the EC traverses nucleosomes while maintaining the chromatin structure and epigenetic information.
Collapse
Affiliation(s)
- Haruhiko Ehara
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoya Kujirai
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan.,Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan.,Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shun-Ichi Sekine
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
4
|
Li S, Edwards G, Radebaugh CA, Luger K, A Stargell L. Spn1 and its dynamic interactions with Spt6, histones and nucleosomes. J Mol Biol 2022; 434:167630. [PMID: 35595162 DOI: 10.1016/j.jmb.2022.167630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Histone chaperones facilitate the assembly and disassembly of nucleosomes and regulate DNA accessibility for critical cellular processes. Spn1 is an essential, highly conserved histone chaperone that functions in transcription initiation and elongation in a chromatin context. Here we demonstrate that Spn1 binds H3-H4 with low nanomolar affinity, residues 85-99 within the acidic N-terminal region of Spn1 are required for H3-H4 binding, and Spn1 binding to H3-H4 dimers does not impede (H3-H4)2 tetramer formation. Previous work has shown the central region of Spn1 (residues 141-305) is important for interaction with Spt6, another conserved and essential histone chaperone. We show that the C-terminal region of Spn1 also contributes to Spt6 binding and is critical for Spn1 binding to nucleosomes. We also show Spt6 preferentially binds H3-H4 tetramers and Spt6 competes with nucleosomes for Spn1 binding. Combined with previous results, this indicates the Spn1-Spt6 complex does not bind nucleosomes. In contrast to nucleosome binding, we found that the Spn1-Spt6 complex can bind H3-H4 dimers and tetramers and H2A-H2B to form ternary complexes. These important results provide new information about the functions of Spn1, Spt6, and the Spn1-Spt6 complex, two essential and highly conserved histone chaperones.
Collapse
Affiliation(s)
- Sha Li
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA; Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Garrett Edwards
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| |
Collapse
|
5
|
Huang L, Bai F, Zhang Y, Zhang S, Jin T, Wei X, Zhou X, Lin M, Xie Y, He C, Lin Q, Xie T, Ding Y. Preliminary study of genome-wide association identified novel susceptibility genes for thyroid-related hormones in Chinese population. Genes Genomics 2021; 44:1031-1038. [PMID: 34533693 DOI: 10.1007/s13258-021-01165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thyroid hormones are critical regulators of metabolism, development and growth in mammals. However, the genetic association of thyroid-related hormones in the Chinese Han population is not fully understood. OBJECTIVE We aimed to identify the genetic loci associated with circulating thyroid-related hormones concentrations in the healthy Chinese Han population. METHODS Genotyping was performed in 124 individuals using Applied Biosystems™ Axiom™ PMDA, and 796,288 single nucleotide polymorphisms (SNPs) were available for the GWAS analysis. For replication, eleven SNPs were selected as candidate loci for genotyping by Agena MassARRAY platform in additional samples (313 subjects). The values of p < 5 × 10- 6 suggest a suggestively significant genome-wide association with circulating thyroid-related hormones concentrations. RESULTS We identified that rs11178277 (PTPRB, p = 4.88 × 10- 07) and rs7320337 (LMO7DN-KCTD12, p = 1.22 × 10- 06) were associated with serum FT3 level. Three SNPs (rs4850041 in LOC105373394-LINC01249: p = 3.55 × 10- 06, rs6867291 in LINC02208: p = 2.40 × 10- 06 and rs79508321 in WWOX: p = 3.35 × 10- 06) were related to circulating T3 level. Rs12474167 (LOC105373394-LINC01249, p = 1.65 × 10- 06) and rs1864553 (IWS1, p = 2.00 × 10- 06) were associated with circulating T4 concentration. The association with TGA concentration was for rs17163542 in DISP1 (p = 3.46 × 10- 06) and rs12601151 in NOG-C17orf67 (p = 2.72 × 10- 07). Two genome-level significant SNPs (rs2114707 in LINC01314, p = 1.69 × 10- 06 and rs12601151, p = 1.41 × 10- 07) associated with serum TMA concentration were identified. Moreover, rs6083269 (CST1-CST2, p = 3.36 × 10- 06) was a significant locus for circulating TSH level. In replication, rs12601151 in NOG-C17orf67 was still associated with serum TGA level (p = 0.012). CONCLUSIONS The GWAS reported 11 new suggestively significant loci associated with circulating thyroid-related hormones levels among the Chinese Han population. These findings represented suggestively biological candidates for circulating thyroid-related hormones levels and provided new insights into the mechanisms of regulating serum TGA concentration.
Collapse
Affiliation(s)
- Liang Huang
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Xincun Central Health Center, Lingshui Li Autonomous County, Lingshui, 572426, Hainan, People's Republic of China
| | - Fenghua Bai
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Science and Education Office, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Yutian Zhang
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Shanshan Zhang
- Xi'an 21st Century Biological Science and Technology Co., Ltd, Xi'an, 712000, Shaanxi, People's Republic of China
| | - Tianbo Jin
- Xi'an 21st Century Biological Science and Technology Co., Ltd, Xi'an, 712000, Shaanxi, People's Republic of China
| | - Xingwei Wei
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Xiaoli Zhou
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Mei Lin
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Yufei Xie
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Chanyi He
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Qi Lin
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Tian Xie
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China.
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China.
| | - Yipeng Ding
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China.
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China.
| |
Collapse
|
6
|
Edwards GB, Muthurajan UM, Bowerman S, Luger K. Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2020; 133:e131. [PMID: 33351266 PMCID: PMC7781197 DOI: 10.1002/cpmb.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biochemical and biophysical investigation of proteins, nucleic acids, and the assemblies that they form yields essential information to understand complex systems. Analytical ultracentrifugation (AUC) represents a broadly applicable and information-rich method for investigating macromolecular characteristics such as size, shape, stoichiometry, and binding properties, all in the true solution-state environment that is lacking in most orthogonal methods. Despite this, AUC remains underutilized relative to its capabilities and potential in the fields of biochemistry and molecular biology. Although there has been a rapid development of computing power and AUC analysis tools in this millennium, fewer advancements have occurred in development of new applications of the technique, leaving these powerful instruments underappreciated and underused in many research institutes. With AUC previously limited to absorbance and Rayleigh interference optics, the addition of fluorescence detection systems has greatly enhanced the applicability of AUC to macromolecular systems that are traditionally difficult to characterize. This overview provides a resource for novices, highlighting the potential of AUC and encouraging its use in their research, as well as for current users, who may benefit from our experience. We discuss the strengths of fluorescence-detected AUC and demonstrate the power of even simple AUC experiments to answer practical and fundamental questions about biophysical properties of macromolecular assemblies. We address the development and utility of AUC, explore experimental design considerations, present case studies investigating properties of biological macromolecules that are of common interest to researchers, and review popular analysis approaches. © 2020 The Authors.
Collapse
Affiliation(s)
| | - Uma M. Muthurajan
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
| | - Samuel Bowerman
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
- Howard Hughes Medical InstituteUniversity of Colorado BoulderBoulderColorado
| | - Karolin Luger
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
- Howard Hughes Medical InstituteUniversity of Colorado BoulderBoulderColorado
| |
Collapse
|
7
|
Rodriguez M, Scintu A, Posadinu CM, Xu Y, Nguyen CV, Sun H, Bitocchi E, Bellucci E, Papa R, Fei Z, Giovannoni JJ, Rau D, Attene G. GWAS Based on RNA-Seq SNPs and High-Throughput Phenotyping Combined with Climatic Data Highlights the Reservoir of Valuable Genetic Diversity in Regional Tomato Landraces. Genes (Basel) 2020; 11:E1387. [PMID: 33238469 PMCID: PMC7709041 DOI: 10.3390/genes11111387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is a widely used model plant species for dissecting out the genomic bases of complex traits to thus provide an optimal platform for modern "-omics" studies and genome-guided breeding. Genome-wide association studies (GWAS) have become a preferred approach for screening large diverse populations and many traits. Here, we present GWAS analysis of a collection of 115 landraces and 11 vintage and modern cultivars. A total of 26 conventional descriptors, 40 traits obtained by digital phenotyping, the fruit content of six carotenoids recorded at the early ripening (breaker) and red-ripe stages and 21 climate-related variables were analyzed in the context of genetic diversity monitored in the 126 accessions. The data obtained from thorough phenotyping and the SNP diversity revealed by sequencing of ripe fruit transcripts of 120 of the tomato accessions were jointly analyzed to determine which genomic regions are implicated in the expressed phenotypic variation. This study reveals that the use of fruit RNA-Seq SNP diversity is effective not only for identification of genomic regions that underlie variation in fruit traits, but also of variation related to additional plant traits and adaptive responses to climate variation. These results allowed validation of our approach because different marker-trait associations mapped on chromosomal regions where other candidate genes for the same traits were previously reported. In addition, previously uncharacterized chromosomal regions were targeted as potentially involved in the expression of variable phenotypes, thus demonstrating that our tomato collection is a precious reservoir of diversity and an excellent tool for gene discovery.
Collapse
Affiliation(s)
- Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale—CBV, Università degli Studi di Sassari, 07041 Alghero, Italy
| | - Alessandro Scintu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Chiara M. Posadinu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Cuong V. Nguyen
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada;
| | - Honghe Sun
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Domenico Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Giovanna Attene
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale—CBV, Università degli Studi di Sassari, 07041 Alghero, Italy
| |
Collapse
|
8
|
Reim NI, Chuang J, Jain D, Alver BH, Park PJ, Winston F. The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in Saccharomyces cerevisiae. Nucleic Acids Res 2020; 48:10241-10258. [PMID: 32941642 PMCID: PMC7544207 DOI: 10.1093/nar/gkaa745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Spn1/Iws1 is a conserved protein involved in transcription and chromatin dynamics, yet its general in vivo requirement for these functions is unknown. Using a Spn1 depletion system in Saccharomyces cerevisiae, we demonstrate that Spn1 broadly influences several aspects of gene expression on a genome-wide scale. We show that Spn1 is globally required for normal mRNA levels and for normal splicing of ribosomal protein transcripts. Furthermore, Spn1 maintains the localization of H3K36 and H3K4 methylation across the genome and is required for normal histone levels at highly expressed genes. Finally, we show that the association of Spn1 with the transcription machinery is strongly dependent on its binding partner, Spt6, while the association of Spt6 and Set2 with transcribed regions is partially dependent on Spn1. Taken together, our results show that Spn1 affects multiple aspects of gene expression and provide additional evidence that it functions as a histone chaperone in vivo.
Collapse
Affiliation(s)
- Natalia I Reim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Chuang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak H Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Li S, Almeida AR, Radebaugh CA, Zhang L, Chen X, Huang L, Thurston AK, Kalashnikova AA, Hansen JC, Luger K, Stargell LA. The elongation factor Spn1 is a multi-functional chromatin binding protein. Nucleic Acids Res 2019; 46:2321-2334. [PMID: 29300974 PMCID: PMC5861400 DOI: 10.1093/nar/gkx1305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
The process of transcriptional elongation by RNA polymerase II (RNAPII) in a chromatin context involves a large number of crucial factors. Spn1 is a highly conserved protein encoded by an essential gene and is known to interact with RNAPII and the histone chaperone Spt6. Spn1 negatively regulates the ability of Spt6 to interact with nucleosomes, but the chromatin binding properties of Spn1 are largely unknown. Here, we demonstrate that full length Spn1 (amino acids 1–410) binds DNA, histones H3–H4, mononucleosomes and nucleosomal arrays, and has weak nucleosome assembly activity. The core domain of Spn1 (amino acids 141–305), which is necessary and sufficient in Saccharomyces cerevisiae for growth under ideal growth conditions, is unable to optimally interact with histones, nucleosomes and/or DNA and fails to assemble nucleosomes in vitro. Although competent for binding with Spt6 and RNAPII, the core domain derivative is not stably recruited to the CYC1 promoter, indicating chromatin interactions are an important aspect of normal Spn1 functions in vivo. Moreover, strong synthetic genetic interactions are observed with Spn1 mutants and deletions of histone chaperone genes. Taken together, these results indicate that Spn1 is a histone binding factor with histone chaperone functions.
Collapse
Affiliation(s)
- Sha Li
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Adam R Almeida
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Liangqun Huang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Alison K Thurston
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Anna A Kalashnikova
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA.,Howard Hughes Medical Institute
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
10
|
Genome Instability Is Promoted by the Chromatin-Binding Protein Spn1 in Saccharomyces cerevisiae. Genetics 2018; 210:1227-1237. [PMID: 30301740 DOI: 10.1534/genetics.118.301600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.
Collapse
|
11
|
Orlacchio A, Stark AE, Foray C, Amari F, Sheetz T, Reese E, Tessari A, La Perle K, Palmieri D, Tsichlis PN, Coppola V. Genetic ablation of interacting with Spt6 (Iws1) causes early embryonic lethality. PLoS One 2018; 13:e0201030. [PMID: 30208029 PMCID: PMC6135376 DOI: 10.1371/journal.pone.0201030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
IWS1 is an RNA-polymerase II (RNAPII)-associated transcription elongation factor whose biological functions are poorly characterized. To shed some light on the function of this protein at the organismal level, we performed a systematic tissue analysis of its expression and generated Iws1-deficient mice. A thorough immunohistochemical characterization shows that IWS1 protein is present in the nucleus of all cells in most of the examined tissues, with few notable exceptions. We also report that ablation of Iws1 consistently causes lethality at the pre-implantation stage with high expression of the gene in fertilized oocytes. In summary, we are providing evidence that Iws1 is expressed in all adult organs and it is an essential gene for mouse embryonic development.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Aaron E. Stark
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, Ohio, United States of America
| | - Claudia Foray
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Foued Amari
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, Ohio, United States of America
| | - Tyler Sheetz
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Erika Reese
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Krista La Perle
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comparative Pathology & Mouse Phenotyping Shared Resource, Columbus, Ohio, United States of America
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Philip N. Tsichlis
- Molecular Oncology Research Institute, Tufts Medical School, Boston, MA, United States of America
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Van Lijsebettens M, Grasser KD. Transcript elongation factors: shaping transcriptomes after transcript initiation. TRENDS IN PLANT SCIENCE 2014; 19:717-26. [PMID: 25131948 DOI: 10.1016/j.tplants.2014.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 05/06/2023]
Abstract
Elongation is a dynamic and highly regulated step of eukaryotic gene transcription. A variety of transcript elongation factors (TEFs), including modulators of RNA polymerase II (RNAPII) activity, histone chaperones, and histone modifiers, have been characterized from plants. These factors control the efficiency of transcript elongation of subsets of genes in the chromatin context and thus contribute to tuning gene expression programs. We review here how genetic and biochemical analyses, primarily in Arabidopsis thaliana, have advanced our understanding of how TEFs adjust plant gene transcription. These studies have revealed that TEFs regulate plant growth and development by modulating diverse processes including hormone signaling, circadian clock, pathogen defense, responses to light, and developmental transitions.
Collapse
Affiliation(s)
- Mieke Van Lijsebettens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| | - Klaus D Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
13
|
Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol 2013; 33:4779-92. [PMID: 24100010 DOI: 10.1128/mcb.01068-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spt6 is a highly conserved histone chaperone that interacts directly with both RNA polymerase II and histones to regulate gene expression. To gain a comprehensive understanding of the roles of Spt6, we performed genome-wide analyses of transcription, chromatin structure, and histone modifications in a Schizosaccharomyces pombe spt6 mutant. Our results demonstrate dramatic changes to transcription and chromatin structure in the mutant, including elevated antisense transcripts at >70% of all genes and general loss of the +1 nucleosome. Furthermore, Spt6 is required for marks associated with active transcription, including trimethylation of histone H3 on lysine 4, previously observed in humans but not Saccharomyces cerevisiae, and lysine 36. Taken together, our results indicate that Spt6 is critical for the accuracy of transcription and the integrity of chromatin, likely via its direct interactions with RNA polymerase II and histones.
Collapse
|
14
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
15
|
Duina AA. Histone Chaperones Spt6 and FACT: Similarities and Differences in Modes of Action at Transcribed Genes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:625210. [PMID: 22567361 PMCID: PMC3335715 DOI: 10.4061/2011/625210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
The process of gene transcription requires the participation of a large number of factors that collectively promote the accurate and efficient expression of an organism's genetic information. In eukaryotic cells, a subset of these factors can control the chromatin environments across the regulatory and transcribed units of genes to modulate the transcription process and to ensure that the underlying genetic information is utilized properly. This article focuses on two such factors-the highly conserved histone chaperones Spt6 and FACT-that play critical roles in managing chromatin during the gene transcription process. These factors have related but distinct functions during transcription and several recent studies have provided exciting new insights into their mechanisms of action at transcribed genes. A discussion of their respective roles in regulating gene transcription, including their shared and unique contributions to this process, is presented.
Collapse
Affiliation(s)
- Andrea A Duina
- Biology Department, Hendrix College, 1600 Washington Avenue, Conway, AR 72032, USA
| |
Collapse
|
16
|
Yearling MN, Radebaugh CA, Stargell LA. The Transition of Poised RNA Polymerase II to an Actively Elongating State Is a "Complex" Affair. GENETICS RESEARCH INTERNATIONAL 2011; 2011:206290. [PMID: 22567346 PMCID: PMC3335657 DOI: 10.4061/2011/206290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/31/2011] [Indexed: 12/02/2022]
Abstract
The initial discovery of the occupancy of RNA polymerase II at certain genes prior to their transcriptional activation occurred a quarter century ago in Drosophila. The preloading of these poised complexes in this inactive state is now apparent in many different organisms across the evolutionary spectrum and occurs at a broad and diverse set of genes. In this paper, we discuss the genetic and biochemical efforts in S. cerevisiae to describe the conversion of these poised transcription complexes to the active state for productive elongation. The accumulated evidence demonstrates that a multitude of coactivators and chromatin remodeling complexes are essential for this transition.
Collapse
Affiliation(s)
- Marie N Yearling
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | |
Collapse
|
17
|
High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3- uptake is associated with changes in histone methylation. Proc Natl Acad Sci U S A 2011; 108:13329-34. [PMID: 21788519 DOI: 10.1073/pnas.1017863108] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, root nitrate uptake systems are under systemic feedback repression by the N satiety of the whole organism, thus adjusting the N acquisition capacity to the N demand for growth; however, the underlying molecular mechanisms are largely unknown. We previously isolated the Arabidopsis high nitrogen-insensitive 9-1 (hni9-1) mutant, impaired in the systemic feedback repression of the root nitrate transporter NRT2.1 by high N supply. Here, we show that HNI9 encodes Arabidopsis INTERACT WITH SPT6 (AtIWS1), an evolutionary conserved component of the RNA polymerase II complex. HNI9/AtIWS1 acts in roots to repress NRT2.1 transcription in response to high N supply. At a genomic level, HNI9/AtIWS1 is shown to play a broader role in N signaling by regulating several hundred N-responsive genes in roots. Repression of NRT2.1 transcription by high N supply is associated with an HNI9/AtIWS1-dependent increase in histone H3 lysine 27 trimethylation at the NRT2.1 locus. Our findings highlight the hypothesis that posttranslational chromatin modifications control nutrient acquisition in plants.
Collapse
|
18
|
Ye H, Li L, Yin Y. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:455-68. [PMID: 21554539 DOI: 10.1111/j.1744-7909.2011.01046.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant growth, development and responses to environmental cues. BRs signal through plasma membrane receptor BRI1 and co-receptor BAK1, and several positive (BSK1, BSU1, PP2A) and negative (BKI1, BIN2 and 14-3-3) regulators to control the activities of BES1 and BZR1 family transcription factors, which regulate the expression of hundreds to thousands of genes for various BR responses. Recent studies identified novel signaling components in the BR pathways and started to establish the detailed mechanisms on the regulation of BR signaling. In addition, the molecular mechanism and transcriptional network through which BES1 and BZR1 control gene expression and various BR responses are beginning to be revealed. BES1 recruits histone demethylases ELF6 and REF6 as well as a transcription elongation factor IWS1 to regulate target gene expression. Identification of BES1 and BZR1 target genes established a transcriptional network for BR response and crosstalk with other signaling pathways. Recent studies also revealed regulatory mechanisms of BRs in many developmental processes and regulation of BR biosynthesis. Here we provide an overview and discuss some of the most recent progress in the regulation of BR signaling and biosynthesis pathways.
Collapse
Affiliation(s)
- Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, USA
| | | | | |
Collapse
|
19
|
Diebold ML, Koch M, Loeliger E, Cura V, Winston F, Cavarelli J, Romier C. The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26. EMBO J 2010; 29:3979-91. [PMID: 21057455 PMCID: PMC3020637 DOI: 10.1038/emboj.2010.272] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/18/2010] [Indexed: 01/07/2023] Open
Abstract
Binding of elongation factor Spt6 to Iws1 provides an effective means for coupling eukaryotic mRNA synthesis, chromatin remodelling and mRNA export. We show that an N-terminal region of Spt6 (Spt6N) is responsible for interaction with Iws1. The crystallographic structures of Encephalitozoon cuniculi Iws1 and the Iws1/Spt6N complex reveal two conserved binding subdomains in Iws1. The first subdomain (one HEAT repeat; HEAT subdomain) is a putative phosphoprotein-binding site most likely involved in an Spt6-independent function of Iws1. The second subdomain (two ARM repeats; ARM subdomain) specifically recognizes a bipartite N-terminal region of Spt6. Mutations that alter this region of Spt6 cause severe phenotypes in vivo. Importantly, the ARM subdomain of Iws1 is conserved in several transcription factors, including TFIIS, Elongin A and Med26. We show that the homologous region in yeast TFIIS enables this factor to interact with SAGA and the Mediator subunits Spt8 and Med13, suggesting the molecular basis for TFIIS recruitment at promoters. Taken together, our results provide new structural information about the Iws1/Spt6 complex and reveal a novel interaction domain used for the formation of transcription networks.
Collapse
Affiliation(s)
- Marie-Laure Diebold
- Département de Biologie et Génomique Structurales, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, Illkirch Cedex, France
| | - Michael Koch
- Institut für Biochemie, Universität zu Köln, Köln, Germany
| | - Erin Loeliger
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Vincent Cura
- Département de Biologie et Génomique Structurales, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, Illkirch Cedex, France
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jean Cavarelli
- Département de Biologie et Génomique Structurales, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, Illkirch Cedex, France
| | - Christophe Romier
- Département de Biologie et Génomique Structurales, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, Illkirch Cedex, France,Département de Biologie et Génomique Structurales, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, Illkirch Cedex 67404, France. Tel.: +33 38 854 5798; Fax: +33 38 865 3276; E-mail:
| |
Collapse
|