1
|
Smith B, Gaur D, Walker N, Walter I, Wohlever ML. Energetic requirements and mechanistic plasticity in Msp1-mediated substrate extraction from lipid bilayers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614443. [PMID: 39386490 PMCID: PMC11463475 DOI: 10.1101/2024.09.23.614443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
AAA+ proteins are essential molecular motors involved in numerous cellular processes, yet their mechanism of action in extracting membrane proteins from lipid bilayers remains poorly understood. One roadblock for mechanistic studies is the inability to generate subunit specific mutations within these hexameric proteins. Using the mitochondrial AAA+ protein Msp1 as a model, we created covalently linked dimers with varying combinations of wild type and catalytically inactive E193Q mutations. The wide range of ATPase rates in these constructs allows us to probe how Msp1 uses the energy from ATP hydrolysis to perform the thermodynamically unfavorable task of removing a transmembrane helix (TMH) from a lipid bilayer. Our in vitro and in vivo assays reveal a non-linear relationship between ATP hydrolysis and membrane protein extraction, suggesting a minimum ATP hydrolysis rate is required for effective TMH extraction. While structural data often supports a sequential clockwise/2-residue step (SC/2R) mechanism for ATP hydrolysis, our biochemical evidence suggests mechanistic plasticity in how Msp1 coordinates ATP hydrolysis between subunits, potentially allowing for robustness in processing challenging substrates. This study enhances our understanding of how Msp1 coordinates ATP hydrolysis to drive mechanical work and provides foundational insights about the minimum energetic requirements for TMH extraction and the coordination of ATP hydrolysis in AAA+ proteins.
Collapse
Affiliation(s)
- Baylee Smith
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| | - Deepika Gaur
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| | - Nathan Walker
- University of Pittsburgh, Department of Cell Biology
- University of Illinois, Department of Microbiology
| | - Isabella Walter
- University of Pittsburgh, Department of Cell Biology
- Ohio State University, Department of Molecular Genetics
| | - Matthew L. Wohlever
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| |
Collapse
|
2
|
Kasal MR, Kotamarthi HC, Johnson MM, Stephens HM, Lang MJ, Sauer RT, Baker TA. Lon degrades stable substrates slowly but with enhanced processivity, redefining the attributes of a successful AAA+ protease. Cell Rep 2023; 42:113061. [PMID: 37660294 PMCID: PMC10695633 DOI: 10.1016/j.celrep.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Lon is a widely distributed AAA+ (ATPases associated with diverse cellular activities) protease known for degrading poorly folded and damaged proteins and is often classified as a weak protein unfoldase. Here, using a Lon-degron pair from Mesoplasma florum (MfLon and MfssrA, respectively), we perform ensemble and single-molecule experiments to elucidate the molecular mechanisms underpinning MfLon function. Notably, we find that MfLon unfolds and degrades stably folded substrates and that translocation of these unfolded polypeptides occurs with a ∼6-amino-acid step size. Moreover, the time required to hydrolyze one ATP corresponds to the dwell time between steps, indicating that one step occurs per ATP-hydrolysis-fueled "power stroke." Comparison of MfLon to related AAA+ enzymes now provides strong evidence that HCLR-clade enzymes function using a shared power-stroke mechanism and, surprisingly, that MfLon is more processive than ClpXP and ClpAP. We propose that ample unfoldase strength and substantial processivity are features that contribute to the Lon family's evolutionary success.
Collapse
Affiliation(s)
- Meghann R Kasal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Madeline M Johnson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Hannah M Stephens
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Schmitz KR, Handy EL, Compton CL, Gupta S, Bishai WR, Sauer RT, Sello JK. Acyldepsipeptide Antibiotics and a Bioactive Fragment Thereof Differentially Perturb Mycobacterium tuberculosis ClpXP1P2 Activity in Vitro. ACS Chem Biol 2023; 18:724-733. [PMID: 32083462 PMCID: PMC7842861 DOI: 10.1021/acschembio.9b00454] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proteolytic complexes in Mycobacterium tuberculosis (Mtb), the deadliest bacterial pathogen, are major foci in tuberculosis drug development programs. The Clp proteases, which are essential for Mtb viability, are high-priority targets. These proteases function through the collaboration of ClpP1P2, a barrel-shaped heteromeric peptidase, with associated ATP-dependent chaperones like ClpX and ClpC1 that recognize and unfold specific substrates in an ATP-dependent fashion. The critical interaction of the peptidase and its unfoldase partners is blocked by the competitive binding of acyldepsipeptide antibiotics (ADEPs) to the interfaces of the ClpP2 subunits. The resulting inhibition of Clp protease activity is lethal to Mtb. Here, we report the surprising discovery that a fragment of the ADEPs retains anti-Mtb activity yet stimulates rather than inhibits the ClpXP1P2-catalyzed degradation of proteins. Our data further suggest that the fragment stabilizes the ClpXP1P2 complex and binds ClpP1P2 in a fashion distinct from that of the intact ADEPs. A structure-activity relationship study of the bioactive fragment defines the pharmacophore and points the way toward the development of new drug leads for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Karl R. Schmitz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Emma L. Handy
- Department of Chemistry, Brown University, Providence, RI
| | | | - Shashank Gupta
- Department of Chemistry, Brown University, Providence, RI
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jason K. Sello
- Department of Chemistry, Brown University, Providence, RI
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
4
|
Observing protein degradation in solution by the PAN-20S proteasome complex: Astate-of-the-art example of bio-macromolecular TR-SANS. Methods Enzymol 2022; 678:97-120. [PMID: 36641218 DOI: 10.1016/bs.mie.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present book chapter we illustrate the state-of-the-art of time-resolved small-angle neutron scattering (TR-SANS) by a concrete example of a dynamic bio-macromolecular system, i.e., regulated protein degradation by the archaeal PAN-20S proteasome complex. We present the specific and unique structural information that can be obtained by this approach, in combination with bio-macromolecular deuteration and online spectrophotometric measurements of a fluorescent substrate (GFP). The complementarity with atomic-resolution structural biology techniques (SAXS, NMR, crystallography and cryo-EM) and with the advent of atomic structure prediction are discussed, as well as the respective limitations and future perspectives.
Collapse
|
5
|
Walker SD, Olivares AO. The activated ClpP peptidase forcefully grips a protein substrate. Biophys J 2022; 121:3907-3916. [PMID: 36045571 PMCID: PMC9674977 DOI: 10.1016/j.bpj.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
ATPases associated with diverse cellular activities (AAA+) proteases power the maintenance of protein homeostasis by coupling ATP hydrolysis to mechanical protein unfolding, translocation, and ultimately degradation. Although ATPase activity drives a large portion of the mechanical work these molecular machines perform, how the peptidase contributes to the forceful denaturation and processive threading of substrates remains unknown. Here, using single-molecule optical trapping, we examine the mechanical activity of the caseinolytic peptidase P (ClpP) from Escherichia coli in the absence of a partner ATPase and in the presence of an activating small-molecule acyldepsipeptide. We demonstrate that ClpP grips protein substrate under mechanical loads exceeding 40 pN, which are greater than those observed for the AAA+ unfoldase ClpX and the AAA+ protease complexes ClpXP and ClpAP. We further characterize substrate-ClpP bond lifetimes and rupture forces under varying loads. We find that the resulting slip bond behavior does not depend on ClpP peptidase activity. In addition, we find that unloaded bond lifetimes between ClpP and protein substrate are on a timescale relevant to unfolding times (up to ∼160 s) for difficult to unfold model substrate proteins. These direct measurements of the substrate-peptidase bond under load define key properties required by AAA+ proteases to mechanically unfold and degrade protein substrates.
Collapse
Affiliation(s)
- Steven D Walker
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
| | - Adrian O Olivares
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
6
|
AAA+ protease-adaptor structures reveal altered conformations and ring specialization. Nat Struct Mol Biol 2022; 29:1068-1079. [PMID: 36329286 PMCID: PMC9663308 DOI: 10.1038/s41594-022-00850-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
ClpAP, a two-ring AAA+ protease, degrades N-end-rule proteins bound by the ClpS adaptor. Here we present high-resolution cryo-EM structures of Escherichia coli ClpAPS complexes, showing how ClpA pore loops interact with the ClpS N-terminal extension (NTE), which is normally intrinsically disordered. In two classes, the NTE is bound by a spiral of pore-1 and pore-2 loops in a manner similar to substrate-polypeptide binding by many AAA+ unfoldases. Kinetic studies reveal that pore-2 loops of the ClpA D1 ring catalyze the protein remodeling required for substrate delivery by ClpS. In a third class, D2 pore-1 loops are rotated, tucked away from the channel and do not bind the NTE, demonstrating asymmetry in engagement by the D1 and D2 rings. These studies show additional structures and functions for key AAA+ elements. Pore-loop tucking may be used broadly by AAA+ unfoldases, for example, during enzyme pausing/unloading.
Collapse
|
7
|
Tomita T. Structural and biochemical elements of efficiently degradable proteasome substrates. J Biochem 2021; 171:261-268. [PMID: 34967398 DOI: 10.1093/jb/mvab157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Most regulated proteolysis in cells is conducted by the ubiquitin-proteasome system, in which proteins to be eliminated are selected through multiple steps to achieve high specificity. The large protease complex proteasome binds to ubiquitin molecules that are attached to the substrate and further interacts with a disordered region in the target to initiate unfolding for degradation. Recent studies have expanded our view of the complexity of ubiquitination as well as the details of substrate engagement by the proteasome and at the same time have suggested the characteristics of substrates that are susceptible to proteasomal degradation. Here, I review some destabilizing elements of proteasome substrates with particular attention to ubiquitination, initiation region and stability against unfolding and discuss their interplay to determine the substrate stability. A spatial perspective is important to understand the mechanism of action of proteasomal degradation, which may be critical for drug development targeting the ubiquitin-proteasome system including targeted protein degradation.
Collapse
Affiliation(s)
- Takuya Tomita
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
8
|
Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease. J Biol Chem 2021; 297:101407. [PMID: 34780718 PMCID: PMC8666677 DOI: 10.1016/j.jbc.2021.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
ClpAP, an ATP-dependent protease consisting of ClpA, a double-ring hexameric unfoldase of the ATPases associated with diverse cellular activities superfamily, and the ClpP peptidase, degrades damaged and unneeded proteins to support cellular proteostasis. ClpA recognizes many protein substrates directly, but it can also be regulated by an adapter, ClpS, that modifies ClpA’s substrate profile toward N-degron substrates. Conserved tyrosines in the 12 pore-1 loops lining the central channel of the stacked D1 and D2 rings of ClpA are critical for degradation, but the roles of these residues in individual steps during direct or adapter-mediated degradation are poorly understood. Using engineered ClpA hexamers with zero, three, or six pore-1 loop mutations in each ATPases associated with diverse cellular activities superfamily ring, we found that active D1 pore loops initiate productive engagement of substrates, whereas active D2 pore loops are most important for mediating the robust unfolding of stable native substrates. In complex with ClpS, active D1 pore loops are required to form a high affinity ClpA•ClpS•substrate complex, but D2 pore loops are needed to “tug on” and remodel ClpS to transfer the N-degron substrate to ClpA. Overall, we find that the pore-1 loop tyrosines in D1 are critical for direct substrate engagement, whereas ClpS-mediated substrate delivery requires unique contributions from both the D1 and D2 pore loops. In conclusion, our study illustrates how pore loop engagement, substrate capture, and powering of the unfolding/translocation steps are distributed between the two rings of ClpA, illuminating new mechanistic features that may be common to double-ring protein unfolding machines.
Collapse
|
9
|
Abstract
Multiple gram-negative bacteria encode type III secretion systems (T3SS) that allow them to inject effector proteins directly into host cells to facilitate colonization. To be secreted, effector proteins must be at least partially unfolded to pass through the narrow needle-like channel (diameter <2 nm) of the T3SS. Fusion of effector proteins to tightly packed proteins-such as GFP, ubiquitin, or dihydrofolate reductase (DHFR)-impairs secretion and results in obstruction of the T3SS. Prior observation that unfolding can become rate-limiting for secretion has led to the model that T3SS effector proteins have low thermodynamic stability, facilitating their secretion. Here, we first show that the unfolding free energy ([Formula: see text]) of two Salmonella effector proteins, SptP and SopE2, are 6.9 and 6.0 kcal/mol, respectively, typical for globular proteins and similar to published [Formula: see text] for GFP, ubiquitin, and DHFR. Next, we mechanically unfolded individual SptP and SopE2 molecules by atomic force microscopy (AFM)-based force spectroscopy. SptP and SopE2 unfolded at low force (F unfold ≤ 17 pN at 100 nm/s), making them among the most mechanically labile proteins studied to date by AFM. Moreover, their mechanical compliance is large, as measured by the distance to the transition state (Δx ‡ = 1.6 and 1.5 nm for SptP and SopE2, respectively). In contrast, prior measurements of GFP, ubiquitin, and DHFR show them to be mechanically robust (F unfold > 80 pN) and brittle (Δx ‡ < 0.4 nm). These results suggest that effector protein unfolding by T3SS is a mechanical process and that mechanical lability facilitates efficient effector protein secretion.
Collapse
|
10
|
Kim S, Zuromski KL, Bell TA, Sauer RT, Baker TA. ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP. eLife 2020; 9:61451. [PMID: 33258771 PMCID: PMC7707817 DOI: 10.7554/elife.61451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
AAA+ proteases perform regulated protein degradation in all kingdoms of life and consist of a hexameric AAA+ unfoldase/translocase in complex with a self-compartmentalized peptidase. Based on asymmetric features of cryo-EM structures and a sequential hand-over-hand model of substrate translocation, recent publications have proposed that the AAA+ unfoldases ClpA and ClpX rotate with respect to their partner peptidase ClpP to allow function. Here, we test this model by covalently crosslinking ClpA to ClpP to prevent rotation. We find that crosslinked ClpAP complexes unfold, translocate, and degrade protein substrates in vitro, albeit modestly slower than uncrosslinked enzyme controls. Rotation of ClpA with respect to ClpP is therefore not required for ClpAP protease activity, although some flexibility in how the AAA+ ring docks with ClpP may be necessary for optimal function.
Collapse
Affiliation(s)
- Sora Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Kristin L Zuromski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Tristan A Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
11
|
Fei X, Bell TA, Barkow SR, Baker TA, Sauer RT. Structural basis of ClpXP recognition and unfolding of ssrA-tagged substrates. eLife 2020; 9:61496. [PMID: 33089779 PMCID: PMC7652416 DOI: 10.7554/elife.61496] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023] Open
Abstract
When ribosomes fail to complete normal translation, all cells have mechanisms to ensure degradation of the resulting partial proteins to safeguard proteome integrity. In Escherichia coli and other eubacteria, the tmRNA system rescues stalled ribosomes and adds an ssrA tag or degron to the C-terminus of the incomplete protein, which directs degradation by the AAA+ ClpXP protease. Here, we present cryo-EM structures of ClpXP bound to the ssrA degron. C-terminal residues of the ssrA degron initially bind in the top of an otherwise closed ClpX axial channel and subsequently move deeper into an open channel. For short-degron protein substrates, we show that unfolding can occur directly from the initial closed-channel complex. For longer degron substrates, our studies illuminate how ClpXP transitions from specific recognition into a nonspecific unfolding and translocation machine. Many AAA+ proteases and protein-remodeling motors are likely to employ similar multistep recognition and engagement strategies.
Collapse
Affiliation(s)
- Xue Fei
- Departments of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tristan A Bell
- Departments of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Sarah R Barkow
- Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Tania A Baker
- Departments of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Robert T Sauer
- Departments of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
12
|
Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proc Natl Acad Sci U S A 2020; 117:25455-25463. [PMID: 33020301 PMCID: PMC7568338 DOI: 10.1073/pnas.2014407117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding of how ClpA and other double-ring AAA+ enzymes perform mechanical work is limited. Using site-specific cross-linking and mutagenesis, we introduced ATPase-inactive AAA+ modules at alternating positions in individual ClpA rings, or in both rings, to investigate potential active-site coordination during ClpAP degradation. ClpA variants containing alternating active/inactive ATPase modules processively unfolded, translocated, and supported ClpP degradation of protein substrates with energetic efficiencies similar to, or higher than, completely active ClpA. These results impact current models describing the mechanisms of AAA+ family enzymes. The cross-linking/mutagenesis method we employed will also be useful for answering other structure-function questions about ClpA and related double-ring enzymes. ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.
Collapse
|
13
|
Bragança CE, Kraut DA. Mode of targeting to the proteasome determines GFP fate. J Biol Chem 2020; 295:15892-15901. [PMID: 32913119 DOI: 10.1074/jbc.ra120.015235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin-proteasome system is the canonical pathway for protein degradation in eukaryotic cells. GFP is frequently used as a reporter in proteasomal degradation assays. However, there are multiple variants of GFP in use, and these variants have different intrinsic stabilities. Further, there are multiple means by which substrates are targeted to the proteasome, and these differences could also affect the proteasome's ability to unfold and degrade substrates. Herein we investigate how the fate of GFP variants of differing intrinsic stabilities is determined by the mode of targeting to the proteasome. We compared two targeting systems: linear Ub4 degrons and the UBL domain from yeast Rad23, both of which are commonly used in degradation experiments. Surprisingly, the UBL degron allows for degradation of the most stable sGFP-containing substrates, whereas the Ub4 degron does not. Destabilizing the GFP by circular permutation allows degradation with either targeting signal, indicating that domain stability and mode of targeting combine to determine substrate fate. Difficult-to-unfold substrates are released and re-engaged multiple times, with removal of the degradation initiation region providing an alternative clipping pathway that precludes unfolding and degradation; the UBL degron favors degradation of even difficult-to-unfold substrates, whereas the Ub4 degron favors clipping. Finally, we show that the ubiquitin receptor Rpn13 is primarily responsible for the enhanced ability of the proteasome to degrade stable UBL-tagged substrates. Our results indicate that the choice of targeting method and reporter protein are critical to the design of protein degradation experiments.
Collapse
Affiliation(s)
| | - Daniel Adam Kraut
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, USA.
| |
Collapse
|
14
|
Torres-Delgado A, Kotamarthi HC, Sauer RT, Baker TA. The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease. J Mol Biol 2020; 432:4908-4921. [PMID: 32687854 DOI: 10.1016/j.jmb.2020.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Adaptor proteins modulate substrate selection by AAA+ proteases. The ClpS adaptor delivers N-degron substrates to ClpAP but inhibits degradation of substrates bearing ssrA tags or other related degrons. How ClpS inhibits degradation of such substrates is poorly understood. Here, we demonstrate that ClpS impedes recognition of ssrA-tagged substrates by a non-competitive mechanism and also slows subsequent unfolding/translocation of these substrates as well as of N-degron substrates. This suppression of mechanical activity is largely a consequence of the ability of ClpS to repress ATP hydrolysis by ClpA, but several lines of evidence show that ClpS's inhibition of substrate binding and its ATPase repression are separable activities. Using ClpS mutants and ClpS-ClpA chimeras, we establish that engagement of the intrinsically disordered N-terminal extension of ClpS by ClpA is both necessary and sufficient to inhibit multiple steps of ClpAP-catalyzed degradation. These observations reveal how an adaptor can simultaneously modulate the catalytic activity of a AAA+ enzyme, efficiently promote recognition of some substrates, suppress recognition of other substrates, and thereby affect degradation of its menu of substrates in a specific manner. We propose that similar mechanisms are likely to be used by other adaptors to regulate substrate choice and the catalytic activity of molecular machines.
Collapse
Affiliation(s)
- Amaris Torres-Delgado
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Mahieu E, Covès J, Krüger G, Martel A, Moulin M, Carl N, Härtlein M, Carlomagno T, Franzetti B, Gabel F. Observing Protein Degradation by the PAN-20S Proteasome by Time-Resolved Neutron Scattering. Biophys J 2020; 119:375-388. [PMID: 32640186 PMCID: PMC7376118 DOI: 10.1016/j.bpj.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The proteasome is a key player of regulated protein degradation in all kingdoms of life. Although recent atomic structures have provided snapshots on a number of conformations, data on substrate states and populations during the active degradation process in solution remain scarce. Here, we use time-resolved small-angle neutron scattering of a deuterium-labeled GFPssrA substrate and an unlabeled archaeal PAN-20S system to obtain direct structural information on substrate states during ATP-driven unfolding and subsequent proteolysis in solution. We find that native GFPssrA structures are degraded in a biexponential process, which correlates strongly with ATP hydrolysis, the loss of fluorescence, and the buildup of small oligopeptide products. Our solution structural data support a model in which the substrate is directly translocated from PAN into the 20S proteolytic chamber, after a first, to our knowledge, successful unfolding process that represents a point of no return and thus prevents dissociation of the complex and the release of harmful, aggregation-prone products.
Collapse
Affiliation(s)
- Emilie Mahieu
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Jacques Covès
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Georg Krüger
- Leibniz University Hannover, Centre for Biomolecular Drug Research, Hannover, Germany
| | | | | | - Nico Carl
- Institut Laue-Langevin, Grenoble, France
| | | | - Teresa Carlomagno
- Leibniz University Hannover, Centre for Biomolecular Drug Research, Hannover, Germany; Group of Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Frank Gabel
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France; Institut Laue-Langevin, Grenoble, France.
| |
Collapse
|
16
|
Fei X, Bell TA, Jenni S, Stinson BM, Baker TA, Harrison SC, Sauer RT. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. eLife 2020; 9:52774. [PMID: 32108573 PMCID: PMC7112951 DOI: 10.7554/elife.52774] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
ClpXP is an ATP-dependent protease in which the ClpX AAA+ motor binds, unfolds, and translocates specific protein substrates into the degradation chamber of ClpP. We present cryo-EM studies of the E. coli enzyme that show how asymmetric hexameric rings of ClpX bind symmetric heptameric rings of ClpP and interact with protein substrates. Subunits in the ClpX hexamer assume a spiral conformation and interact with two-residue segments of substrate in the axial channel, as observed for other AAA+ proteases and protein-remodeling machines. Strictly sequential models of ATP hydrolysis and a power stroke that moves two residues of the substrate per translocation step have been inferred from these structural features for other AAA+ unfoldases, but biochemical and single-molecule biophysical studies indicate that ClpXP operates by a probabilistic mechanism in which five to eight residues are translocated for each ATP hydrolyzed. We propose structure-based models that could account for the functional results.
Collapse
Affiliation(s)
- Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tristan A Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Benjamin M Stinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
17
|
The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun 2020; 11:477. [PMID: 31980598 PMCID: PMC6981147 DOI: 10.1038/s41467-019-13906-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2019] [Indexed: 01/28/2023] Open
Abstract
Proteins are targeted to the proteasome by the attachment of ubiquitin chains, which are markedly varied in structure. Three proteasome subunits–Rpn10, Rpn13, and Rpn1–can recognize ubiquitin chains. Here we report that proteins with single chains of K48-linked ubiquitin are targeted for degradation almost exclusively through binding to Rpn10. Rpn1 can act as a co-receptor with Rpn10 for K63 chains and for certain other chain types. Differences in targeting do not correlate with chain affinity to receptors. Surprisingly, in steady-state assays Rpn13 retarded degradation of various single-chain substrates. Substrates with multiple short ubiquitin chains can be presented for degradation by any of the known receptors, whereas those targeted to the proteasome through a ubiquitin-like domain are degraded most efficiently when bound by Rpn13 or Rpn1. Thus, the proteasome provides an unexpectedly versatile binding platform that can recognize substrates targeted for degradation by ubiquitin chains differing greatly in length and topology. Ubiquitylated proteins are degraded by the proteasome and the three proteasome subunits Rpn10, Rpn13 and Rpn1 recognize ubiquitin chains. Here the authors employ biochemical and kinetic assays and characterise the ubiquitin chain type specificities of these three ubiquitin receptors.
Collapse
|
18
|
Sriramoju MK, Chen Y, Hsu STD. Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140330. [PMID: 31756432 DOI: 10.1016/j.bbapap.2019.140330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
Knotted proteins are some of the most fascinating examples of how linear polypeptide chains can achieve intricate topological arrangements efficiently and spontaneously. The entanglements of polypeptide chains could potentially enhance their folding stabilities. We recently reported the unprecedented mechanostability of the Gordian (52) knotted family of human ubiquitin C-terminal hydrolases (UCHs) in the context of withstanding the mechanical unfolding of the bacterial AAA+ proteasome, ClpXP; a green fluorescence protein (GFP) was fused to the N-terminus of various UCHs as a reporter of the unfolding and degradation of these topologically knotted substrates, but it also limited the ability to examine the effect of untying the knotted topology via N-terminal truncation. In this study, we directly monitored the ClpXP-mediated degradation of UCH variants by electrophoresis and quantitative imaging analyses. We demonstrated that untying of the 52 knot in UCHL1 via N-terminal truncation (UCHL1Δ11) significantly reduces its mechanostability. We further quantified the ATP expenditures of degrading different UCH variants by ClpXP. The unknotted UCHL1Δ11 underwent accelerated ClpXP-dependent proteolysis, with a 30-fold reduction in ATP consumption compared to the knotted wild type. Unlike all other known ClpXP substrates, UCHL5, which is the most resilient substrate known to date, significantly slowed down the ATP turnover rate by ClpXP. Furthermore, UCHL5 required 1000-fold more ATP to be fully degraded by ClpXP compared to GFP. Our results underscored how the complex, knotted folding topology in UCHs may interfere with the mechano-unfolding processes of the AAA+ unfoldase, ClpX.
Collapse
Affiliation(s)
| | - Yen Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
19
|
Abstract
AAA+ proteolytic machines use energy from ATP hydrolysis to degrade damaged, misfolded, or unneeded proteins. Protein degradation occurs within a barrel-shaped self-compartmentalized peptidase. Before protein substrates can enter this peptidase, they must be unfolded and then translocated through the axial pore of an AAA+ ring hexamer. An unstructured region of the protein substrate is initially engaged in the axial pore, and conformational changes in the ring, powered by ATP hydrolysis, generate a mechanical force that pulls on and denatures the substrate. The same conformational changes in the hexameric ring then mediate mechanical translocation of the unfolded polypeptide into the peptidase chamber. For the bacterial ClpXP and ClpAP AAA+ proteases, the mechanical activities of protein unfolding and translocation have been directly visualized by single-molecule optical trapping. These studies in combination with structural and biochemical experiments illuminate many principles that underlie this universal mechanism of ATP-fueled protein unfolding and subsequent destruction.
Collapse
Affiliation(s)
- Adrian O Olivares
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Tania A Baker
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
20
|
Bell TA, Baker TA, Sauer RT. Interactions between a subset of substrate side chains and AAA+ motor pore loops determine grip during protein unfolding. eLife 2019; 8:46808. [PMID: 31251172 PMCID: PMC6677533 DOI: 10.7554/elife.46808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/27/2019] [Indexed: 01/04/2023] Open
Abstract
Most AAA+ remodeling motors denature proteins by pulling on the peptide termini of folded substrates, but it is not well-understood how motors produce grip when resisting a folded domain. Here, at single amino-acid resolution, we identify the determinants of grip by measuring how substrate tail sequences alter the unfolding activity of the unfoldase-protease ClpXP. The seven amino acids abutting a stable substrate domain are key, with residues 2-6 forming a core that contributes most significantly to grip. ClpX grips large hydrophobic and aromatic side chains strongly and small, polar, or charged side chains weakly. Multiple side chains interact with pore loops synergistically to strengthen grip. In combination with recent structures, our results support a mechanism in which unfolding grip is primarily mediated by non-specific van der Waal's interactions between core side chains of the substrate tail and a subset of YVG loops at the top of the ClpX axial pore.
Collapse
Affiliation(s)
- Tristan A Bell
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| | - Tania A Baker
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert T Sauer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
21
|
Singh Gautam AK, Martinez-Fonts K, Matouschek A. Scalable In Vitro Proteasome Activity Assay. Methods Mol Biol 2019; 1844:321-341. [PMID: 30242719 DOI: 10.1007/978-1-4939-8706-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We developed a degradation assay based on fluorescent protein substrates that are efficiently recognized, unfolded, translocated, and hydrolyzed by the proteasome. The substrates consist of three components: a proteasome-binding tag, a folded domain, and an initiation region. All the components of the model substrate can be changed to modulate degradation, and the assay can be performed in parallel in 384-well plates. These properties allow the assay to be used to explore a wide range of experimental conditions and to screen proteasome modulators.
Collapse
Affiliation(s)
| | - Kirby Martinez-Fonts
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
22
|
Bell TA, Baker TA, Sauer RT. Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity. Biochemistry 2018; 57:6787-6796. [PMID: 30418765 DOI: 10.1021/acs.biochem.8b00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ClpXP protease plays important roles in protein homeostasis and quality control. ClpX is a ring-shaped AAA+ homohexamer that unfolds target proteins and translocates them into the ClpP peptidase for degradation. AAA+ modules in each ClpX subunit-consisting of a large AAA+ domain, a short hinge-linker element, and a small AAA+ domain-mediate the mechanical activities of the ring hexamer. Here, we investigate the roles of these hinge-linker elements in ClpX function. Deleting one hinge-linker element in a single-chain ClpX pseudohexamer dramatically decreases unfolding and degradation activity, in part by compromising the formation of closed rings, protein-substrate binding, and ClpP binding. Covalently reclosing the broken hinge-linker interface rescues activity. Deleting one hinge-linker element from a single-chain dimer or trimer prevents assembly of stable hexamers. Mutationally disrupting a hinge-linker element preserves closed-ring assembly but reduces ATP-hydrolysis cooperativity and degradation activity. These results indicate that hinge-linker length and flexibility are optimized for efficient substrate unfolding and support a model in which the hinge-linker elements of ClpX facilitate efficient degradation both by maintaining proper ring geometry and facilitating subunit-subunit communication. This model informs our understanding of ClpX as well as the larger AAA+ family of motor proteins, which play diverse roles in converting chemical into mechanical energy in all cells.
Collapse
|
23
|
Abeywansha T, Chai Q, Zhang X, Wang Z, Wei Y. Accessibility from the Cytoplasm Is Critical for ssrA Tag-Mediated Degradation of Integral Membrane Proteins by ClpXP Protease. Biochemistry 2018; 57:5602-5608. [PMID: 30169015 DOI: 10.1021/acs.biochem.8b00641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The AAA+ protease ClpXP has long been established as the cellular rescue system that degrades ssrA-tagged proteins resulting from stalled ribosomes. Until recently, in all of these studies soluble proteins were used as model substrates, since the ClpXP complex and the related adapter SspB are all cytosolic proteins. In a previous study, we found that the introduction of an ssrA tag can facilitate complete degradation of a large and stable trimeric integral membrane protein AcrB, which is the first reported example of a membrane protein substrate. To investigate the mechanism of degradation of a membrane protein by a soluble protein complex, we experimented with the truncation of the C-terminal tail of AcrB. We found that the C-terminal tail is important for degradation, as systematic truncation of the tail diminished degradation. Thus, we hypothesize that membrane proteins need a cytosolic tail/domain for ClpXP-SspB to latch on to initiate degradation. To test this hypothesis, we introduced the ssrA tag at the C-terminal of several membrane proteins, including AqpZ, YiiP, YajR, as well as their truncation fragments, and examined their degradation. We found that the ssrA-facilitated degradation of membrane proteins by ClpXP-SspB depends on the presence of a CT tail or domain, which is critical for accessibility of the tag by ClpXP-SspB. When the ssrA tag is not well-exposed to the cytosol, FtsH can access and degrade the tagged protein, given that the substrate protein is metastable.
Collapse
Affiliation(s)
- Thilini Abeywansha
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Qian Chai
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Xinyi Zhang
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Zhaoshuai Wang
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Yinan Wei
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| |
Collapse
|
24
|
Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates. Proc Natl Acad Sci U S A 2018; 115:E4786-E4795. [PMID: 29735657 DOI: 10.1073/pnas.1721811115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.
Collapse
|
25
|
Javidialesaadi A, Stan G. Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms. J Phys Chem B 2017; 121:7108-7121. [DOI: 10.1021/acs.jpcb.7b05963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
26
|
Yedidi RS, Wendler P, Enenkel C. AAA-ATPases in Protein Degradation. Front Mol Biosci 2017; 4:42. [PMID: 28676851 PMCID: PMC5476697 DOI: 10.3389/fmolb.2017.00042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.
Collapse
Affiliation(s)
| | - Petra Wendler
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
27
|
Snoberger A, Anderson RT, Smith DM. The Proteasomal ATPases Use a Slow but Highly Processive Strategy to Unfold Proteins. Front Mol Biosci 2017; 4:18. [PMID: 28421184 PMCID: PMC5378721 DOI: 10.3389/fmolb.2017.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/16/2017] [Indexed: 01/23/2023] Open
Abstract
All domains of life have ATP-dependent compartmentalized proteases that sequester their peptidase sites on their interior. ATPase complexes will often associate with these compartmentalized proteases in order to unfold and inject substrates into the protease for degradation. Significant effort has been put into understanding how ATP hydrolysis is used to apply force to proteins and cause them to unfold. The unfolding kinetics of the bacterial ATPase, ClpX, have been shown to resemble a fast motor that traps unfolded intermediates as a strategy to unfold proteins. In the present study, we sought to determine if the proteasomal ATPases from eukaryotes and archaea exhibit similar unfolding kinetics. We found that the proteasomal ATPases appear to use a different kinetic strategy for protein unfolding, behaving as a slower but more processive and efficient translocation motor, particularly when encountering a folded domain. We expect that these dissimilarities are due to differences in the ATP binding/exchange cycle, the presence of a trans-arginine finger, or the presence of a threading ring (i.e., the OB domain), which may be used as a rigid platform to pull folded domains against. We speculate that these differences may have evolved due to the differing client pools these machines are expected to encounter.
Collapse
Affiliation(s)
- Aaron Snoberger
- Department of Biochemistry, West Virginia University School of MedicineMorgantown, WV, USA
| | - Raymond T Anderson
- Department of Biochemistry, West Virginia University School of MedicineMorgantown, WV, USA
| | - David M Smith
- Department of Biochemistry, West Virginia University School of MedicineMorgantown, WV, USA
| |
Collapse
|
28
|
Baytshtok V, Chen J, Glynn SE, Nager AR, Grant RA, Baker TA, Sauer RT. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation. J Biol Chem 2017; 292:5695-5704. [PMID: 28223361 DOI: 10.1074/jbc.m116.768978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
The HslUV proteolytic machine consists of HslV, a double-ring self-compartmentalized peptidase, and one or two AAA+ HslU ring hexamers that hydrolyze ATP to power the unfolding of protein substrates and their translocation into the proteolytic chamber of HslV. Here, we use genetic tethering and disulfide bonding strategies to construct HslU pseudohexamers containing mixtures of ATPase active and inactive subunits at defined positions in the hexameric ring. Genetic tethering impairs HslV binding and degradation, even for pseudohexamers with six active subunits, but disulfide-linked pseudohexamers do not have these defects, indicating that the peptide tether interferes with HslV interactions. Importantly, pseudohexamers containing different patterns of hydrolytically active and inactive subunits retain the ability to unfold protein substrates and/or collaborate with HslV in their degradation, supporting a model in which ATP hydrolysis and linked mechanical function in the HslU ring operate by a probabilistic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Tania A Baker
- From the Department of Biology and.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
29
|
Shi H, Rampello AJ, Glynn SE. Engineered AAA+ proteases reveal principles of proteolysis at the mitochondrial inner membrane. Nat Commun 2016; 7:13301. [PMID: 27786171 PMCID: PMC5095350 DOI: 10.1038/ncomms13301] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
The human YME1L protease is a membrane-anchored AAA+ enzyme that controls proteostasis at the inner membrane and intermembrane space of mitochondria. Understanding how YME1L recognizes substrates and catalyses ATP-dependent degradation has been hampered by the presence of an insoluble transmembrane anchor that drives hexamerization of the catalytic domains to form the ATPase active sites. Here, we overcome this limitation by replacing the transmembrane domain with a soluble hexameric coiled coil to produce active YME1L hexamers that can be studied in vitro. We use these engineered proteases to reveal principles of substrate processing by YME1L. Degradation by YME1L requires substrates to present an accessible signal sequence and is not initiated simply by substrate unfolding. The protease is also capable of processively unfolding substrate proteins with substantial thermodynamic stabilities. Lastly, we show that YME1L discriminates between degradation signals by amino acid composition, implying the use of sequence-specific signals in mitochondrial proteostasis. Human YME1L is a membrane-anchored AAA+ protease that maintains proteostasis in the mitochondrial inner membrane and intermembrane space. Here the authors probe the substrate-binding and degradation activities of YME1L and suggest the existence of sequence-specific degradation signals in mitochondrial proteostasis.
Collapse
Affiliation(s)
- Hui Shi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | - Anthony J Rampello
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| |
Collapse
|
30
|
Baytshtok V, Fei X, Grant RA, Baker TA, Sauer RT. A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis. Structure 2016; 24:1766-1777. [PMID: 27667691 DOI: 10.1016/j.str.2016.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 11/30/2022]
Abstract
The I domain of HslU sits above the AAA+ ring and forms a funnel-like entry to the axial pore, where protein substrates are engaged, unfolded, and translocated into HslV for degradation. The L199Q I-domain substitution, which was originally reported as a loss-of-function mutation, resides in a segment that appears to adopt multiple conformations as electron density is not observed in HslU and HslUV crystal structures. The L199Q sequence change does not alter the structure of the AAA+ ring or its interactions with HslV but increases I-domain susceptibility to limited endoproteolysis. Notably, the L199Q mutation increases the rate of ATP hydrolysis substantially, results in slower degradation of some proteins but faster degradation of other substrates, and markedly changes the preference of HslUV for initiating degradation at the N or C terminus of model substrates. Thus, a structurally dynamic region of the I domain plays a key role in controlling protein degradation by HslUV.
Collapse
Affiliation(s)
- Vladimir Baytshtok
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Reichard EL, Chirico GG, Dewey WJ, Nassif ND, Bard KE, Millas NE, Kraut DA. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome. J Biol Chem 2016; 291:18547-61. [PMID: 27405762 DOI: 10.1074/jbc.m116.720151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, proteins are targeted to the proteasome for degradation by polyubiquitination. These proteins bind to ubiquitin receptors, are engaged and unfolded by proteasomal ATPases, and are processively degraded. The factors determining to what extent the proteasome can successfully unfold and degrade a substrate are still poorly understood. We find that the architecture of polyubiquitin chains attached to a substrate affects the ability of the proteasome to unfold and degrade the substrate, with K48- or mixed-linkage chains leading to greater processivity than K63-linked chains. Ubiquitin-independent targeting of substrates to the proteasome gave substantially lower processivity of degradation than ubiquitin-dependent targeting. Thus, even though ubiquitin chains are removed early in degradation, during substrate engagement, remarkably they dramatically affect the later unfolding of a protein domain. Our work supports a model in which a polyubiquitin chain associated with a substrate switches the proteasome into an activated state that persists throughout the degradation process.
Collapse
Affiliation(s)
- Eden L Reichard
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Giavanna G Chirico
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - William J Dewey
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Nicholas D Nassif
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Katelyn E Bard
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Nickolas E Millas
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Daniel A Kraut
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| |
Collapse
|
32
|
Amor AJ, Schmitz KR, Sello JK, Baker TA, Sauer RT. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle. ACS Chem Biol 2016; 11:1552-1560. [PMID: 27003103 DOI: 10.1021/acschembio.6b00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ClpXP protease assembles in a reaction in which an ATP-bound ring hexamer of ClpX binds to one or both heptameric rings of the ClpP peptidase. Contacts between ClpX IGF-loops and clefts on a ClpP ring stabilize the complex. How ClpXP stability is maintained during the ATP-hydrolysis cycle that powers mechanical unfolding and translocation of protein substrates is poorly understood. Here, we use a real-time kinetic assay to monitor the effects of nucleotides on the assembly and disassembly of ClpXP. When ATP is present, complexes containing single-chain ClpX assemble via an intermediate and remain intact until transferred into buffers containing ADP or no nucleotides. ATP binding to high-affinity subunits of the ClpX hexamer prevents rapid dissociation, but additional subunits must be occupied to promote assembly. Small-molecule acyldepsipeptides, which compete with the IGF loops of ClpX for ClpP-cleft binding, cause exceptionally rapid dissociation of otherwise stable ClpXP complexes, suggesting that the IGF-loop interactions with ClpP must be highly dynamic. Our results indicate that the ClpX hexamer spends almost no time in an ATP-free state during the ATPase cycle, allowing highly processive degradation of protein substrates.
Collapse
Affiliation(s)
| | | | - Jason K. Sello
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | | |
Collapse
|
33
|
Bhattacharyya S, Renn JP, Yu H, Marko JF, Matouschek A. An assay for 26S proteasome activity based on fluorescence anisotropy measurements of dye-labeled protein substrates. Anal Biochem 2016; 509:50-59. [PMID: 27296635 DOI: 10.1016/j.ab.2016.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 12/12/2022]
Abstract
The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein.
Collapse
Affiliation(s)
| | - Jonathan P Renn
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Houqing Yu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Rath SL, Senapati S. Mechanism of p27 Unfolding for CDK2 Reactivation. Sci Rep 2016; 6:26450. [PMID: 27211815 PMCID: PMC4876385 DOI: 10.1038/srep26450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/28/2016] [Indexed: 12/03/2022] Open
Abstract
Cell-cycle regulatory protein, CDK2 is active when bound to its complementary partner protein, CyclinA or E. Recent discovery of the Kip/Cip family of proteins has indicated that the activity of CDK2 is also regulated by a member protein, p27. Although, the mechanism of CDK2 inhibition by p27 binding is known from crystal structure, little is known about the mechanism of CDK2 reactivation. Here, we execute classical and accelerated molecular dynamics simulations of unphosphorylated- and phosphorylated-p27 bound CDK2/CyclinA to unravel the CDK2 reactivation mechanism at molecular-to-atomic detail. Results suggest that the phosphorylation of p27 Y88 residue (pY88-p27) first disrupts the p27/CDK2 hybrid β-sheet and subsequently ejects the p27 310 helix from CDK2 catalytic cleft. The unbinding of p27 from CDK2/CyclinA complex, thus, follows a two-step unfolding mechanism, where the 310 helix ejection constitutes the rate-limiting step. Interestingly, the unfolding of p27 leaves CDK2/CyclinA in an active state, where the prerequisite CDK2-CyclinA interfacial contacts were regained and ATP achieved its native position for smooth transfer of phosphate. Our findings match very well with NMR chemical shift data that indicated the flip-out of p27 310 helix from CDK2 pocket and kinetic experiments that exhibited significant kinase activity of CDK2 when saturated with pY88-p27.
Collapse
Affiliation(s)
- Soumya Lipsa Rath
- Computational Biophysics Group, Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sanjib Senapati
- Computational Biophysics Group, Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
35
|
Wilmington SR, Matouschek A. An Inducible System for Rapid Degradation of Specific Cellular Proteins Using Proteasome Adaptors. PLoS One 2016; 11:e0152679. [PMID: 27043013 PMCID: PMC4820223 DOI: 10.1371/journal.pone.0152679] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/17/2016] [Indexed: 11/25/2022] Open
Abstract
A common way to study protein function is to deplete the protein of interest from cells and observe the response. Traditional methods involve disrupting gene expression but these techniques are only effective against newly synthesized proteins and leave previously existing and stable proteins untouched. Here, we introduce a technique that induces the rapid degradation of specific proteins in mammalian cells by shuttling the proteins to the proteasome for degradation in a ubiquitin-independent manner. We present two implementations of the system in human culture cells that can be used individually to control protein concentration. Our study presents a simple, robust, and flexible technology platform for manipulating intracellular protein levels.
Collapse
Affiliation(s)
- Shameika R. Wilmington
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Andreas Matouschek
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
- * E-mail:
| |
Collapse
|
36
|
Khmelinskii A, Meurer M, Ho CT, Besenbeck B, Füller J, Lemberg MK, Bukau B, Mogk A, Knop M. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Mol Biol Cell 2016; 27:360-70. [PMID: 26609072 PMCID: PMC4713137 DOI: 10.1091/mbc.e15-07-0525] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022] Open
Abstract
Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates of both FPs. So far, tFTs have been constructed by combining slower-maturing red fluorescent proteins (redFPs) with the faster-maturing superfolder green fluorescent protein (sfGFP). Toward a comprehensive characterization of tFTs, we compare here tFTs composed of different faster-maturing green fluorescent proteins (greenFPs) while keeping the slower-maturing redFP constant (mCherry). Our results indicate that the greenFP maturation kinetics influences the time range of a tFT. Moreover, we observe that commonly used greenFPs can partially withstand proteasomal degradation due to the stability of the FP fold, which results in accumulation of tFT fragments in the cell. Depending on the order of FPs in the timer, incomplete proteasomal degradation either shifts the time range of the tFT toward slower time scales or precludes its use for measurements of protein turnover. We identify greenFPs that are efficiently degraded by the proteasome and provide simple guidelines for the design of new tFTs.
Collapse
Affiliation(s)
- Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Chi-Ting Ho
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Birgit Besenbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Julia Füller
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Bernd Bukau
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Axel Mogk
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Kravats AN, Tonddast-Navaei S, Stan G. Coarse-Grained Simulations of Topology-Dependent Mechanisms of Protein Unfolding and Translocation Mediated by ClpY ATPase Nanomachines. PLoS Comput Biol 2016; 12:e1004675. [PMID: 26734937 PMCID: PMC4703411 DOI: 10.1371/journal.pcbi.1004675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023] Open
Abstract
Clp ATPases are powerful ring shaped nanomachines which participate in the degradation pathway of the protein quality control system, coupling the energy from ATP hydrolysis to threading substrate proteins (SP) through their narrow central pore. Repetitive cycles of sequential intra-ring ATP hydrolysis events induce axial excursions of diaphragm-forming central pore loops that effect the application of mechanical forces onto SPs to promote unfolding and translocation. We perform Langevin dynamics simulations of a coarse-grained model of the ClpY ATPase-SP system to elucidate the molecular details of unfolding and translocation of an α/β model protein. We contrast this mechanism with our previous studies which used an all-α SP. We find conserved aspects of unfolding and translocation mechanisms by allosteric ClpY, including unfolding initiated at the tagged C-terminus and translocation via a power stroke mechanism. Topology-specific aspects include the time scales, the rate limiting steps in the degradation pathway, the effect of force directionality, and the translocase efficacy. Mechanisms of ClpY-assisted unfolding and translocation are distinct from those resulting from non-allosteric mechanical pulling. Bulk unfolding simulations, which mimic Atomic Force Microscopy-type pulling, reveal multiple unfolding pathways initiated at the C-terminus, N-terminus, or simultaneously from both termini. In a non-allosteric ClpY ATPase pore, mechanical pulling with constant velocity yields larger effective forces for SP unfolding, while pulling with constant force results in simultaneous unfolding and translocation. Cell survival is critically dependent on tightly regulated protein quality control, which includes chaperone-mediated folding and degradation. In the degradation pathway, AAA+ nanomachines, such as bacterial Clp proteases, use ATP-driven mechanisms to mechanically unfold, translocate, and destroy excess or defective proteins. Understanding these remodeling mechanisms is of central importance for deciphering the details of essential cellular processes. We perform coarse-grained computer simulations to extensively probe the effect of substrate protein topology on unfolding and translocation actions of the ClpY ATPase nanomachine. We find that, independent of SP topology, unfolding proceeds from the tagged C-terminus, which is engaged by the ATPase, and translocation involves coordinated steps. Topology-specific aspects include more complex unfolding and translocation pathways of the α/β SP compared with the all-α SP due to high stability of β-hairpins and interplay of tertiary contacts. In addition, directionality of the mechanical force applied by the Clp ATPase gives rise to distinct unfolding pathways.
Collapse
Affiliation(s)
- Andrea N. Kravats
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sam Tonddast-Navaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Olivares AO, Baker TA, Sauer RT. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat Rev Microbiol 2015; 14:33-44. [PMID: 26639779 DOI: 10.1038/nrmicro.2015.4] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To maintain protein homeostasis, AAA+ proteolytic machines degrade damaged and unneeded proteins in bacteria, archaea and eukaryotes. This process involves the ATP-dependent unfolding of a target protein and its subsequent translocation into a self-compartmentalized proteolytic chamber. Related AAA+ enzymes also disaggregate and remodel proteins. Recent structural and biochemical studies, in combination with direct visualization of unfolding and translocation in single-molecule experiments, have illuminated the molecular mechanisms behind these processes and suggest how remodelling of macromolecular complexes by AAA+ enzymes could occur without global denaturation. In this Review, we discuss the structural and mechanistic features of AAA+ proteases and remodelling machines, focusing on the bacterial ClpXP and ClpX as paradigms. We also consider the potential of these enzymes as antibacterial targets and outline future challenges for the field.
Collapse
Affiliation(s)
- Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Iosefson O, Olivares AO, Baker TA, Sauer RT. Dissection of Axial-Pore Loop Function during Unfolding and Translocation by a AAA+ Proteolytic Machine. Cell Rep 2015; 12:1032-41. [PMID: 26235618 DOI: 10.1016/j.celrep.2015.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022] Open
Abstract
In the axial channels of ClpX and related hexameric AAA+ protein-remodeling rings, the pore-1 loops are thought to play important roles in engaging, mechanically unfolding, and translocating protein substrates. How these loops perform these functions and whether they also prevent substrate dissociation to ensure processive degradation by AAA+ proteases are open questions. Using ClpX pore-1-loop variants, single-molecule force spectroscopy, and ensemble assays, we find that the six pore-1 loops function synchronously to grip and unfold protein substrates during a power stroke but are not important in preventing substrate slipping between power strokes. The importance of grip strength is task dependent. ClpX variants with multiple mutant pore-1 loops translocate substrates as well as the wild-type enzyme against a resisting force but show unfolding defects and a higher frequency of substrate release. These problems are magnified for more mechanically stable target proteins, supporting a threshold model of substrate gripping.
Collapse
Affiliation(s)
- Ohad Iosefson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
40
|
Barthelme D, Jauregui R, Sauer RT. An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci 2015; 24:1521-7. [PMID: 26134898 DOI: 10.1002/pro.2740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Cdc48 (also known as p97 or VCP) is an essential and highly abundant, double-ring AAA+ ATPase, which is ubiquitous in archaea and eukaryotes. In archaea, Cdc48 ring hexamers play a direct role in quality control by unfolding and translocating protein substrates into the degradation chamber of the 20S proteasome. Whether Cdc48 and 20S cooperate directly in protein degradation in eukaryotic cells is unclear. Two regions of Cdc48 are important for 20S binding, the pore-2 loop at the bottom of the D2 AAA+ ring and a C-terminal tripeptide. Here, we identify an aspartic acid in the pore-2 loop as an important element in 20S recognition. Importantly, mutation of this aspartate in human Cdc48 has been linked to familial amyotrophic lateral sclerosis (ALS). In archaeal or human Cdc48 variants, we find that mutation of this pore-2 residue impairs 20S binding and proteolytic communication but does not affect the stability of the hexamer or rates of ATP hydrolysis and protein unfolding. These results suggest that human Cdc48 interacts functionally with the 20S proteasome.
Collapse
Affiliation(s)
- Dominik Barthelme
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Ruben Jauregui
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
41
|
Wojciechowski M, Szymczak P, Carrión-Vázquez M, Cieplak M. Protein unfolding by biological unfoldases: insights from modeling. Biophys J 2015; 107:1661-8. [PMID: 25296319 DOI: 10.1016/j.bpj.2014.07.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/09/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
The molecular determinants of the high efficiency of biological machines like unfoldases (e.g., the proteasome) are not well understood. We propose a model to study protein translocation into the chamber of biological unfoldases represented as a funnel. It is argued that translocation is a much faster way of unfolding a protein than end-to-end stretching, especially in a low-force regime, because it allows for a conformational freedom while concentrating local tension on consecutive regions of a protein chain and preventing refolding. This results in a serial unfolding of the protein structures dominated by unzipping. Thus, pulling against the unfoldase pore is an efficient catalyst of the unfolding reaction. We also show that the presence of the funnel makes the tension along the backbone of the substrate protein nonuniform even when the protein gets unfolded. Hence, the stalling force measured by single-molecule force spectroscopy techniques may be smaller than the traction force of the unfoldase motor.
Collapse
Affiliation(s)
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas and Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
42
|
Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine. Cell 2015; 158:647-58. [PMID: 25083874 DOI: 10.1016/j.cell.2014.05.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/18/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
ClpXP and other AAA+ proteases recognize, mechanically unfold, and translocate target proteins into a chamber for proteolysis. It is not known whether these remarkable molecular machines operate by a stochastic or sequential mechanism or how power strokes relate to the ATP-hydrolysis cycle. Single-molecule optical trapping allows ClpXP unfolding to be directly visualized and reveals translocation steps of ∼1-4 nm in length, but how these activities relate to solution degradation and the physical properties of substrate proteins remains unclear. By studying single-molecule degradation using different multidomain substrates and ClpXP variants, we answer many of these questions and provide evidence for stochastic unfolding and translocation. We also present a mechanochemical model that accounts for single-molecule, biochemical, and structural results for our observation of enzymatic memory in translocation stepping, for the kinetics of translocation steps of different sizes, and for probabilistic but highly coordinated subunit activity within the ClpX ring.
Collapse
|
43
|
Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nat Chem Biol 2015; 11:201-6. [PMID: 25599533 PMCID: PMC4333055 DOI: 10.1038/nchembio.1732] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022]
Abstract
Hexameric ATP-dependent proteases and protein remodeling machines use conserved loops that line the axial pore to apply force to substrates during the mechanical processes of protein unfolding and translocation. Whether loops from multiple subunits act independently or coordinately in these processes is a critical aspect of the mechanism but is currently unknown for any AAA+ machine. By studying covalently linked hexamers of the Escherichia coli ClpX unfoldase bearing different numbers and configurations of wild-type and mutant pore loops, we show that loops function synergistically, and the number of wild-type loops required for efficient degradation is dependent on the stability of the protein substrate. Our results support a mechanism in which a power stroke initiated in one subunit of the ClpX hexamer results in the concurrent movement of all six pore loops, which coordinately grip and apply force to the substrate.
Collapse
|
44
|
Abstract
Microorganisms live in fluctuating environments, requiring stress response pathways to resist environmental insults and stress. These pathways dynamically monitor cellular status, and mediate adaptive changes by remodeling the proteome, largely accomplished by remodeling transcriptional networks and protein degradation. The complementarity of fast, specific proteolytic degradation and slower, broad transcriptomic changes gives cells the mechanistic repertoire to dynamically adjust cellular processes and optimize response behavior. Together, this enables cells to minimize the 'cost' of the response while maximizing the ability to survive environmental stress. Here we highlight recent progress in our understanding of transcriptional networks and proteolysis that illustrates the design principles used by bacteria to generate the complex behaviors required to resist stress.
Collapse
|
45
|
Olivares AO, Nager AR, Iosefson O, Sauer RT, Baker TA. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nat Struct Mol Biol 2014; 21:871-5. [PMID: 25195048 PMCID: PMC4190165 DOI: 10.1038/nsmb.2885] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023]
Abstract
Molecular machines containing double or single AAA+ rings power energy-dependent protein degradation and other critical cellular processes, including disaggregation and remodeling of macromolecular complexes. How the mechanical activities of double-ring and single-ring AAA+ enzymes differ is unknown. Using single-molecule optical trapping, we determine how the double-ring ClpA enzyme from Escherichia coli mechanically degrades proteins in complex with the ClpP peptidase. We demonstrate that ClpA unfolds some protein substrates substantially faster than the single-ring ClpX enzyme, which also degrades substrates in collaboration with ClpP. We find that ClpA is a slower polypeptide translocase and moves in physical steps that are smaller and more regular than steps taken by ClpX. These direct measurements of protein unfolding and translocation define the core mechanochemical behavior of a double-ring AAA+ machine and provide insight into the degradation of proteins that unfold via metastable intermediates.
Collapse
Affiliation(s)
- Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew R Nager
- 1] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2]
| | - Ohad Iosefson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tania A Baker
- 1] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
46
|
Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates. Proc Natl Acad Sci U S A 2014; 111:E3853-9. [PMID: 25187555 DOI: 10.1073/pnas.1414933111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ClpS adaptor collaborates with the AAA+ ClpAP protease to recognize and degrade N-degron substrates. ClpS binds the substrate N-degron and assembles into a high-affinity ClpS-substrate-ClpA complex, but how the N-degron is transferred from ClpS to the axial pore of the AAA+ ClpA unfoldase to initiate degradation is not known. Here we demonstrate that the unstructured N-terminal extension (NTE) of ClpS enters the ClpA processing pore in the active ternary complex. We establish that ClpS promotes delivery only in cis, as demonstrated by mixing ClpS variants with distinct substrate specificity and either active or inactive NTE truncations. Importantly, we find that ClpA engagement of the ClpS NTE is crucial for ClpS-mediated substrate delivery by using ClpS variants carrying "blocking" elements that prevent the NTE from entering the pore. These results support models in which enzymatic activity of ClpA actively remodels ClpS to promote substrate transfer, and highlight how ATPase/motor activities of AAA+ proteases can be critical for substrate selection as well as protein degradation.
Collapse
|
47
|
Wang Z, Li S, Li J, Li J, Rong L, Cheng B, Fan J. Engineering uroporphyrinogen III methyltransferase as a red fluorescent reporter in E. coli. Enzyme Microb Technol 2014; 61-62:1-6. [PMID: 24910329 DOI: 10.1016/j.enzmictec.2014.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
Abstract
Uroporphyrinogen III methyltransferase (UMT) is a novel reporter owing to the catalytic products in the cells that emit strong red fluorescence under UV light. Here, we engineered the gene encoding the functional barley UMT (bUMT) by error-prone PCR and broadened the application UMT as a red fluorescent reporter in Escherichia coli. A variant, termed mbUMT, was selected and emitted stronger cell fluorescence than the wild type bUMT expressed in different E. coli strains, under different promoters and induction conditions respectively. The constructed mbUMT with a C-terminal ssrA tag was degraded in cells by the protease ClpXP encoded by E. coli chromosome, whereas the bUMT was expressed as active aggregates. Before they are exported to the periplasm, both proteins catalyze the substrate in the cytoplasm and emit cell fluorescence. The results suggested that the evolved bUMT is a better candidate to monitor in vivo degradation by E. coli ClpXP.
Collapse
Affiliation(s)
- Zhenzhen Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Si Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Jing Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Jingjing Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Liang Rong
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Beijiu Cheng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
48
|
Architecture and assembly of the archaeal Cdc48*20S proteasome. Proc Natl Acad Sci U S A 2014; 111:E1687-94. [PMID: 24711419 DOI: 10.1073/pnas.1404823111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATP-dependent proteases maintain protein quality control and regulate diverse intracellular functions. Proteasomes are primarily responsible for these tasks in the archaeal and eukaryotic domains of life. Even the simplest of these proteases function as large complexes, consisting of the 20S peptidase, a barrel-like structure composed of four heptameric rings, and one or two AAA+ (ATPase associated with a variety of cellular activities) ring hexamers, which use cycles of ATP binding and hydrolysis to unfold and translocate substrates into the 20S proteolytic chamber. Understanding how the AAA+ and 20S components of these enzymes interact and collaborate to execute protein degradation is important, but the highly dynamic nature of prokaryotic proteasomes has hampered structural characterization. Here, we use electron microscopy to determine the architecture of an archaeal Cdc48 ⋅ 20S proteasome, which we stabilized by site-specific cross-linking. This complex displays coaxial alignment of Cdc48 and 20S and is enzymatically active, demonstrating that AAA+ unfoldase wobbling with respect to 20S is not required for function. In the complex, the N-terminal domain of Cdc48, which regulates ATP hydrolysis and degradation, packs against the D1 ring of Cdc48 in a coplanar fashion, constraining mechanisms by which the N-terminal domain alters 20S affinity and degradation activity.
Collapse
|
49
|
Wang Z, Ding X, Li S, Shi J, Li Y. Engineered fluorescence tags for in vivo protein labelling. RSC Adv 2014. [DOI: 10.1039/c3ra46991c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivoprotein labelling with a peptide tag–fluorescent probe system is an important chemical biology strategy for studying protein distribution, interaction and function.
Collapse
Affiliation(s)
- Zhipeng Wang
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
- Department of Chemistry
- School of Life Sciences
| | - Xiaozhe Ding
- Department of Chemistry
- School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Sijian Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
| | - Jing Shi
- Department of Chemistry
- University of Science and Technology of China
- Hefei, China
| | - Yiming Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
- Department of Chemistry
- School of Life Sciences
| |
Collapse
|
50
|
Wohlever ML, Baker TA, Sauer RT. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity. Mol Microbiol 2013; 91:66-78. [PMID: 24205897 DOI: 10.1111/mmi.12444] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2013] [Indexed: 12/14/2022]
Abstract
Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell-division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross-linking and scanning for mutations that prevent sul20-peptide binding. These N-domain mutations limit the rates of proteolysis of model sul20-tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon-mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP-dependent biological activities do not require translocation.
Collapse
Affiliation(s)
- Matthew L Wohlever
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | |
Collapse
|