1
|
Barré-Villeneuve C, Azevedo-Favory J. R-Methylation in Plants: A Key Regulator of Plant Development and Response to the Environment. Int J Mol Sci 2024; 25:9937. [PMID: 39337424 PMCID: PMC11432338 DOI: 10.3390/ijms25189937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Although arginine methylation (R-methylation) is one of the most important post-translational modifications (PTMs) conserved in eukaryotes, it has not been studied to the same extent as phosphorylation and ubiquitylation. Technical constraints, which are in the process of being resolved, may partly explain this lack of success. Our knowledge of R-methylation has recently evolved considerably, particularly in metazoans, where misregulation of the enzymes that deposit this PTM is implicated in several diseases and cancers. Indeed, the roles of R-methylation have been highlighted through the analyses of the main actors of this pathway: the PRMT writer enzymes, the TUDOR reader proteins, and potential "eraser" enzymes. In contrast, R-methylation has been much less studied in plants. Even so, it has been shown that R-methylation in plants, as in animals, regulates housekeeping processes such as transcription, RNA silencing, splicing, ribosome biogenesis, and DNA damage. R-methylation has recently been highlighted in the regulation of membrane-free organelles in animals, but this role has not yet been demonstrated in plants. The identified R-met targets modulate key biological processes such as flowering, shoot and root development, and responses to abiotic and biotic stresses. Finally, arginine demethylases activity has mostly been identified in vitro, so further studies are needed to unravel the mechanism of arginine demethylation.
Collapse
Affiliation(s)
- Clément Barré-Villeneuve
- Crop Biotechnics, Department of Biosystems, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, 3000 Leuven, Belgium
| | - Jacinthe Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, UMR 5096, 66860 Perpignan, France
| |
Collapse
|
2
|
Rossi V, Nielson SE, Ortolano A, Lonardo I, Haroldsen E, Comer D, Price OM, Wallace N, Hevel JM. Oligomerization of protein arginine methyltransferase 1 and its effect on methyltransferase activity and substrate specificity. Protein Sci 2024; 33:e5118. [PMID: 39022984 PMCID: PMC11255602 DOI: 10.1002/pro.5118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity. We therefore sought to determine which oligomeric species of PRMT1 are physiologically relevant, and quantitatively correlate activity with specific oligomer forms. Through quantitative western blotting, we determined that concentrations of PRMT1 available in a variety of human cell lines are in the sub-micromolar to low micromolar range. Isothermal spectral shift binding data were modeled to a monomer/dimer/tetramer equilibrium with an EC50 for tetramer dissociation of ~20 nM. A combination of sedimentation velocity and Native polyacrylamide gel electrophoresis experiments directly confirmed that the major oligomeric species of PRMT1 at physiological concentrations would be dimers and tetramers. Surprisingly, the methyltransferase activity of a dimeric PRMT1 variant is similar to wild type, tetrameric PRMT1 with some purified substrates, but dimer and tetramer forms of PRMT1 show differences in catalytic efficiencies and substrate specificity for other substrates. Our results define an oligomerization paradigm for PRMT1, show that the biophysical characteristics of PRMT1 are poised to support a monomer/dimer/tetramer equilibrium in vivo, and suggest that the oligomeric state of PRMT1 could be used to regulate substrate specificity.
Collapse
Affiliation(s)
- Vincent Rossi
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Sarah E. Nielson
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Ariana Ortolano
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Isabella Lonardo
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Emeline Haroldsen
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Drake Comer
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Owen M Price
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | | | - Joan M. Hevel
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| |
Collapse
|
3
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
4
|
Ning J, Chen L, Xiao G, Zeng Y, Shi W, Tanzhu G, Zhou R. The protein arginine methyltransferase family (PRMTs) regulates metastases in various tumors: From experimental study to clinical application. Biomed Pharmacother 2023; 167:115456. [PMID: 37696085 DOI: 10.1016/j.biopha.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Tumor metastasis is the leading cause of mortality among advanced cancer patients. Understanding its mechanisms and treatment strategies is vital for clinical application. Arginine methylation, a post-translational modification catalyzed by protein arginine methyltransferases (PRMTs), is implicated in diverse physiological processes and disease progressions. Previous research has demonstrated PRMTs' involvement in tumor occurrence, progression, and metastasis. This review offers a comprehensive summary of the relationship between PRMTs, prognosis, and metastasis in various cancers. Our focus centers on elucidating the molecular mechanisms through which PRMTs regulate tumor metastasis. We also discuss relevant clinical trials and effective PRMT inhibitors, including chemical compounds, long non-coding RNA (lncRNA), micro-RNA (miRNA), and nanomaterials, for treating tumor metastasis. While a few studies present conflicting results, the overall trajectory suggests that inhibiting arginine methylation exhibits promise in curtailing tumor metastasis across various cancers. Nonetheless, the underlying mechanisms and molecular interactions are diverse. The development of inhibitors targeting arginine methylation, along with the progression of clinical trials, holds substantial potential in the field of tumor metastasis, meriting sustained attention.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha 410008, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| |
Collapse
|
5
|
Pyasi S, Jonniya NA, Sk MF, Nayak D, Kar P. Finding potential inhibitors against RNA-dependent RNA polymerase (RdRp) of bovine ephemeral fever virus (BEFV): an in- silico study. J Biomol Struct Dyn 2022; 40:10403-10421. [PMID: 34238122 DOI: 10.1080/07391102.2021.1946714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bovine ephemeral fever virus (BEFV) is an enzootic agent that affects millions of bovines and causes major economic losses. Though the virus is seasonally reported with a very high morbidity rate (80-100%) from African, Australian, and Asiatic continents, it remains a neglected pathogen in many of its endemic areas, with no proper therapeutic drugs or vaccines presently available for treatment. The RNA-dependent RNA polymerase (RdRp) catalyzes the viral RNA synthesis and is an appropriate candidate for antiviral drug developments. We utilized integrated computational tools to build the 3D model of BEFV-RdRp and then predicted its probable active binding sites. The virtual screening and optimization against these active sites, using several small-molecule inhibitors from a different category of Life Chemical database and FDA-approved drugs from the ZINC database, was performed. We found nine molecules that have docking scores varying between -6.84 to -10.43 kcal/mol. Furthermore, these complexes were analyzed for their conformational dynamics and thermodynamic stability using molecular dynamics simulations in conjunction with the molecular mechanics generalized Born surface area (MM-GBSA) scheme. The binding free energy calculations depict that the electrostatic interactions play a dominant role in the RdRp-inhibitor binding. The hot spot residues, such as Arg565, Asp631, Glu633, Asp740, and Glu707, were found to control the RdRp-inhibitor interaction. The ADMET analysis strongly suggests favorable pharmacokinetics of these compounds that may prove useful for treating the BEFV ailment. Overall, we anticipate that these findings would help explore and develop a wide range of anti-BEFV therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Pyasi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
6
|
Price OM, Thakur A, Ortolano A, Towne A, Velez C, Acevedo O, Hevel JM. Naturally occurring cancer-associated mutations disrupt oligomerization and activity of protein arginine methyltransferase 1 (PRMT1). J Biol Chem 2021; 297:101336. [PMID: 34688662 PMCID: PMC8592882 DOI: 10.1016/j.jbc.2021.101336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by the protein arginine methyltransferase (PRMT) enzyme family. Dysregulated protein arginine methylation is linked to cancer and a variety of other human diseases. PRMT1 is the predominant PRMT isoform in mammalian cells and acts in pathways regulating transcription, DNA repair, apoptosis, and cell proliferation. PRMT1 dimer formation, which is required for methyltransferase activity, is mediated by interactions between a structure called the dimerization arm on one monomer and a surface of the Rossman Fold of the other monomer. Given the link between PRMT1 dysregulation and disease and the link between PRMT1 dimerization and activity, we searched the Catalogue of Somatic Mutations in Cancer (COSMIC) database to identify potential inactivating mutations occurring in the PRMT1 dimerization arm. We identified three mutations that correspond to W215L, Y220N, and M224V substitutions in human PRMT1V2 (isoform 1) (W197L, Y202N, M206V in rat PRMT1V1). Using a combination of site-directed mutagenesis, analytical ultracentrifugation, native PAGE, and activity assays, we found that these conservative substitutions surprisingly disrupt oligomer formation and substantially impair both S-adenosyl-L-methionine (AdoMet) binding and methyltransferase activity. Molecular dynamics simulations suggest that these substitutions introduce novel interactions within the dimerization arm that lock it in a conformation not conducive to dimer formation. These findings provide a clear, if putative, rationale for the contribution of these mutations to impaired arginine methylation in cells and corresponding health consequences.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Ariana Ortolano
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Arianna Towne
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA.
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
7
|
Plett KL, Raposo AE, Anderson IC, Piller SC, Plett JM. Protein Arginine Methyltransferase Expression Affects Ectomycorrhizal Symbiosis and the Regulation of Hormone Signaling Pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1291-1302. [PMID: 31216220 DOI: 10.1094/mpmi-01-19-0007-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genomes of all eukaryotic organisms, from small unicellular yeasts to humans, include members of the protein arginine methyltransferase (PRMT) family. These enzymes affect gene transcription, cellular signaling, and function through the posttranslational methylation of arginine residues. Mis-regulation of PRMTs results in serious developmental defects, disease, or death, illustrating the importance of these enzymes to cellular processes. Plant genomes encode almost the full complement of PRMTs found in other higher organisms, plus an additional PRMT found uniquely in plants, PRMT10. Here, we investigate the role of these highly conserved PRMTs in a process that is unique to perennial plants-the development of symbiosis with ectomycorrhizal fungi. We show that PRMT expression and arginine methylation is altered in the roots of the model tree Eucalyptus grandis by the presence of its ectomycorrhizal fungal symbiont Pisolithus albus. Further, using transgenic modifications, we demonstrate that E. grandis-encoded PRMT1 and PRMT10 have important but opposing effects in promoting this symbiosis. In particular, the plant-specific EgPRMT10 has a potential role in the expression of plant hormone pathways during the colonization process and its overexpression reduces fungal colonization success.
Collapse
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Anita E Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Sabine C Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| |
Collapse
|
8
|
Tewary SK, Zheng YG, Ho MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci 2019; 76:2917-2932. [PMID: 31123777 PMCID: PMC6741777 DOI: 10.1007/s00018-019-03145-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-L-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.
Collapse
Affiliation(s)
| | - Y George Zheng
- College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
9
|
Li X, Wang C, Jiang H, Luo C. A patent review of arginine methyltransferase inhibitors (2010-2018). Expert Opin Ther Pat 2019; 29:97-114. [PMID: 30640571 DOI: 10.1080/13543776.2019.1567711] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Protein arginine methyltransferases (PRMTs) are fundamental enzymes that specifically modify the arginine residues of versatile substrates in cells. The aberrant expression and abnormal enzymatic activity of PRMTs are associated with many human diseases, especially cancer. PRMTs are emerging as promising drug targets in both academia and industry. AREAS COVERED This review summarizes the updated patented inhibitors targeting PRMTs from 2010 to 2018. The authors illustrate the chemical structures, molecular mechanism of action, pharmacological activities as well as the potential clinical application including combination therapy and biomarker-guided therapy. PRMT inhibitors in clinical trials are also highlighted. The authors provide a future perspective for further development of potent and selective PRMT inhibitors. EXPERT OPINION Although a number of small molecule inhibitors of PRMTs with sufficient potency have been developed, the selectivity of most PRMT inhibitors remains to be improved. Hence, novel approaches such as allosteric regulation need to be further studied to identify PRMT inhibitors. So far, three PRMT inhibitors have entered clinical trials, including PRMT5 inhibitor GSK3326595 and JNJ-64619178 as well as PRMT1 inhibitor GSK3368715. PRMT inhibitors with novel mechanism of action and good drug-like properties may shed new light on drug research and development progress.
Collapse
Affiliation(s)
- Xiao Li
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Chen Wang
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Hao Jiang
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Cheng Luo
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
10
|
Wang C, Zeng J, Xie W. A flexible cofactor-binding loop in the novel arginine methyltransferase Sfm1. FEBS Lett 2016; 591:433-441. [PMID: 27990635 DOI: 10.1002/1873-3468.12533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 11/08/2022]
Abstract
Arginine methylation is a common post-translational modification and is critical for many cellular processes. Sfm1 is a novel arginine methyltransferase that contains a SpoU-TrmD (SPOUT) domain, a typical fold known for RNA methylation, but acts on a ribosomal protein. The underlying mechanism is poorly understood. Here, we report cocrystal structures of Sfm1 in complex with various ligands. We found that a critical loop responsible for S-adenosyl-l-methionine (SAM) binding adopts a different conformation from previous reports, and SAM appears to exhibit double conformations. Deletion of this loop greatly reduces the affinity of Sfm1 to SAM. Additionally, by comparison to closely related tRNA-methyltransferase Trm10, our structural analyses offer a good explanation why the two enzymes utilize distinct substrates, providing insights into the molecular mechanism.
Collapse
Affiliation(s)
- Caiyan Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural biology, The Sun Yat-Sen University, Guangzhou, China
| | - Jianhua Zeng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural biology, The Sun Yat-Sen University, Guangzhou, China
| | - Wei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural biology, The Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Cura V, Marechal N, Troffer-Charlier N, Strub JM, van Haren MJ, Martin NI, Cianférani S, Bonnefond L, Cavarelli J. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS J 2016; 284:77-96. [PMID: 27879050 DOI: 10.1111/febs.13953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/27/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022]
Abstract
PRMT2 is the less-characterized member of the protein arginine methyltransferase family in terms of structure, activity, and cellular functions. PRMT2 is a modular protein containing a catalytic Ado-Met-binding domain and unique Src homology 3 domain that binds proteins with proline-rich motifs. PRMT2 is involved in a variety of cellular processes and has diverse roles in transcriptional regulation through different mechanisms depending on its binding partners. PRMT2 has been demonstrated to have weak methyltransferase activity on a histone H4 substrate, but its optimal substrates have not yet been identified. To obtain insights into the function and activity of PRMT2, we solve several crystal structures of PRMT2 from two homologs (zebrafish and mouse) in complex with either the methylation product S-adenosyl-L-homocysteine or other compounds including the first synthetic PRMT2 inhibitor (Cp1) studied so far. We reveal that the N-terminal-containing SH3 module is disordered in the full-length crystal structures, and highlights idiosyncratic features of the PRMT2 active site. We identify a new nonhistone protein substrate belonging to the serine-/arginine-rich protein family which interacts with PRMT2 and we characterize six methylation sites by mass spectrometry. To better understand structural basis for Cp1 binding, we also solve the structure of the complex PRMT4:Cp1. We compare the inhibitor-protein interactions occurring in the PRMT2 and PRMT4 complex crystal structures and show that this compound inhibits efficiently PRMT2. These results are a first step toward a better understanding of PRMT2 substrate recognition and may accelerate the development of structure-based drug design of PRMT2 inhibitors. DATABASE All coordinates and structure factors have been deposited in the Protein Data Bank: zPRMT21-408 -SFG = 5g02; zPRMT273-408 -SAH = 5fub; mPRMT21-445 -SAH = 5ful; mPRMT21-445 -Cp1 = 5fwa, mCARM1130-487 -Cp1 = 5k8v.
Collapse
Affiliation(s)
- Vincent Cura
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Nils Marechal
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Nathalie Troffer-Charlier
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Jean-Marc Strub
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, UMR7178, Université de Strasbourg, France
| | - Matthijs J van Haren
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, UMR7178, Université de Strasbourg, France
| | - Luc Bonnefond
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Jean Cavarelli
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| |
Collapse
|
12
|
Batra M, Sharma R, Malik A, Dhindwal S, Kumar P, Tomar S. Crystal structure of pentapeptide-independent chemotaxis receptor methyltransferase (CheR) reveals idiosyncratic structural determinants for receptor recognition. J Struct Biol 2016; 196:364-374. [PMID: 27544050 DOI: 10.1016/j.jsb.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Chemotactic methyltransferase, CheR catalyse methylation of specific glutamate residues in the cytoplasmic domain of methyl-accepting chemotactic protein receptors (MCPRs). The methylation of MCPRs is essential for the chemical sensing and chemotactic bacterial mobility towards favorable chemicals or away from unfavorable ones. In this study, crystal structure of B. subtilis CheR (BsCheR) in complex with S-adenosyl-l-homocysteine (SAH) has been determined to 1.8Å resolution. This is the first report of crystal structure belonging to the pentapeptide-independent CheR (PICheR) class. Till date, only one crystal structure of CheR from S. typhimurium (StCheR) belonging to pentapeptide-dependent CheR (PDCheR) class is available. Structural analysis of BsCheR reveals a helix-X-helix motif (HXH) with Asp53 as the linker residue in the N-terminal domain. The key structural features of the PDCheR β-subdomain involved in the formation of a tight complex with the pentapeptide binding motif in MCPRs were found to be absent in the structure of BsCheR. Additionally, isothermal titration calorimetry (ITC) experiments were performed to investigate S-adenosyl-(l)-methionine (SAM) binding affinity and KD was determined to be 0.32mM. The structure of BsCheR reveals that mostly residues of the large C-terminal domain contribute to SAH binding, with contributions of few residues from the linker region and the N-terminal domain. Structural investigations and sequence analysis carried out in this study provide critical insights into the distinct receptor recognition mechanism of the PDCheR and PICheR methyltransferase classes.
Collapse
Affiliation(s)
- Monu Batra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rajesh Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anjali Malik
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sonali Dhindwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
13
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
14
|
Bonnefond L, Stojko J, Mailliot J, Troffer-Charlier N, Cura V, Wurtz JM, Cianférani S, Cavarelli J. Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. J Struct Biol 2015; 191:175-83. [PMID: 26094878 DOI: 10.1016/j.jsb.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/19/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023]
Abstract
PRMT6 is a protein arginine methyltransferase involved in transcriptional regulation, human immunodeficiency virus pathogenesis, DNA base excision repair, and cell cycle progression. Like other PRMTs, PRMT6 is overexpressed in several cancer types and is therefore considered as a potential anti-cancer drug target. In the present study, we described six crystal structures of PRMT6 from Mus musculus, solved and refined at 1.34 Å for the highest resolution structure. The crystal structures revealed that the folding of the helix αX is required to stabilize a productive active site before methylation of the bound peptide can occur. In the absence of cofactor, metal cations can be found in the catalytic pocket at the expected position of the guanidinium moiety of the target arginine substrate. Using mass spectrometry under native conditions, we show that PRMT6 dimer binds two cofactor and a single H4 peptide molecules. Finally, we characterized a new site of in vitro automethylation of mouse PRMT6 at position 7.
Collapse
Affiliation(s)
- Luc Bonnefond
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Johann Stojko
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, Strasbourg 67087, France
| | - Justine Mailliot
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Jean-Marie Wurtz
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, Strasbourg 67087, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France.
| |
Collapse
|
15
|
Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 2015; 72:2041-59. [PMID: 25662273 PMCID: PMC4430368 DOI: 10.1007/s00018-015-1847-9] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/10/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
Post-translational arginine methylation is responsible for regulation of many biological processes. The protein arginine methyltransferase 5 (PRMT5, also known as Hsl7, Jbp1, Skb1, Capsuleen, or Dart5) is the major enzyme responsible for mono- and symmetric dimethylation of arginine. An expanding literature demonstrates its critical biological function in a wide range of cellular processes. Histone and other protein methylation by PRMT5 regulate genome organization, transcription, stem cells, primordial germ cells, differentiation, the cell cycle, and spliceosome assembly. Metazoan PRMT5 is found in complex with the WD-repeat protein MEP50 (also known as Wdr77, androgen receptor coactivator p44, or Valois). PRMT5 also directly associates with a range of other protein factors, including pICln, Menin, CoPR5 and RioK1 that may alter its subcellular localization and protein substrate selection. Protein substrate and PRMT5-MEP50 post-translation modifications induce crosstalk to regulate PRMT5 activity. Crystal structures of C. elegans PRMT5 and human and frog PRMT5-MEP50 complexes provide substantial insight into the mechanisms of substrate recognition and procession to dimethylation. Enzymological studies of PRMT5 have uncovered compelling insights essential for future development of specific PRMT5 inhibitors. In addition, newly accumulating evidence implicates PRMT5 and MEP50 expression levels and their methyltransferase activity in cancer tumorigenesis, and, significantly, as markers of poor clinical outcome, marking them as potential oncogenes. Here, we review the substantial new literature on PRMT5 and its partners to highlight the significance of understanding this essential enzyme in health and disease.
Collapse
Affiliation(s)
- Nicole Stopa
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Jocelyn E. Krebs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Yue Y, Chu Y, Guo H. Computational Study of Symmetric Methylation on Histone Arginine Catalyzed by Protein Arginine Methyltransferase PRMT5 through QM/MM MD and Free Energy Simulations. Molecules 2015; 20:10032-46. [PMID: 26035101 PMCID: PMC6272650 DOI: 10.3390/molecules200610032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 11/16/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to arginine residues. There are three types of PRMTs (I, II and III) that produce different methylation products, including asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and monomethylarginine (MMA). Since these different methylations can lead to different biological consequences, understanding the origin of product specificity of PRMTs is of considerable interest. In this article, the quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations are performed to study SDMA catalyzed by the Type II PRMT5 on the basis of experimental observation that the dimethylated product is generated through a distributive fashion. The simulations have identified some important interactions and proton transfers during the catalysis. Similar to the cases involving Type I PRMTs, a conserved Glu residue (Glu435) in PRMT5 is suggested to function as general base catalyst based on the result of the simulations. Moreover, our results show that PRMT5 has an energetic preference for the first methylation on Nη1 followed by the second methylation on a different ω-guanidino nitrogen of arginine (Nη2).The first and second methyl transfers are estimated to have free energy barriers of 19-20 and 18-19 kcal/mol respectively. The computer simulations suggest a distinctive catalytic mechanism of symmetric dimethylation that seems to be different from asymmetric dimethylation.
Collapse
Affiliation(s)
- Yufei Yue
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Yuzhuo Chu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
17
|
Morales Y, Nitzel DV, Price OM, Gui S, Li J, Qu J, Hevel JM. Redox Control of Protein Arginine Methyltransferase 1 (PRMT1) Activity. J Biol Chem 2015; 290:14915-26. [PMID: 25911106 DOI: 10.1074/jbc.m115.651380] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 12/16/2022] Open
Abstract
Elevated levels of asymmetric dimethylarginine (ADMA) correlate with risk factors for cardiovascular disease. ADMA is generated by the catabolism of proteins methylated on arginine residues by protein arginine methyltransferases (PRMTs) and is degraded by dimethylarginine dimethylaminohydrolase. Reports have shown that dimethylarginine dimethylaminohydrolase activity is down-regulated and PRMT1 protein expression is up-regulated under oxidative stress conditions, leading many to conclude that ADMA accumulation occurs via increased synthesis by PRMTs and decreased degradation. However, we now report that the methyltransferase activity of PRMT1, the major PRMT isoform in humans, is impaired under oxidative conditions. Oxidized PRMT1 displays decreased activity, which can be rescued by reduction. This oxidation event involves one or more cysteine residues that become oxidized to sulfenic acid (-SOH). We demonstrate a hydrogen peroxide concentration-dependent inhibition of PRMT1 activity that is readily reversed under physiological H2O2 concentrations. Our results challenge the unilateral view that increased PRMT1 expression necessarily results in increased ADMA synthesis and demonstrate that enzymatic activity can be regulated in a redox-sensitive manner.
Collapse
Affiliation(s)
- Yalemi Morales
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Damon V Nitzel
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Owen M Price
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Shanying Gui
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Jun Li
- the Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, and the New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203
| | - Jun Qu
- the Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, and the New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203
| | - Joan M Hevel
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322,
| |
Collapse
|
18
|
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that can methylate protein arginine residues. PRMTs’ substrates include histones and a variety of non-histone proteins. Previous studies have shown that yeast Hmt1 is a type I PRMT and methylates histone H4 arginine 3 and several mRNA-binding proteins. Hmt1 forms dimers or oligomers, but how dimerization or oligomerization affects its activity remains largely unknown. We now report that Hmt1 can methylate histone H3 arginine 2 (H3R2) in vitro. The dimerization but not hexamerization is essential for Hmt1’s activity. Interestingly, the methyltransferase activity of Hmt1 on histone H3R2 requires reciprocal contributions from two Hmt1 molecules. Our results suggest an intermolecular trans-complementary mechanism by which Hmt1 dimer methylates its substrates.
Collapse
|
19
|
Cura V, Troffer-Charlier N, Wurtz JM, Bonnefond L, Cavarelli J. Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site. ACTA ACUST UNITED AC 2014; 70:2401-12. [PMID: 25195753 DOI: 10.1107/s1399004714014278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023]
Abstract
Protein arginine methyltransferase 7 (PRMT7) is a type III arginine methyltransferase which has been implicated in several biological processes such as transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation and metastasis. PRMT7 is a unique but less characterized member of the family of PRMTs. The crystal structure of full-length PRMT7 from Mus musculus refined at 1.7 Å resolution is described. The PRMT7 structure is composed of two catalytic modules in tandem forming a pseudo-dimer and contains only one AdoHcy molecule bound to the N-terminal module. The high-resolution crystal structure presented here revealed several structural features showing that the second active site is frozen in an inactive state by a conserved zinc finger located at the junction between the two PRMT modules and by the collapse of two degenerated AdoMet-binding loops.
Collapse
Affiliation(s)
- Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| | - Jean Marie Wurtz
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| | - Luc Bonnefond
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| |
Collapse
|
20
|
Lott K, Zhu L, Fisk JC, Tomasello DL, Read LK. Functional interplay between protein arginine methyltransferases in Trypanosoma brucei. Microbiologyopen 2014; 3:595-609. [PMID: 25044453 PMCID: PMC4234254 DOI: 10.1002/mbo3.191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/05/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Arginine methylation is a common posttranslational modification that has far-reaching cellular effects. Trypanosoma brucei is an early-branching eukaryote with four characterized protein arginine methyltransferases (PRMTs), one additional putative PRMT, and over 800 arginine methylated proteins, suggesting that arginine methylation has widespread impacts in this organism. While much is known about the activities of individual T. brucei PRMTs (TbPRMTs), little is known regarding how TbPRMTs function together in vivo. In this study, we analyzed single and selected double TbPRMT knockdowns for the impact on expression of TbPRMTs and global methylation status. Repression of TbPRMT1 caused a decrease in asymmetric dimethylarginine and a marked increase in monomethylarginine that was catalyzed by TbPRMT7, suggesting that TbPRMT1 and TbPRMT7 can compete for the same substrate. We also observed an unexpected and strong interdependence between TbPRMT1 and TbPRMT3 protein levels. This finding, together with the observation of similar methyl landscape profiles in TbPRMT1 and TbPRMT3 repressed cells, strongly suggests that these two enzymes form a functional complex. We show that corepression of TbPRMT6/7 synergistically impacts growth of procyclic-form T. brucei. Our findings also implicate the actions of noncanonical, and as yet unidentified, PRMTs in T. brucei. Together, our studies indicate that TbPRMTs display a functional interplay at multiple levels.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, 14214
| | | | | | | | | |
Collapse
|
21
|
Structural determinants for the strict monomethylation activity by trypanosoma brucei protein arginine methyltransferase 7. Structure 2014; 22:756-68. [PMID: 24726341 DOI: 10.1016/j.str.2014.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei protein arginine methyltransferase 7 (TbPRMT7) exclusively generates monomethylarginine (MMA), which directs biological consequences distinct from that of symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA). However, determinants controlling the strict monomethylation activity are unknown. We present the crystal structure of the TbPRMT7 active core in complex with S-adenosyl-L-homocysteine (AdoHcy) and a histone H4 peptide substrate. In the active site, residues E172, E181, and Q329 hydrogen bond the guanidino group of the target arginine and align the terminal guanidino nitrogen in a position suitable for nucleophilic attack on the methyl group of S-adenosyl-L-methionine (AdoMet). Structural comparisons and isothermal titration calorimetry data suggest that the TbPRMT7 active site is narrower than those of protein arginine dimethyltransferases, making it unsuitable to bind MMA in a manner that would support a second turnover, thus abolishing the production of SDMA and ADMA. Our results present the structural interpretations for the monomethylation activity of TbPRMT7.
Collapse
|
22
|
Wang C, Zhu Y, Chen J, Li X, Peng J, Chen J, Zou Y, Zhang Z, Jin H, Yang P, Wu J, Niu L, Gong Q, Teng M, Shi Y. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei. PLoS One 2014; 9:e87267. [PMID: 24498306 PMCID: PMC3911951 DOI: 10.1371/journal.pone.0087267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/26/2013] [Indexed: 11/21/2022] Open
Abstract
Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6) is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH). The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.
Collapse
Affiliation(s)
- Chongyuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Yuwei Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Jiajia Chen
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Junhui Peng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Jiajing Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Yang Zou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Hong Jin
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| |
Collapse
|
23
|
Cura V, Troffer-Charlier N, Lambert MA, Bonnefond L, Cavarelli J. Cloning, expression, purification and preliminary X-ray crystallographic analysis of mouse protein arginine methyltransferase 7. Acta Crystallogr F Struct Biol Commun 2014; 70:80-6. [PMID: 24419624 PMCID: PMC3943109 DOI: 10.1107/s2053230x13032871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022] Open
Abstract
Protein arginine methyltransferase 7 (PRMT7) is a unique but less characterized member of the family of protein arginine methyltransferases (PRMTs) that plays a role in male germline gene imprinting. PRMT7 is the only known PRMT member that catalyzes the monomethylation but not the dimethylation of the target arginine residues and harbours two catalytic domains in tandem. PRMT7 genes from five different species were cloned and expressed in Escherichia coli and Sf21 insect cells. Four gave soluble proteins from Sf21 cells, of which two were homogeneous and one gave crystals. The mouse PRMT7 structure was solved by the single anomalous dispersion method using a crystal soaked with thimerosal that diffracted to beyond 2.1 Å resolution. The crystal belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 97.4, c = 168.1 Å and one PRMT7 monomer in the asymmetric unit. The structure of another crystal form belonging to space group I222 was solved by molecular replacement.
Collapse
Affiliation(s)
- Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Marie-Annick Lambert
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Luc Bonnefond
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
24
|
Goda S, Isagawa T, Chikaoka Y, Kawamura T, Aburatani H. Control of histone H3 lysine 9 (H3K9) methylation state via cooperative two-step demethylation by Jumonji domain containing 1A (JMJD1A) homodimer. J Biol Chem 2013; 288:36948-56. [PMID: 24214985 DOI: 10.1074/jbc.m113.492595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational histone methylation is a dynamic and reversible process that is involved in the spatio-temporal regulation of gene transcription and contributes to various cellular phenotypes. Methylation of histone H3 at lysine 9 (H3K9), which is generally a transcriptional repression mark, is demethylated by H3K9-specific demethylases, leading to transcriptional activation. However, how multiple demethylases with the same substrate specificity differ in their chromatin targeting mechanisms has not been well understood. Unlike other H3K9-specific demethylases, it has been reported that JMJD1A likely forms a homodimer, but a detailed mode of dimerization and the possible link between structure and enzymatic activity have remained unresolved. Here, we report the structure-function relationship of JMJD1A in detail. First, JMJD1A forms a homodimer through its catalytic domains, bringing the two active sites close together. Second, increasing the concentration of JMJD1A facilitates efficient production of unmethylated product from dimethyl-H3K9 and decreases the release of the monomethylated intermediate. Finally, substituting one of the two active sites with an inactive mutant results in a significant reduction of the demethylation rate without changing the affinity to the intermediate. Given this evidence, we propose a substrate channeling model for the efficient conversion of dimethylated H3K9 into the unmethylated state. Our study provides valuable information that will help in understanding the redundancy of H3K9-specific demethylases and the complementary activity of their unique structures and enzymatic properties for appropriate control of chromatin modification patterns.
Collapse
Affiliation(s)
- Satoshi Goda
- From the Genome Science Division, Research Center for Advanced Science and Technology, and
| | | | | | | | | |
Collapse
|
25
|
Zhang R, Li X, Liang Z, Zhu K, Lu J, Kong X, Ouyang S, Li L, Zheng YG, Luo C. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1. PLoS One 2013; 8:e72424. [PMID: 23977297 PMCID: PMC3748068 DOI: 10.1371/journal.pone.0072424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet) as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.
Collapse
Affiliation(s)
- Ruihan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- Division of Nephrology, Shanghai Changzheng Hospital, Shanghai, China
| | - Zhongjie Liang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Kongkai Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junyan Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiangqian Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sisheng Ouyang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lin Li
- Division of Nephrology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yujun George Zheng
- Department of Chemistry, Program of Molecular Basis of Diseases, Georgia State University, Atlanta, Georgia, United States of America
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Center for Systems Biology, Soochow University, Jiangsu, China
| |
Collapse
|
26
|
Kölbel K, Ihling C, Kühn U, Neundorf I, Otto S, Stichel J, Robaa D, Beck-Sickinger AG, Sinz A, Wahle E. Peptide Backbone Conformation Affects the Substrate Preference of Protein Arginine Methyltransferase I. Biochemistry 2012; 51:5463-75. [DOI: 10.1021/bi300373b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Knut Kölbel
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Ines Neundorf
- Institute of Biochemistry, University of Leipzig, Brüderstrasse 34, 04103
Leipzig, Germany
| | - Silke Otto
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Jan Stichel
- Institute of Biochemistry, University of Leipzig, Brüderstrasse 34, 04103
Leipzig, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | | | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| |
Collapse
|
27
|
Niu L, Lu F, Zhao T, Liu C, Cao X. The enzymatic activity of Arabidopsis protein arginine methyltransferase 10 is essential for flowering time regulation. Protein Cell 2012; 3:450-9. [PMID: 22729397 DOI: 10.1007/s13238-012-2935-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/21/2012] [Indexed: 01/15/2023] Open
Abstract
Arabidopsis AtPRMT10 is a plant-specific type I protein arginine methyltransferase that can asymmetrically dimethylate arginine 3 of histone H4 with auto-methylation activity. Mutations of AtPRMT10 derepress FLOWERING LOCUS C (FLC) expression resulting in a late-flowering phenotype. Here, to further investigate the biochemical characteristics of AtPRMT10, we analyzed a series of mutated forms of the AtPRMT10 protein. We demonstrate that the conserved "VLD" residues and "double-E loop" are essential for enzymatic activity of AtPRMT10. In addition, we show that Arg54 and Cys259 of AtPRMT10, two residues unreported in animals, are also important for its enzymatic activity. We find that Arg13 of AtPRMT10 is the auto-methylation site. However, substitution of Arg13 to Lys13 does not affect its enzymatic activity. In vivo complementation assays reveal that plants expressing AtPRMT10 with VLD-AAA, E143Q or E152Q mutations retain high levels of FLC expression and fail to rescue the late-flowering phenotype of atprmt10 plants. Taken together, we conclude that the methyltransferase activity of AtPRMT10 is essential for repressing FLC expression and promoting flowering in Arabidopsis.
Collapse
Affiliation(s)
- Lifang Niu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
28
|
Ahmad A, Cao X. Plant PRMTs broaden the scope of arginine methylation. J Genet Genomics 2012; 39:195-208. [PMID: 22624881 DOI: 10.1016/j.jgg.2012.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 01/22/2023]
Abstract
Post-translational methylation at arginine residues is one of the most important covalent modifications of proteins, involved in a myriad of essential cellular processes in eukaryotes, such as transcriptional regulation, RNA processing, signal transduction, and DNA repair. Methylation at arginine residues is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). PRMTs have been extensively studied in various taxa and there is a growing tendency to unveil their functional importance in plants. Recent studies in plants revealed that this evolutionarily conserved family of enzymes regulates essential traits including vegetative growth, flowering time, circadian cycle, and response to high medium salinity and ABA. In this review, we highlight recent advances in the field of post-translational arginine methylation with special emphasis on the roles and future prospects of this modification in plants.
Collapse
Affiliation(s)
- Ayaz Ahmad
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road #5, Beijing 100101, China
| | | |
Collapse
|