1
|
Frances L, Croyal M, Pittet S, Da Costa Fernandes L, Boulaire M, Monbrun L, Blaak EE, Christoffersen C, Moro C, Tavernier G, Viguerie N. The adipocyte apolipoprotein M is negatively associated with inflammation. J Lipid Res 2024; 65:100648. [PMID: 39303980 PMCID: PMC11513530 DOI: 10.1016/j.jlr.2024.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Obesity is associated with the development of local adipose tissue (AT) and systemic inflammation. Most adipokines are upregulated with obesity and have pro-inflammatory properties. Few are downregulated and possess beneficial anti-inflammatory effects. The apolipoprotein M (APOM) is an adipokine whose expression is low during obesity and associated with a metabolically healthy AT. Here, the role of adipose-derived APOM on obesity-associated AT inflammation was investigated by measuring the expression of pro-inflammatory genes in human and mouse models. In 300 individuals with obesity, AT APOM mRNA level was negatively associated with plasma hs-CRP. The inflammatory profile was assessed in Apom-/- and WT mice fed a normal chow diet (NCD), or a high-fat diet (HFD) to induce AT inflammation. After HFD, mice had a higher inflammatory profile in AT and liver, and a 50% lower Apom gene expression compared with NCD-fed mice. Apom deficiency was associated with a higher inflammatory signature in AT compared with WT mice but not in the liver. Adeno-associated viruses encoding human APOM were used to induce APOM overexpression: in vivo, in WT mice AT prior to HFD; in vitro, in human adipocytes which conditioned media was applied to ThP-1 macrophages. The murine AT overexpressing APOM gene had a reduced inflammatory profile. The macrophages treated with APOM-enriched media from adipocytes exhibited lower IL6 and MCP1 gene expression compared with macrophages treated with control media, independently of S1P. Our study highlights the protective role of adipocyte APOM against obesity-induced AT inflammation.
Collapse
Affiliation(s)
- Laurie Frances
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Mikael Croyal
- Nantes Université, CNRS, INSERM, Institut du Thorax, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, Nantes, France; Mass Spectrometry Core Facility, CRNH-Ouest, Nantes, France
| | - Soline Pittet
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Léa Da Costa Fernandes
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Milan Boulaire
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Laurent Monbrun
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cédric Moro
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France.
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France.
| |
Collapse
|
2
|
Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci 2021; 22:ijms221910460. [PMID: 34638803 PMCID: PMC8508731 DOI: 10.3390/ijms221910460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue releases a large range of bioactive factors called adipokines, many of which are involved in inflammation, glucose homeostasis and lipid metabolism. Under pathological conditions such as obesity, most of the adipokines are upregulated and considered as deleterious, due to their pro-inflammatory, pro-atherosclerotic or pro-diabetic properties, while only a few are downregulated and would be designated as beneficial adipokines, thanks to their counteracting properties against the onset of comorbidities. This review focuses on six adipose-derived lipid-binding proteins that have emerged as key factors in the development of obesity and diabetes: Retinol binding protein 4 (RBP4), Fatty acid binding protein 4 (FABP4), Apolipoprotein D (APOD), Lipocalin-2 (LCN2), Lipocalin-14 (LCN14) and Apolipoprotein M (APOM). These proteins share structural homology and capacity to bind small hydrophobic molecules but display opposite effects on glucose and lipid metabolism. RBP4 and FABP4 are positively associated with metabolic syndrome, while APOD and LCN2 are ubiquitously expressed proteins with deleterious or beneficial effects, depending on their anatomical site of expression. LCN14 and APOM have been recently identified as adipokines associated with healthy metabolism. Recent findings on these lipid-binding proteins exhibiting detrimental or protective roles in human and murine metabolism and their involvement in metabolic diseases are also discussed.
Collapse
|
3
|
Liu M, Frej C, Langefeld CD, Divers J, Bowden DW, Carr JJ, Gebre AK, Xu J, Larsson B, Dahlbäck B, Freedman BI, Parks JS. Plasma apoM and S1P levels are inversely associated with mortality in African Americans with type 2 diabetes mellitus. J Lipid Res 2019; 60:1425-1431. [PMID: 31133557 DOI: 10.1194/jlr.p089409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
apoM is a minor HDL apolipoprotein and carrier for sphingosine-1-phosphate (S1P). HDL apoM and S1P concentrations are inversely associated with atherosclerosis progression in rodents. We evaluated associations between plasma concentrations of S1P, plasma concentrations of apoM, and HDL apoM levels with prevalent subclinical atherosclerosis and mortality in the African American-Diabetes Heart Study participants (N = 545). Associations between plasma S1P, plasma apoM, and HDL apoM with subclinical atherosclerosis and mortality were assessed using multivariate parametric, nonparametric, and Cox proportional hazards models. At baseline, participants' median (25th percentile, 75th percentile) age was 55 (49, 62) years old and their coronary artery calcium (CAC) mass score was 26.5 (0.0, 346.5). Plasma S1P, plasma apoM, and HDL apoM were not associated with CAC. After 64 (57.6, 70.3) months of follow-up, 81 deaths were recorded. Higher concentrations of plasma S1P [odds ratio (OR) = 0.14, P = 0.01] and plasma apoM (OR = 0.10, P = 0.02), but not HDL apoM (P = 0.89), were associated with lower mortality after adjusting for age, sex, statin use, CAC, kidney function, and albuminuria. We conclude that plasma S1P and apoM concentrations are inversely and independently associated with mortality, but not CAC, in African Americans with type 2 diabetes after accounting for conventional risk factors.
Collapse
Affiliation(s)
- Mingxia Liu
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Cecilia Frej
- Department of Translational Medicine Skåne University Hospital, Lund University, Malmö, Sweden
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistics and Data Science Wake Forest School of Medicine, Winston-Salem, NC
| | - Jasmin Divers
- Division of Public Health Sciences, Department of Biostatistics and Data Science Wake Forest School of Medicine, Winston-Salem, NC
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - J Jeffrey Carr
- Department of Radiology Vanderbilt University Medical Center, Nashville, TN
| | - Abraham K Gebre
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jianzhao Xu
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - Benny Larsson
- Department of Clinical Chemistry Skåne University Hospital, Lund, Sweden
| | - Björn Dahlbäck
- Department of Translational Medicine Skåne University Hospital, Lund University, Malmö, Sweden
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - John S Parks
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC .,Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
4
|
Swendeman SL, Xiong Y, Cantalupo A, Yuan H, Burg N, Hisano Y, Cartier A, Liu CH, Engelbrecht E, Blaho V, Zhang Y, Yanagida K, Galvani S, Obinata H, Salmon JE, Sanchez T, Di Lorenzo A, Hla T. An engineered S1P chaperone attenuates hypertension and ischemic injury. Sci Signal 2017; 10:10/492/eaal2722. [PMID: 28811382 DOI: 10.1126/scisignal.aal2722] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial dysfunction, a hallmark of vascular disease, is restored by plasma high-density lipoprotein (HDL). However, a generalized increase in HDL abundance is not beneficial, suggesting that specific HDL species mediate protective effects. Apolipoprotein M-containing HDL (ApoM+HDL), which carries the bioactive lipid sphingosine 1-phosphate (S1P), promotes endothelial function by activating G protein-coupled S1P receptors. Moreover, HDL-bound S1P is limiting in several inflammatory, metabolic, and vascular diseases. We report the development of a soluble carrier for S1P, ApoM-Fc, which activated S1P receptors in a sustained manner and promoted endothelial function. In contrast, ApoM-Fc did not modulate circulating lymphocyte numbers, suggesting that it specifically activated endothelial S1P receptors. ApoM-Fc administration reduced blood pressure in hypertensive mice, attenuated myocardial damage after ischemia/reperfusion injury, and reduced brain infarct volume in the middle cerebral artery occlusion model of stroke. Our proof-of-concept study suggests that selective and sustained targeting of endothelial S1P receptors by ApoM-Fc could be a viable therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Steven L Swendeman
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yuquan Xiong
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Cantalupo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Hui Yuan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Burg
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Hospital for Special Surgery, New York, NY 10021, USA
| | - Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine H Liu
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Yi Zhang
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvain Galvani
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hideru Obinata
- Gunma University Initiative for Advanced Research, Gunma 371-8511, Japan
| | - Jane E Salmon
- Hospital for Special Surgery, New York, NY 10021, USA
| | - Teresa Sanchez
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.,Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
5
|
Hajny S, Christoffersen C. A Novel Perspective on the ApoM-S1P Axis, Highlighting the Metabolism of ApoM and Its Role in Liver Fibrosis and Neuroinflammation. Int J Mol Sci 2017; 18:ijms18081636. [PMID: 28749426 PMCID: PMC5578026 DOI: 10.3390/ijms18081636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, renal proximal tubule cells as well as the highly specialized endothelium of the blood brain barrier (BBB) express and secrete apolipoprotein M (apoM). ApoM is a typical lipocalin containing a hydrophobic binding pocket predominantly carrying Sphingosine-1-Phosphate (S1P). The small signaling molecule S1P is associated with several physiological as well as pathological pathways whereas the role of apoM is less explored. Hepatic apoM acts as a chaperone to transport S1P through the circulation and kidney derived apoM seems to play a role in S1P recovery to prevent urinal loss. Finally, polarized endothelial cells constituting the lining of the BBB express apoM and secrete the protein to the brain as well as to the blood compartment. The review will provide novel insights on apoM and S1P, and its role in hepatic fibrosis, neuroinflammation and BBB integrity.
Collapse
Affiliation(s)
- Stefan Hajny
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Christina Christoffersen
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
- Department of Cardiology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Bosteen MH, Dahlbäck B, Nielsen LB, Christoffersen C. Protein unfolding allows use of commercial antibodies in an apolipoprotein M sandwich ELISA. J Lipid Res 2015; 56:754-759. [PMID: 25561460 DOI: 10.1194/jlr.d055947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
apoM is a member of the lipocalin superfamily and circulates in plasma attached to HDL particles. apoM plays a role in cholesterol metabolism and has recently been identified as transporter for the signaling lipid, sphingosine-1-phosphate (S1P), in plasma. S1P is implicated in several inflammatory diseases such as multiple sclerosis and rheumatoid arthritis. The ability to accurately measure apoM is crucial for investigating its biological functions and possible clinical implications. However, reliable commercial methods have been lacking so far. Therefore, we have developed an assay that specifically recognizes human apoM in plasma using commercially available reagents. Commercial apoM antibodies were screened for compatibility in a sandwich ELISA-based assay. One optimal pair of antibodies was chosen, and sample preparation, buffers, and incubation times were optimized to generate a simple and reproducible method. Validation and comparison to a previously described ELISA for apoM confirmed that the assay displays a high degree of sensitivity, specificity, and precision. Our results show that commercially available antibodies can be used to accurately measure human plasma apoM. This method can be implemented in every laboratory and will help promote high quality research.
Collapse
Affiliation(s)
- Markus Høybye Bosteen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Björn Dahlbäck
- Department of Clinical Chemistry, University of Lund, Malmö, Sweden
| | - Lars Bo Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark.
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Amphipathic α-helices in apolipoproteins are crucial to the formation of infectious hepatitis C virus particles. PLoS Pathog 2014; 10:e1004534. [PMID: 25502789 PMCID: PMC4263759 DOI: 10.1371/journal.ppat.1004534] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly.
Collapse
|
8
|
Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 2011; 108:9613-8. [PMID: 21606363 DOI: 10.1073/pnas.1103187108] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protection of the endothelium is provided by circulating sphingosine-1-phosphate (S1P), which maintains vascular integrity. We show that HDL-associated S1P is bound specifically to both human and murine apolipoprotein M (apoM). Thus, isolated human ApoM(+) HDL contained S1P, whereas ApoM(-) HDL did not. Moreover, HDL in Apom(-/-) mice contains no S1P, whereas HDL in transgenic mice overexpressing human apoM has an increased S1P content. The 1.7-Å structure of the S1P-human apoM complex reveals that S1P interacts specifically with an amphiphilic pocket in the lipocalin fold of apoM. Human ApoM(+) HDL induced S1P(1) receptor internalization, downstream MAPK and Akt activation, endothelial cell migration, and formation of endothelial adherens junctions, whereas apoM(-) HDL did not. Importantly, lack of S1P in the HDL fraction of Apom(-/-) mice decreased basal endothelial barrier function in lung tissue. Our results demonstrate that apoM, by delivering S1P to the S1P(1) receptor on endothelial cells, is a vasculoprotective constituent of HDL.
Collapse
|