1
|
Aydin F, Katkar HH, Morganthaler A, Harker AJ, Kovar DR, Voth GA. Prediction of the essential intermolecular contacts for side-binding of VASP on F-actin. Cytoskeleton (Hoboken) 2024; 81:382-392. [PMID: 38647032 PMCID: PMC11333183 DOI: 10.1002/cm.21864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) family proteins play a crucial role in mediating the actin network architecture in the cytoskeleton. The Ena/VASP homology 2 (EVH2) domain in each of the four identical arms of the tetrameric VASP consists of a loading poly-Pro region, a G-actin-binding domain (GAB), and an F-actin-binding domain (FAB). Together, the poly-Pro, GAB, and FAB domains allow VASP to bind to sides of actin filaments in a bundle, and recruit profilin-G-actin to processively elongate the filaments. The atomic resolution structure of the ternary complex, consisting of the loading poly-Pro region and GAB domain of VASP with profilin-actin, has been solved over a decade ago; however, a detailed structure of the FAB-F-actin complex has not been resolved to date. Experimental insights, based on homology of the FAB domain with the C region of WASP, have been used to hypothesize that the FAB domain binds to the cleft between subdomains 1 and 3 of F-actin. Here, in order to develop our understanding of the VASP-actin complex, we first augment known structural information about the GAB domain binding to actin with the missing FAB domain-actin structure, which we predict using homology modeling and docking simulations. In earlier work, we used mutagenesis and kinetic modeling to study the role of domain-level binding-unbinding kinetics of Ena/VASP on actin filaments in a bundle, specifically on the side of actin filaments. We further look at the nature of the side-binding of the FAB domain of VASP at the atomistic level using our predicted structure, and tabulate effective mutation sites on the FAB domain that would disrupt the VASP-actin complex. We test the binding affinity of Ena with mutated FAB domain using total internal reflection fluorescence microscopy experiments. The binding affinity of VASP is affected significantly for the mutant, providing additional support for our predicted structure.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| | - Harshwardhan H. Katkar
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| | - Alisha Morganthaler
- Department of Biochemistry and Molecular Biology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Alyssa J. Harker
- Department of Biochemistry and Molecular Biology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - David R. Kovar
- Department of Biochemistry and Molecular Biology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Gregory A. Voth
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Wu X, Li D, Chen Y, Wang L, Xu LY, Li EM, Dong G. Fascin - F-actin interaction studied by molecular dynamics simulation and protein network analysis. J Biomol Struct Dyn 2024; 42:435-444. [PMID: 37029713 DOI: 10.1080/07391102.2023.2199083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Dajia Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liangdong Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
3
|
Chen X, Roeters SJ, Cavanna F, Alvarado J, Baiz CR. Crowding alters F-actin secondary structure and hydration. Commun Biol 2023; 6:900. [PMID: 37660224 PMCID: PMC10475093 DOI: 10.1038/s42003-023-05274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Actin, an important component of eukaryotic cell cytoskeleton, regulates cell shape and transport. The morphology and biochemical properties of actin filaments are determined by their structure and protein-protein contacts. Crowded environments can organize filaments into bundles, but less is known about how they affect F-actin structure. This study used 2D IR spectroscopy and spectral calculations to examine how crowding and bundling impact the secondary structure and local environments in filaments and weakly or strongly bundled networks. The results reveal that bundling induces changes in actin's secondary structure, leading to a decrease in β-sheet and an increase in loop conformations. Strongly bundled networks exhibit a decrease in backbone solvent exposure, with less perturbed α-helices and nearly "locked" β-sheets. Similarly, the loops become less hydrated but maintain a dynamic environment. These findings highlight the role of loop structure in actin network morphology and stability under morphology control by PEG.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Department of Anatomy and Neurosciences, Vrije Universiteit, Amsterdam UMC, Amsterdam, Netherlands
| | - Francis Cavanna
- Department of Physics, University of Texas at Austin, Center for Nonlinear Dynamics, Austin, TX, USA
| | - José Alvarado
- Department of Physics, University of Texas at Austin, Center for Nonlinear Dynamics, Austin, TX, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Singh Y, Hocky GM, Nolen BJ. Molecular dynamics simulations support a multistep pathway for activation of branched actin filament nucleation by Arp2/3 complex. J Biol Chem 2023; 299:105169. [PMID: 37595874 PMCID: PMC10514467 DOI: 10.1016/j.jbc.2023.105169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Actin-related protein 2/3 complex (Arp2/3 complex) catalyzes the nucleation of branched actin filaments that push against membranes in processes like cellular motility and endocytosis. During activation by WASP proteins, the complex must bind WASP and engage the side of a pre-existing (mother) filament before a branched filament is nucleated. Recent high-resolution structures of activated Arp2/3 complex revealed two major sets of activating conformational changes. How these activating conformational changes are triggered by interactions of Arp2/3 complex with actin filaments and WASP remains unclear. Here we use a recent high-resolution structure of Arp2/3 complex at a branch junction to design all-atom molecular dynamics simulations that elucidate the pathway between the active and inactive states. We ran a total of ∼4.6 microseconds of both unbiased and steered all-atom molecular dynamics simulations starting from three different binding states, including Arp2/3 complex within a branch junction, bound only to a mother filament, and alone in solution. These simulations indicate that the contacts with the mother filament are mostly insensitive to the massive rigid body motion that moves Arp2 and Arp3 into a short pitch helical (filament-like) arrangement, suggesting actin filaments alone do not stimulate the short pitch conformational change. In contrast, contacts with the mother filament stabilize subunit flattening in Arp3, an intrasubunit change that converts Arp3 from a conformation that mimics an actin monomer to one that mimics a filamentous actin subunit. Our results support a multistep activation pathway that has important implications for understanding how WASP-mediated activation allows Arp2/3 complex to assemble force-producing actin networks.
Collapse
Affiliation(s)
| | - Glen M Hocky
- Department of Chemistry, New York University; Simons Center for Computational Physical Chemistry, New York University.
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon.
| |
Collapse
|
5
|
From structure and dynamics to biomolecular functions: The ubiquitous role of solvent in biology. Curr Opin Struct Biol 2022; 77:102462. [PMID: 36150344 DOI: 10.1016/j.sbi.2022.102462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Biological activity requires a solvent that can provide a suitable environment, which satisfies the twin need for stability and the ability to change. Among all the solvents water plays the most important role. We review, analyze, and comment on recent works on the structure and dynamics of water around biomolecules and their role in specific biological functions. While studies in the past have focused on understanding the biomolecule-water interactions through a hydration layer; recently the attention has shifted towards understanding functions at a molecular level. Such a microscopic understanding clearly requires elucidation of detailed dynamical processes where solvent molecules play an important role. Finally, we comment on the advances made in understanding the role of water inside a biological cell.
Collapse
|
6
|
Reynolds MJ, Hachicho C, Carl AG, Gong R, Alushin GM. Bending forces and nucleotide state jointly regulate F-actin structure. Nature 2022; 611:380-386. [PMID: 36289330 PMCID: PMC9646526 DOI: 10.1038/s41586-022-05366-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular force generation1-3. In turn, force4,5 and actin filament (F-actin) nucleotide state6 regulate actin dynamics by tuning F-actin's engagement of actin-binding proteins through mechanisms that are unclear. Here we show that the nucleotide state of actin modulates F-actin structural transitions evoked by bending forces. Cryo-electron microscopy structures of ADP-F-actin and ADP-Pi-F-actin with sufficient resolution to visualize bound solvent reveal intersubunit interfaces bridged by water molecules that could mediate filament lattice flexibility. Despite extensive ordered solvent differences in the nucleotide cleft, these structures feature nearly identical lattices and essentially indistinguishable protein backbone conformations that are unlikely to be discriminable by actin-binding proteins. We next introduce a machine-learning-enabled pipeline for reconstructing bent filaments, enabling us to visualize both continuous structural variability and side-chain-level detail. Bent F-actin structures reveal rearrangements at intersubunit interfaces characterized by substantial alterations of helical twist and deformations in individual protomers, transitions that are distinct in ADP-F-actin and ADP-Pi-F-actin. This suggests that phosphate rigidifies actin subunits to alter the bending structural landscape of F-actin. As bending forces evoke nucleotide-state dependent conformational transitions of sufficient magnitude to be detected by actin-binding proteins, we propose that actin nucleotide state can serve as a co-regulator of F-actin mechanical regulation.
Collapse
Affiliation(s)
- Matthew J Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Carla Hachicho
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Ayala G Carl
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Steinz MM, Persson M, Aresh B, Olsson K, Cheng AJ, Ahlstrand E, Lilja M, Lundberg TR, Rullman E, Möller KÄ, Sandor K, Ajeganova S, Yamada T, Beard N, Karlsson BC, Tavi P, Kenne E, Svensson CI, Rassier DE, Karlsson R, Friedman R, Gustafsson T, Lanner JT. Oxidative hotspots on actin promote skeletal muscle weakness in rheumatoid arthritis. JCI Insight 2019; 5:126347. [PMID: 30920392 DOI: 10.1172/jci.insight.126347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle weakness in patients suffering from rheumatoid arthritis (RA) adds to their impaired working abilities and reduced quality of life. However, little molecular insight is available on muscle weakness associated with RA. Oxidative stress has been implicated in the disease pathogenesis of RA. Here we show that oxidative post-translational modifications of the contractile machinery targeted to actin result in impaired actin polymerization and reduced force production. Using mass spectrometry, we identified the actin residues targeted by oxidative 3-nitrotyrosine (3-NT) or malondialdehyde adduct (MDA) modifications in weakened skeletal muscle from mice with arthritis and patients afflicted by RA. The residues were primarily located to three distinct regions positioned at matching surface areas of the skeletal muscle actin molecule from arthritis mice and RA patients. Moreover, molecular dynamic simulations revealed that these areas, here coined "hotspots", are important for the stability of the actin molecule and its capacity to generate filaments and interact with myosin. Together, these data demonstrate how oxidative modifications on actin promote muscle weakness in RA patients and provide novel leads for targeted therapeutic treatment to improve muscle function.
Collapse
Affiliation(s)
- Maarten M Steinz
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Bejan Aresh
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Karl Olsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Emma Ahlstrand
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Mats Lilja
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Tommy R Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, and
| | - Sofia Ajeganova
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yamada
- Department of Physical Therapy, Sapporo Medical University, Sapporo, Japan
| | - Nicole Beard
- Faculty of Science and Technology, University of Canberra, Australia
| | - Björn Cg Karlsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Pasi Tavi
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden.,A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, and
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Roger Karlsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Chou SZ, Pollard TD. Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. Proc Natl Acad Sci U S A 2019; 116:4265-4274. [PMID: 30760599 PMCID: PMC6410863 DOI: 10.1073/pnas.1807028115] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We used cryo-electron microscopy (cryo-EM) to reconstruct actin filaments with bound AMPPNP (β,γ-imidoadenosine 5'-triphosphate, an ATP analog, resolution 3.1 Å), ADP-Pi (ADP with inorganic phosphate, resolution 3.1 Å), or ADP (resolution 3.6 Å). Subunits in the three filaments have similar backbone conformations, so assembly rather than ATP hydrolysis or phosphate dissociation is responsible for their flattened conformation in filaments. Polymerization increases the rate of ATP hydrolysis by changing the positions of the side chains of Q137 and H161 in the active site. Flattening during assembly also promotes interactions along both the long-pitch and short-pitch helices. In particular, conformational changes in subdomain 3 open up multiple favorable interactions with the DNase-I binding loop in subdomain 2 of the adjacent subunit. Subunits at the barbed end of the filament are likely to be in this favorable conformation, while monomers are not. This difference explains why filaments grow faster at the barbed end than the pointed end. When phosphate dissociates from ADP-Pi-actin through a backdoor channel, the conformation of the C terminus changes so it distorts the DNase binding loop, which allows cofilin binding, and a network of interactions among S14, H73, G74, N111, R177, and G158 rearranges to open the phosphate release site.
Collapse
Affiliation(s)
- Steven Z Chou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103
- Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
9
|
Fan J, Chan C, McNamara EL, Nowak KJ, Iwamoto H, Ochala J. Molecular Consequences of the Myopathy-Related D286G Mutation on Actin Function. Front Physiol 2018; 9:1756. [PMID: 30564146 PMCID: PMC6288369 DOI: 10.3389/fphys.2018.01756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Myopathies are notably associated with mutations in genes encoding proteins known to be essential for the force production of skeletal muscle fibers, such as skeletal alpha-actin. The exact molecular mechanisms by which these specific defects induce myopathic phenotypes remain unclear. Hence, in the present study, to better understand actin dysfunction, we conducted a molecular dynamic simulation together with ex vivo experiments of the specific muscle disease-causing actin mutation, D286G located in the actin-actin interface. Our computational study showed that D286G impairs the flexural rigidity of actin filaments. However, upon activation, D286G did not have any direct consequences on actin filament extension. Hence, D286G may alter the structure of actin filaments but, when expressed together with normal actin molecules, it may only have minor effects on the ex vivo mechanics of actin filaments upon skeletal muscle fiber contraction.
Collapse
Affiliation(s)
- Jun Fan
- Department of Physics and Materials Science, The University of Hong Kong, Hong Kong, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Chun Chan
- Department of Physics and Materials Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Elyshia L McNamara
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia.,Department of Health, Office of Population Health Genomics, Public and Aboriginal Health Division, Government of Western Australia, East Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Aydin F, Katkar HH, Voth GA. Multiscale simulation of actin filaments and actin-associated proteins. Biophys Rev 2018; 10:1521-1535. [PMID: 30382557 PMCID: PMC6297090 DOI: 10.1007/s12551-018-0474-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/21/2018] [Indexed: 02/04/2023] Open
Abstract
Actin is an important cytoskeletal protein that serves as a building block to form filament networks that span across the cell. These networks are orchestrated by a myriad of other cytoskeletal entities including the unbranched filament-forming protein formin and branched network-forming protein complex Arp2/3. Computational models have been able to provide insights into many important structural transitions that are involved in forming these networks, and into the nature of interactions essential for actin filament formation and for regulating the behavior of actin-associated proteins. In this review, we summarize a subset of such models that focus on the atomistic features and those that can integrate atomistic features into a larger picture in a multiscale fashion.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Harshwardhan H Katkar
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Gregory A Voth
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Katkar HH, Davtyan A, Durumeric AEP, Hocky GM, Schramm AC, De La Cruz EM, Voth GA. Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments. Biophys J 2018; 115:1589-1602. [PMID: 30249402 PMCID: PMC6260209 DOI: 10.1016/j.bpj.2018.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Actin filaments continually assemble and disassemble within a cell. Assembled filaments "age" as a bound nucleotide ATP within each actin subunit quickly hydrolyzes followed by a slower release of the phosphate Pi, leaving behind a bound ADP. This subtle change in nucleotide state of actin subunits affects filament rigidity as well as its interactions with binding partners. We present here a systematic multiscale ultra-coarse-graining approach that provides a computationally efficient way to simulate a long actin filament undergoing ATP hydrolysis and phosphate-release reactions while systematically taking into account available atomistic details. The slower conformational changes and their dependence on the chemical reactions are simulated with the ultra-coarse-graining model by assigning internal states to the coarse-grained sites. Each state is represented by a unique potential surface of a local heterogeneous elastic network. Internal states undergo stochastic transitions that are coupled to conformations of the underlying molecular system. The model reproduces mechanical properties of the filament and allows us to study whether conformational fluctuations in actin subunits produce cooperative filament aging. We find that the nucleotide states of neighboring subunits modulate the reaction kinetics, implying cooperativity in ATP hydrolysis and Pi release. We further systematically coarse grain the system into a Markov state model that incorporates assembly and disassembly, facilitating a direct comparison with previously published models. We find that cooperativity in ATP hydrolysis and Pi release significantly affects the filament growth dynamics only near the critical G-actin concentration, whereas far from it, both cooperative and random mechanisms show similar growth dynamics. In contrast, filament composition in terms of the bound nucleotide distribution varies significantly at all monomer concentrations studied. These results provide new insights, to our knowledge, into the cooperative nature of ATP hydrolysis and Pi release and the implications it has for actin filament properties, providing novel predictions for future experimental studies.
Collapse
Affiliation(s)
- Harshwardhan H Katkar
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Aram Davtyan
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Aleksander E P Durumeric
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Glen M Hocky
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Anthony C Schramm
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois.
| |
Collapse
|
12
|
Structural evidence for the roles of divalent cations in actin polymerization and activation of ATP hydrolysis. Proc Natl Acad Sci U S A 2018; 115:10345-10350. [PMID: 30254171 PMCID: PMC6187199 DOI: 10.1073/pnas.1806394115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin polymerization is a divalent cation-dependent process. Here we identify a cation binding site on the surface of actin in a 2.0-Å resolution X-ray structure of actin and find evidence of three additional sites in published high-resolution structures. These cations are stable in molecular dynamics (MD) simulations of the filament, suggesting a functional role in polymerization or filament rigidity. Polymerization activates the ATPase activity of the incorporating actin protomers. Careful analysis of water molecules that approach the ATP in the MD simulations revealed Gln137-activated water to be in a suitable position in F-actin, to initiate attack for ATP hydrolysis, and its occupancy was dependent on bound cations. The structure of the actin filament is known at a resolution that has allowed the architecture of protein components to be unambiguously assigned. However, fully understanding the chemistry of the system requires higher resolution to identify the ions and water molecules involved in polymerization and ATP hydrolysis. Here, we find experimental evidence for the association of cations with the surfaces of G-actin in a 2.0-Å resolution X-ray structure of actin bound to a Cordon-Bleu WH2 motif and in previously determined high-resolution X-ray structures. Three of four reoccurring divalent cation sites were stable during molecular dynamics (MD) simulations of the filament, suggesting that these sites may play a functional role in stabilizing the filament. We modeled the water coordination at the ATP-bound Mg2+, which also proved to be stable during the MD simulations. Using this model of the filament with a hydrated ATP-bound Mg2+, we compared the cumulative probability of an activated hydrolytic water molecule approaching the γ-phosphorous of ATP, in comparison with G-actin, in the MD simulations. The cumulative probability increased in F-actin in line with the activation of actin’s ATPase activity on polymerization. However, inclusion of the cations in the filament lowered cumulative probability, suggesting the rate of hydrolysis may be linked to filament flexibility. Together, these data extend the possible roles of Mg2+ in polymerization and the mechanism of polymerization-induced activation of actin’s ATPase activity.
Collapse
|
13
|
Mehrafrooz B, Shamloo A. Mechanical differences between ATP and ADP actin states: A molecular dynamics study. J Theor Biol 2018; 448:94-103. [PMID: 29634959 DOI: 10.1016/j.jtbi.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 11/15/2022]
Abstract
This paper aims to give a comprehensive atomistic modeling of the nanomechanical behavior of actin monomer. Actin is a ubiquitous and essential component of cytoskeleton which forms many different cellular structures. Despite for several years great effort has been devoted to the investigation of mechanical properties of the actin filament, studies on the nanomechanical behavior of actin monomer are still lacking. These scales are, however, important for a complete understanding of the role of actin as an important component in the cytoskeleton structure. Based on the accuracy of atomistic modeling methods such as molecular dynamics simulations, steered molecular dynamics method is performed to assess tension of monomeric G-actin molecule under different types of mechanical loading including axial and lateral. As a result, stress-strain curves are obtained in aqueous solution, with either ATP or ADP bound in the nucleotide binding pocket. The obtained results yield evaluation of the tensile stiffness of a single actin monomer in lateral and normal direction. In order to compare the behavior of ATP and ADP G-actins, the number of hydrogen bonds and nonbonded interactions between the nucleotide and the protein are analyzed. Moreover, The effect of virtual spring of steered molecular dynamics on the mechanical behavior of actin monomer is investigated. The results reveal increasing the virtual spring constant leads to convergence of the stiffness. Moreover, in this paper, a generalized model is proposed to extend the obtained results for the monomeric G-actin scale to the actin filament. Our modeling estimated a persistence length of actin filament 15.41 µm, close to experimental measurements. Moreover, In this paper, the breaking force actin-actin bond is evaluated using steered molecular dynamics simulation. By applying a tensile force, actin-actin bond ruptured at 4197.5 pN.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
14
|
Sun R, Sode O, Dama JF, Voth GA. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics. J Chem Theory Comput 2017; 13:2332-2341. [PMID: 28345907 PMCID: PMC5425946 DOI: 10.1021/acs.jctc.7b00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protein mediated hydrolysis of nucleoside triphosphates such as ATP or GTP is one of the most important and challenging biochemical reactions in nature. The chemical environment (water structure, catalytic metal, and amino acid residues) adjacent to the hydrolysis site contains hundreds of atoms, usually greatly limiting the amount of the free energy sampling that one can achieve from computationally demanding electronic structure calculations such as QM/MM simulations. Therefore, the combination of QM/MM molecular dynamics with the recently developed transition-tempered metadynamics (TTMetaD), an enhanced sampling method that can provide a high-quality free energy estimate at an early stage in a simulation, is an ideal approach to address the biomolecular nucleoside triphosphate hydrolysis problem. In this work the ATP hydrolysis process in monomeric and filamentous actin is studied as an example application of the combined methodology. The performance of TTMetaD in these demanding QM/MM simulations is compared with that of the more conventional well-tempered metadynamics (WTMetaD). Our results show that TTMetaD exhibits much better exploration of the hydrolysis reaction free energy surface in two key collective variables (CVs) during the early stages of the QM/MM simulation than does WTMetaD. The TTMetaD simulations also reveal that a key third degree of freedom, the O-H bond-breaking and proton transfer from the lytic water, must be biased for TTMetaD to converge fully. To perturb the NTP hydrolysis dynamics to the least extent and to properly focus the MetaD free energy sampling, we also adopt here the recently developed metabasin metadynamics (MBMetaD) to construct a self-limiting bias potential that only applies to the lytic water after its nucleophilic attack of the phosphate of ATP. With these new, state-of-the-art enhanced sampling metadynamics techniques, we present an effective and accurate computational strategy for combining QM/MM molecular dynamics simulation with free energy sampling methodology, including a means to analyze the convergence of the calculations through robust numerical criteria.
Collapse
Affiliation(s)
- Rui Sun
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Olaseni Sode
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - James F Dama
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Zaccone A, Terentjev I, Herling TW, Knowles TPJ, Aleksandrova A, Terentjev EM. Kinetics of fragmentation and dissociation of two-strand protein filaments: Coarse-grained simulations and experiments. J Chem Phys 2016; 145:105101. [DOI: 10.1063/1.4962366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
McCullagh P, Lake PT, McCullagh M. Deriving Coarse-Grained Charges from All-Atom Systems: An Analytic Solution. J Chem Theory Comput 2016; 12:4390-9. [DOI: 10.1021/acs.jctc.6b00507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter McCullagh
- Department
of Statistics, University of Chicago, Chicago, Illinois 60637, United States
| | - Peter T. Lake
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin McCullagh
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
17
|
Chan C, Fan J, Messer AE, Marston SB, Iwamoto H, Ochala J. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1453-8. [PMID: 27112274 PMCID: PMC4894126 DOI: 10.1016/j.bbadis.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
Abstract
In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomers are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. These phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients. H40Y stiffens the entire actin filament. H40Y partially limits actin filament extensibility upon activation. H40Y disrupts myosin and tropomyosin function.
Collapse
Affiliation(s)
- Chun Chan
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - Jun Fan
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hiroyuki Iwamoto
- Japan Synchrotron Radiation Research Institute, SPring8, Hyogo, Japan
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK.
| |
Collapse
|
18
|
Mechanisms of leiomodin 2-mediated regulation of actin filament in muscle cells. Proc Natl Acad Sci U S A 2015; 112:12687-92. [PMID: 26417072 DOI: 10.1073/pnas.1512464112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leiomodin (Lmod) is a class of potent tandem-G-actin-binding nucleators in muscle cells. Lmod mutations, deletion, or instability are linked to lethal nemaline myopathy. However, the lack of high-resolution structures of Lmod nucleators in action severely hampered our understanding of their essential cellular functions. Here we report the crystal structure of the actin-Lmod2162-495 nucleus. The structure contains two actin subunits connected by one Lmod2162-495 molecule in a non-filament-like conformation. Complementary functional studies suggest that the binding of Lmod2 stimulates ATP hydrolysis and accelerates actin nucleation and polymerization. The high level of conservation among Lmod proteins in sequence and functions suggests that the mechanistic insights of human Lmod2 uncovered here may aid in a molecular understanding of other Lmod proteins. Furthermore, our structural and mechanistic studies unraveled a previously unrecognized level of regulation in mammalian signal transduction mediated by certain tandem-G-actin-binding nucleators.
Collapse
|
19
|
Baker JL, Courtemanche N, Parton DL, McCullagh M, Pollard TD, Voth GA. Electrostatic interactions between the Bni1p Formin FH2 domain and actin influence actin filament nucleation. Structure 2014; 23:68-79. [PMID: 25482541 DOI: 10.1016/j.str.2014.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/03/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Formins catalyze nucleation and growth of actin filaments. Here, we study the structure and interactions of actin with the FH2 domain of budding yeast formin Bni1p. We built an all-atom model of the formin dimer on an Oda actin filament 7-mer and studied structural relaxation and interprotein interactions by molecular dynamics simulations. These simulations produced a refined model for the FH2 dimer associated with the barbed end of the filament and showed electrostatic interactions between the formin knob and actin target-binding cleft. Mutations of two formin residues contributing to these interactions (R1423N, K1467L, or both) reduced the interaction energies between the proteins, and in coarse-grained simulations, the formin lost more interprotein contacts with an actin dimer than with an actin 7-mer. Biochemical experiments confirmed a strong influence of these mutations on Bni1p-mediated actin filament nucleation, but not elongation, suggesting that different interactions contribute to these two functions of formins.
Collapse
Affiliation(s)
- Joseph L Baker
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA; Computation Institute, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
| | - Naomi Courtemanche
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Daniel L Parton
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Martin McCullagh
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA; Computation Institute, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA; Department of Cell Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA; Computation Institute, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Nucleotide regulation of the structure and dynamics of G-actin. Biophys J 2014; 106:1710-20. [PMID: 24739170 DOI: 10.1016/j.bpj.2014.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/24/2022] Open
Abstract
Actin, a highly conserved cytoskeletal protein found in all eukaryotic cells, facilitates cell motility and membrane remodeling via a directional polymerization cycle referred to as treadmilling. The nucleotide bound at the core of each actin subunit regulates this process. Although the biochemical kinetics of treadmilling has been well characterized, the atomistic details of how the nucleotide affects polymerization remain to be definitively determined. There is increasing evidence that the nucleotide regulation (and other characteristics) of actin cannot be fully described from the minimum energy structure, but rather depends on a dynamic equilibrium between conformations. In this work we explore the conformational mobility of the actin monomer (G-actin) in a coarse-grained subspace using umbrella sampling to bias all-atom molecular-dynamics simulations along the variables of interest. The results reveal that ADP-bound actin subunits are more conformationally mobile than ATP-bound subunits. We used a multiscale analysis method involving coarse-grained and atomistic representations of these simulations to characterize how the nucleotide affects the low-energy states of these systems. The interface between subdomains SD2-SD4, which is important for polymerization, is stabilized in an actin filament-like (F-actin) conformation in ATP-bound G-actin. Additionally, the nucleotide modulates the conformation of the SD1-SD3 interface, a region involved in the binding of several actin-binding proteins.
Collapse
|
21
|
McCullagh M, Saunders MG, Voth GA. Unraveling the mystery of ATP hydrolysis in actin filaments. J Am Chem Soc 2014; 136:13053-8. [PMID: 25181471 PMCID: PMC4183606 DOI: 10.1021/ja507169f] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Actin
performs its myriad cellular functions by the growth and
disassembly of its filamentous form. The hydrolysis of ATP in the
actin filament has been shown to modulate properties of the filament,
thus making it a pivotal regulator of the actin life cycle. Actin
has evolved to selectively hydrolyze ATP in the filamentous form,
F-actin, with an experimentally observed rate increase over the monomeric
form, G-actin, of 4.3 × 104. The cause of this dramatic
increase in rate is investigated in this paper using extensive QM/MM
simulations of both G- and F-actin. To compute the free energy of
hydrolysis in both systems, metadynamics is employed along two collective
variables chosen to describe the reaction coordinates of hydrolysis.
F-actin is modeled as a monomer with restraints applied to coarse-grained
variables enforced to keep it in a filament-like conformation. The
simulations reveal a barrier height reduction for ATP hydrolysis in
F-actin as compared to G-actin of 8 ± 1 kcal/mol, in good agreement
with the experimentally measured barrier height reduction of 7 ±
1 kcal/mol. The barrier height reduction is influenced by an enhanced
rotational diffusion of water in F-actin as compared to G-actin and
shorter water wires between Asp154 and the nucleophilic water in F-actin,
leading to more rapid proton transport.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | | | | |
Collapse
|
22
|
Tempkin JOB, Qi B, Saunders MG, Roux B, Dinner AR, Weare J. Using multiscale preconditioning to accelerate the convergence of iterative molecular calculations. J Chem Phys 2014; 140:184114. [PMID: 24832260 PMCID: PMC11450774 DOI: 10.1063/1.4872021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/09/2014] [Indexed: 11/14/2022] Open
Abstract
Iterative procedures for optimizing properties of molecular models often converge slowly owing to the computational cost of accurately representing features of interest. Here, we introduce a preconditioning scheme that allows one to use a less expensive model to guide exploration of the energy landscape of a more expensive model and thus speed the discovery of locally stable states of the latter. We illustrate our approach in the contexts of energy minimization and the string method for finding transition pathways. The relation of the method to other multilevel simulation techniques and possible extensions are discussed.
Collapse
Affiliation(s)
- Jeremy O B Tempkin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Bo Qi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Marissa G Saunders
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Benoit Roux
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Aaron R Dinner
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan Weare
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
23
|
Effects of ATP and actin-filament binding on the dynamics of the myosin II S1 domain. Biophys J 2014; 105:1624-34. [PMID: 24094403 DOI: 10.1016/j.bpj.2013.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022] Open
Abstract
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.
Collapse
|
24
|
Colavin A, Hsin J, Huang KC. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB. Proc Natl Acad Sci U S A 2014; 111:3585-90. [PMID: 24550504 PMCID: PMC3948266 DOI: 10.1073/pnas.1317061111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.
Collapse
Affiliation(s)
- Alexandre Colavin
- Department of Bioengineering and
- Biophysics Program, Stanford University, Stanford, CA 94305; and
| | - Jen Hsin
- Department of Bioengineering and
| | - Kerwyn Casey Huang
- Department of Bioengineering and
- Biophysics Program, Stanford University, Stanford, CA 94305; and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
25
|
Wakai N, Takemura K, Morita T, Kitao A. Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations. PLoS One 2014; 9:e85852. [PMID: 24465747 PMCID: PMC3896411 DOI: 10.1371/journal.pone.0085852] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/03/2013] [Indexed: 12/01/2022] Open
Abstract
The pressure tolerance of monomeric α-actin proteins from the deep-sea fish Coryphaenoides armatus and C. yaquinae was compared to that of non-deep-sea fish C. acrolepis, carp, and rabbit/human/chicken actins using molecular dynamics simulations at 0.1 and 60 MPa. The amino acid sequences of actins are highly conserved across a variety of species. The actins from C. armatus and C. yaquinae have the specific substitutions Q137K/V54A and Q137K/L67P, respectively, relative to C. acrolepis, and are pressure tolerant to depths of at least 6000 m. At high pressure, we observed significant changes in the salt bridge patterns in deep-sea fish actins, and these changes are expected to stabilize ATP binding and subdomain arrangement. Salt bridges between ATP and K137, formed in deep-sea fish actins, are expected to stabilize ATP binding even at high pressure. At high pressure, deep-sea fish actins also formed a greater total number of salt bridges than non-deep-sea fish actins owing to the formation of inter-helix/strand and inter-subdomain salt bridges. Free energy analysis suggests that deep-sea fish actins are stabilized to a greater degree by the conformational energy decrease associated with pressure effect.
Collapse
Affiliation(s)
- Nobuhiko Wakai
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Takemura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takami Morita
- Research Center for Fisheries Oceanography and Marine Ecosystem, National Research Institute of Fisheries Sciences, Fisheries Research Agency, Kanagawa, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Grafmüller A, Noya EG, Voth GA. Nucleotide-dependent lateral and longitudinal interactions in microtubules. J Mol Biol 2013; 425:2232-46. [PMID: 23541590 DOI: 10.1016/j.jmb.2013.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 01/31/2023]
Abstract
Microtubule (MT) stability is related to the hydrolysis of the guanosine triphosphate nucleotide (NT) bound to β-tubulin. However, the molecular mechanism by which the NT state influences the stability of the contacts in the MT lattice remains elusive. Here, we present large-scale atomistic simulations of different tubulin aggregates, including individual dimers, short protofilaments, a small lattice patch, and a piece of the MT lattice with two infinite protofilaments in both NT states. Together with a coarse-grained (CG) analysis of the fluctuations, these simulations highlight several regions of the protein where local changes are induced by the NT state or by the lateral and longitudinal contacts in the aggregates. Additionally, the CG analysis provides an indication of how the structural changes affect the bonds between the proteins. The results suggest a consistent picture of a possible molecular mechanism by which the NT state induces changes in the H1-S2 loop and more stable longitudinal bonds, both of which locate the H1-S2 and M-loop in more favorable positions to form lateral contacts.
Collapse
Affiliation(s)
- Andrea Grafmüller
- Theory and Biosystems, Max Planck Institute for Colloids and Interfaces, 14424 Potsdam, Germany.
| | | | | |
Collapse
|
27
|
Guttenberg N, Dama JF, Saunders MG, Voth GA, Weare J, Dinner AR. Minimizing memory as an objective for coarse-graining. J Chem Phys 2013; 138:094111. [DOI: 10.1063/1.4793313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Fan J, Saunders MG, Voth GA. Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments. Biophys J 2013; 103:1334-42. [PMID: 22995506 DOI: 10.1016/j.bpj.2012.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/21/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022] Open
Abstract
Experiments have shown that actin is structurally polymorphic, but knowledge of the details of molecular level heterogeneity in both the dynamics of a single subunit and the interactions between subunits is still lacking. Here, using atomistic molecular dynamics simulations of the actin filament, we identify domains of atoms that move in a correlated fashion, quantify interactions between these domains using coarse-grained (CG) analysis methods, and perform CG simulations to explore the importance of filament heterogeneity. The persistence length and torsional stiffness calculated from molecular dynamics simulation data agree with experimental values. We additionally observe that distinct actin conformations coexist in actin filaments. The filaments also exhibit random twist angles that are broadly distributed. CG analysis reveals that interactions between equivalent CG pairs vary from one subunit to another. To explore the importance of heterogeneity on filament dynamics, we perform CG simulations using different methods of parameterization to show that only by including heterogeneous interactions can we reproduce the twist angles and related properties. Free energy calculations further suggest that in general the actin filament is best represented as a set of subunits with differing CG sites and interactions, and the incorporating heterogeneity into the CG interactions is more important than including that in the CG sites. Our work therefore presents a systematic method to explore molecular level detail in this large and complex biopolymer.
Collapse
Affiliation(s)
- Jun Fan
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
29
|
Fan J, Saunders MG, Haddadian EJ, Freed KF, De La Cruz EM, Voth GA. Molecular origins of cofilin-linked changes in actin filament mechanics. J Mol Biol 2013; 425:1225-40. [PMID: 23352932 DOI: 10.1016/j.jmb.2013.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
The actin regulatory protein cofilin plays a central role in actin assembly dynamics by severing filaments and increasing the concentration of ends from which subunits add and dissociate. Cofilin binding modifies the average structure and mechanical properties of actin filaments, thereby promoting fragmentation of partially decorated filaments at boundaries of bare and cofilin-decorated segments. Despite extensive evidence for cofilin-dependent changes in filament structure and mechanics, it is unclear how the two processes are linked at the molecular level. Here, we use molecular dynamics simulations and coarse-grained analyses to evaluate the molecular origins of the changes in filament compliance due to cofilin binding. Filament subunits with bound cofilin are less flat and maintain a significantly more open nucleotide cleft than bare filament subunits. Decorated filament segments are less twisted, thinner (considering only actin), and less connected than their bare counterparts, which lowers the filament bending persistence length and torsional stiffness. Using coarse-graining as an analysis method reveals that cofilin binding increases the average distance between the adjacent long-axis filament subunit, thereby weakening their interaction. In contrast, a fraction of lateral filament subunit contacts are closer and presumably stronger with cofilin binding. A cofilactin interface contact identified by cryo-electron microscopy is unstable during simulations carried out at 310K, suggesting that this particular interaction may be short lived at ambient temperatures. These results reveal the molecular origins of cofilin-dependent changes in actin filament mechanics that may promote filament severing.
Collapse
Affiliation(s)
- Jun Fan
- Department of Chemistry, James Franck Institute, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
30
|
Freedman H, Laino T, Curioni A. Reaction Dynamics of ATP Hydrolysis in Actin Determined by ab Initio Molecular Dynamics Simulations. J Chem Theory Comput 2012; 8:3373-83. [PMID: 26605743 DOI: 10.1021/ct3003282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Energy released by the hydrolysis of the high-energy phosphate bond of nucleoside triphosphate (NTP) cofactors is the driving force behind most biological processes. To understand how this energy is used to induce differences in protein structure and function, we examine the transfer of vibrational energy into the nucleotide-bound actin active site immediately after reaction activation. To this end, we perform Born-Oppenheimer molecular dynamics simulations of the active site at the level of density functional theory (DFT) starting at the calculated transition state (TS) structure. Similarly to the mechanism determined in many nucleotide-bound protein systems, the Os-Pγ bond is first elongated. Then, nucleophilic attack of the lytic water on Pγ occurs. Subsequently, protons are transferred in a cycle formed by water molecules, a protein residue, Asp154, and the γ-phosphate group, resulting in the formation of H2PO4(-). To investigate the possible creation of excited vibrational states in the products, power spectra of bond-length autocorrelation functions for relevant bonds within the active site are compared for simulations that start at the TS, at reactants, and at reaction end products. The hydroxyl bond formed in the final proton transfer to the phosphate molecule is observed to exhibit relatively high kinetic energies and large oscillations during reaction. It is also likely that some of the energy released by the reaction is captured by the low-energy stretching vibrations of the phosphoryl bonds of orthophosphate, which oscillate with large amplitudes in nonequilibrium simulations of end products.
Collapse
Affiliation(s)
- Holly Freedman
- CCMAR, FCT, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | |
Collapse
|
31
|
Rennebaum S, Caflisch A. Inhibition of interdomain motion in g-actin by the natural product latrunculin: a molecular dynamics study. Proteins 2012; 80:1998-2008. [PMID: 22488806 DOI: 10.1002/prot.24088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/22/2012] [Accepted: 03/30/2012] [Indexed: 11/09/2022]
Abstract
As part of the cytoskeleton, actin is essential for the morphology, motility, and division of eukaryotic cells. Recent X-ray fiber diffraction studies have shown that the conformation of monomeric actin is flattened upon incorporation into the filament by a relative rotation of its two major domains. The antiproliferative activity of latrunculin, a macrolide toxin produced by sponges, seems to be related to its binding to monomeric actin and inhibition of polymerization. Yet, the mechanism of inhibition is not known in detail. Here, multiple explicit water molecular dynamics simulations show that latrunculin binding hinders the conformational transition related to actin polymerization. In particular, the presence of latrunculin at the interface of the two major domains of monomeric actin reduces the correlated displacement of Domain 2 with respect to Domain 1. Moreover, higher rotational flexibility between the two major domains is observed in the absence of ATP as compared to ATP-bound actin, offering a possible explanation as to why actin polymerizes more favorably in the absence of nucleotides.
Collapse
Affiliation(s)
- Sandra Rennebaum
- Department of Biochemistry, University of Zürich, Zürich 8057, Switzerland
| | | |
Collapse
|
32
|
Saunders MG, Voth GA. Comparison between actin filament models: coarse-graining reveals essential differences. Structure 2012; 20:641-53. [PMID: 22483111 DOI: 10.1016/j.str.2012.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
The interconversion of actin between monomeric and polymeric forms is a fundamental process in cell biology that is incompletely understood, in part because there is no high-resolution structure for filamentous actin. Several models have been proposed recently; identifying structural and dynamic differences between them is an essential step toward understanding actin dynamics. We compare three of these models, using coarse-grained analysis of molecular dynamics simulations to analyze the differences between them and evaluate their relative stability. Based on this analysis, we identify key motions that may be associated with polymerization, including a potential energetic barrier in the process. We also find that actin subunits are polymorphic; during simulations they assume a range of configurations remarkably similar to those seen in recent cryoEM images.
Collapse
Affiliation(s)
- Marissa G Saunders
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
33
|
Sinitskiy AV, Saunders MG, Voth GA. Optimal number of coarse-grained sites in different components of large biomolecular complexes. J Phys Chem B 2012; 116:8363-74. [PMID: 22276676 DOI: 10.1021/jp2108895] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The computational study of large biomolecular complexes (molecular machines, cytoskeletal filaments, etc.) is a formidable challenge facing computational biophysics and biology. To achieve biologically relevant length and time scales, coarse-grained (CG) models of such complexes usually must be built and employed. One of the important early stages in this approach is to determine an optimal number of CG sites in different constituents of a complex. This work presents a systematic approach to this problem. First, a universal scaling law is derived and numerically corroborated for the intensity of the intrasite (intradomain) thermal fluctuations as a function of the number of CG sites. Second, this result is used for derivation of the criterion for the optimal number of CG sites in different parts of a large multibiomolecule complex. In the zeroth-order approximation, this approach validates the empirical rule of taking one CG site per fixed number of atoms or residues in each biomolecule, previously widely used for smaller systems (e.g., individual biomolecules). The first-order corrections to this rule are derived and numerically checked by the case studies of the Escherichia coli ribosome and Arp2/3 actin filament junction. In different ribosomal proteins, the optimal number of amino acids per CG site is shown to differ by a factor of 3.5, and an even wider spread may exist in other large biomolecular complexes. Therefore, the method proposed in this paper is valuable for the optimal construction of CG models of such complexes.
Collapse
Affiliation(s)
- Anton V Sinitskiy
- Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | | | | |
Collapse
|