1
|
Gu L, Fu Y, Li X. Roles of post-translational modifications of UHRF1 in cancer. Epigenetics Chromatin 2024; 17:15. [PMID: 38725075 PMCID: PMC11080273 DOI: 10.1186/s13072-024-00540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
UHRF1 as a member of RING-finger type E3 ubiquitin ligases family, is an epigenetic regulator with five structural domains. It has been involved in the regulation of a series of biological functions, such as DNA replication, DNA methylation, and DNA damage repair. Additionally, aberrant overexpression of UHRF1 has been observed in over ten cancer types, indicating that UHRF1 is a typical oncogene. The overexpression of UHRF1 repressed the transcription of such tumor-suppressor genes as CDKN2A, BRCA1, and CDH1 through DNMT1-mediated DNA methylation. In addition to the upstream transcription factors regulating gene transcription, post-translational modifications (PTMs) also contribute to abnormal overexpression of UHRF1 in cancerous tissues. The types of PTM include phosphorylation, acetylation, methylationand ubiquitination, which regulate protein stability, histone methyltransferase activity, intracellular localization and the interaction with binding partners. Recently, several novel PTM types of UHRF1 have been reported, but the detailed mechanisms remain unclear. This comprehensive review summarized the types of UHRF1 PTMs, as well as their biological functions. A deep understanding of these crucial mechanisms of UHRF1 is pivotal for the development of novel UHRF1-targeted anti-cancer therapeutic strategies in the future.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yongming Fu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xiong Li
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Song Y, Liu H, Xian Q, Gui C, Xu M, Zhou Y. Mechanistic insights into UHRF1‑mediated DNA methylation by structure‑based functional clarification of UHRF1 domains (Review). Oncol Lett 2023; 26:542. [PMID: 38020304 PMCID: PMC10660443 DOI: 10.3892/ol.2023.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Epigenetic modification is crucial for transmitting genetic information, while abnormalities in DNA methylation modification are primarily associated with cancer and neurological diseases. As a multifunctional epigenetic modifier, ubiquitin like with PHD and ring finger domains 1 (UHRF1) mainly affects cell energy metabolism and cell cycle control. It also inhibits the transcription of tumor suppressor genes through DNA and/or histone methylation modifications, promoting the occurrence and development of cancer. Therefore, comprehensively understanding the molecular mechanism of the epigenetic modification of UHRF1 in tumors will help identify targets for inhibiting the expression and function of UHRF1. Notably, each domain of UHRF1 functions as a whole and differently. Thus, the abnormality of any domain can lead to a change in phenotype or disease. However, the specific regulatory mechanism and proteins of each domain have not been fully elucidated. The present review aimed to contribute to the study of the regulatory mechanism of UHRF1 to a greater extent in different cancers and provide ideas for drug research by clarifying the function of UHRF1 domains.
Collapse
Affiliation(s)
- Yiying Song
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiting Liu
- Department of Critical Care Medicine, Jinan Zhangqiu Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Qingqing Xian
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengzhi Gui
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China
| | - Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Yunying Zhou
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
3
|
Irwin RE, Scullion C, Thursby SJ, Sun M, Thakur A, Hilman L, Callaghan B, Thompson PD, McKenna DJ, Rothbart SB, Xu G, Walsh CP. The UHRF1 protein is a key regulator of retrotransposable elements and innate immune response to viral RNA in human cells. Epigenetics 2023; 18:2216005. [PMID: 37246786 PMCID: PMC10228402 DOI: 10.1080/15592294.2023.2216005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/14/2023] [Indexed: 05/30/2023] Open
Abstract
While epigenetic mechanisms such as DNA methylation and histone modification are known to be important for gene suppression, relatively little is still understood about the interplay between these systems. The UHRF1 protein can interact with both DNA methylation and repressive chromatin marks, but its primary function in humans has been unclear. To determine what that was, we first established stable UHRF1 knockdowns (KD) in normal, immortalized human fibroblasts using targeting shRNA, since CRISPR knockouts (KO) were lethal. Although these showed a loss of DNA methylation across the whole genome, transcriptional changes were dominated by the activation of genes involved in innate immune signalling, consistent with the presence of viral RNA from retrotransposable elements (REs). We confirmed using mechanistic approaches that 1) REs were demethylated and transcriptionally activated; 2) this was accompanied by activation of interferons and interferon-stimulated genes and 3) the pathway was conserved across other adult cell types. Restoring UHRF1 in either transient or stable KD systems could abrogate RE reactivation and the interferon response. Notably, UHRF1 itself could also re-impose RE suppression independent of DNA methylation, but not if the protein contained point mutations affecting histone 3 with trimethylated lysine 9 (H3K9me3) binding. Our results therefore show for the first time that UHRF1 can act as a key regulator of retrotransposon silencing independent of DNA methylation.
Collapse
Affiliation(s)
- RE Irwin
- Biomedical Sciences, Ulster University, Coleraine, UK
| | - C Scullion
- Biomedical Sciences, Ulster University, Coleraine, UK
- Precision Nanosystems Inc, Vancouver, BC, Canada
| | - SJ Thursby
- Biomedical Sciences, Ulster University, Coleraine, UK
- State Key Laboratory of Molecular Biology, Shanghai Institutes of Biological Sciences, Shanghai, China
| | - M Sun
- Cellular and Molecular Medicine Program, Division of Oncology, Johns Hopkins School of Medicine, St., Baltimore, MD, USA
| | - A Thakur
- Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - L Hilman
- Biomedical Sciences, Ulster University, Coleraine, UK
| | - B Callaghan
- Biomedical Sciences, Ulster University, Coleraine, UK
| | - PD Thompson
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - DJ McKenna
- Biomedical Sciences, Ulster University, Coleraine, UK
| | - SB Rothbart
- Nutrition Innovation Centre for Food and Health, Biomedical Sciences, Ulster University, Coleraine, UK
| | - Guoliang Xu
- Cellular and Molecular Medicine Program, Division of Oncology, Johns Hopkins School of Medicine, St., Baltimore, MD, USA
| | - CP Walsh
- Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
4
|
Choudalakis M, Kungulovski G, Mauser R, Bashtrykov P, Jeltsch A. Refined read-out: The hUHRF1 Tandem-Tudor domain prefers binding to histone H3 tails containing K4me1 in the context of H3K9me2/3. Protein Sci 2023; 32:e4760. [PMID: 37593997 PMCID: PMC10464304 DOI: 10.1002/pro.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
UHRF1 is an essential chromatin protein required for DNA methylation maintenance, mammalian development, and gene regulation. We investigated the Tandem-Tudor domain (TTD) of human UHRF1 that is known to bind H3K9me2/3 histones and is a major driver of UHRF1 localization in cells. We verified binding to H3K9me2/3 but unexpectedly discovered stronger binding to H3 peptides and mononucleosomes containing K9me2/3 with additional K4me1. We investigated the combined binding of TTD to H3K4me1-K9me2/3 versus H3K9me2/3 alone, engineered mutants with specific and differential changes of binding, and discovered a novel read-out mechanism for H3K4me1 in an H3K9me2/3 context that is based on the interaction of R207 with the H3K4me1 methyl group and on counting the H-bond capacity of H3K4. Individual TTD mutants showed up to a 10,000-fold preference for the double-modified peptides, suggesting that after a conformational change, WT TTD could exhibit similar effects. The frequent appearance of H3K4me1-K9me2 regions in human chromatin demonstrated in our TTD chromatin pull-down and ChIP-western blot data suggests that it has specific biological roles. Chromatin pull-down of TTD from HepG2 cells and full-length murine UHRF1 ChIP-seq data correlate with H3K4me1 profiles indicating that the H3K4me1-K9me2/3 interaction of TTD influences chromatin binding of full-length UHRF1. We demonstrate the H3K4me1-K9me2/3 specific binding of UHRF1-TTD to enhancers and promoters of cell-type-specific genes at the flanks of cell-type-specific transcription factor binding sites, and provided evidence supporting an H3K4me1-K9me2/3 dependent and TTD mediated downregulation of these genes by UHRF1. All these findings illustrate the important physiological function of UHRF1-TTD binding to H3K4me1-K9me2/3 double marks in a cellular context.
Collapse
Affiliation(s)
- Michel Choudalakis
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Goran Kungulovski
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Rebekka Mauser
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Pavel Bashtrykov
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Albert Jeltsch
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| |
Collapse
|
5
|
Nigam N, Bernard B, Sevilla S, Kim S, Dar MS, Tsai D, Robbins Y, Burkitt K, Sievers C, Allen CT, Bennett RL, Tettey TT, Carter B, Rinaldi L, Lingen MW, Sater H, Edmondson EF, Moshiri A, Saeed A, Cheng H, Luo X, Brennan K, Koparde V, Chen C, Das S, Andresson T, Abdelmaksoud A, Murali M, Sakata S, Takeuchi K, Chari R, Nakamura Y, Uppaluri R, Sunwoo JB, Van Waes C, Licht JD, Hager GL, Saloura V. SMYD3 represses tumor-intrinsic interferon response in HPV-negative squamous cell carcinoma of the head and neck. Cell Rep 2023; 42:112823. [PMID: 37463106 PMCID: PMC10407766 DOI: 10.1016/j.celrep.2023.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Cancers often display immune escape, but the mechanisms are incompletely understood. Herein, we identify SMYD3 as a mediator of immune escape in human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC), an aggressive disease with poor response to immunotherapy with pembrolizumab. SMYD3 depletion induces upregulation of multiple type I interferon (IFN) response and antigen presentation machinery genes in HNSCC cells. Mechanistically, SMYD3 binds to and regulates the transcription of UHRF1, encoding for a reader of H3K9me3, which binds to H3K9me3-enriched promoters of key immune-related genes, recruits DNMT1, and silences their expression. SMYD3 further maintains the repression of immune-related genes through intragenic deposition of H4K20me3. In vivo, Smyd3 depletion induces influx of CD8+ T cells and increases sensitivity to anti-programmed death 1 (PD-1) therapy. SMYD3 overexpression is associated with decreased CD8 T cell infiltration and poor response to neoadjuvant pembrolizumab. These data support combining SMYD3 depletion strategies with checkpoint blockade to overcome anti-PD-1 resistance in HPV-negative HNSCC.
Collapse
Affiliation(s)
- Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Samantha Sevilla
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mohd Saleem Dar
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Daniel Tsai
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Cem Sievers
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | | | - Theophilus T Tettey
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Carter
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mark W Lingen
- University of Chicago, Department of Pathology, Chicago, IL 60637, USA
| | - Houssein Sater
- GU Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Arfa Moshiri
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Abbas Saeed
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Kevin Brennan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Chen Chen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | | | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carter Van Waes
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
AKT1 regulates UHRF1 protein stability and promotes the resistance to abiraterone in prostate cancer. Oncogenesis 2023; 12:1. [PMID: 36593255 PMCID: PMC9807647 DOI: 10.1038/s41389-022-00446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Oncogenic activation of PI3K/AKT signaling pathway, together with epigenetic aberrations are the characters of castration-resistant prostate cancer (CRPC). UHRF1 as a key epigenetic regulator, plays a critical role in prostate cancer (PCa) development, and its expression is positively correlated with the degree of malignancy. In this present study we investigated the potential regulatory mechanism of AKT1 on UHRF1, and further validated the in vitro and in vivo anticancer efficacy of AKT phosphorylation inhibitor MK2206 in combination with abiraterone. Both UHRF1 and p-AKT aberrantly overexpressed in the abiraterone-resistant PCa cells. Further studies revealed that AKT1 protein interacts with UHRF1, and AKT1 directly phosphorylates UHRF1 via the site Thr-210. MK2206 induced UHRF1 protein degradation by inhibiting AKT1-induced UHRF1 phosphorylation, and then reduced the interaction between UHRF1 and deubiquitinase USP7, while promoted the interaction between UHRF1 and E3 ubiquitin protein ligase BTRC. MK2206 significantly promoted the sensitivity of abiraterone-refractory PCa cells and xenografts to abiraterone by decreasing UHRF1 protein level, and reversed the phenotype of NEPC, evently induced cellular senescence and cell apoptosis. Altogether, our present study for the first time revealed a novel molecular mechanism of abiraterone resistance through PI3K/AKT-UHRF1 pathway, and provided a novel therapeutic modality by targeting PI3K/AKT1 to promote the drug sensitivity of abiraterone in PCa patients.
Collapse
|
7
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
8
|
Macchi F, Edsinger E, Sadler KC. Epigenetic machinery is functionally conserved in cephalopods. BMC Biol 2022; 20:202. [PMID: 36104784 PMCID: PMC9476566 DOI: 10.1186/s12915-022-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Epigenetic regulatory mechanisms are divergent across the animal kingdom, yet these mechanisms are not well studied in non-model organisms. Unique features of cephalopods make them attractive for investigating behavioral, sensory, developmental, and regenerative processes, and recent studies have elucidated novel features of genome organization and gene and transposon regulation in these animals. However, it is not known how epigenetics regulates these interesting cephalopod features. We combined bioinformatic and molecular analysis of Octopus bimaculoides to investigate the presence and pattern of DNA methylation and examined the presence of DNA methylation and 3 histone post-translational modifications across tissues of three cephalopod species. RESULTS We report a dynamic expression profile of the genes encoding conserved epigenetic regulators, including DNA methylation maintenance factors in octopus tissues. Levels of 5-methyl-cytosine in multiple tissues of octopus, squid, and bobtail squid were lower compared to vertebrates. Whole genome bisulfite sequencing of two regions of the brain and reduced representation bisulfite sequencing from a hatchling of O. bimaculoides revealed that less than 10% of CpGs are methylated in all samples, with a distinct pattern of 5-methyl-cytosine genome distribution characterized by enrichment in the bodies of a subset of 14,000 genes and absence from transposons. Hypermethylated genes have distinct functions and, strikingly, many showed similar expression levels across tissues while hypomethylated genes were silenced or expressed at low levels. Histone marks H3K27me3, H3K9me3, and H3K4me3 were detected at different levels across tissues of all species. CONCLUSIONS Our results show that the DNA methylation and histone modification epigenetic machinery is conserved in cephalopods, and that, in octopus, 5-methyl-cytosine does not decorate transposable elements, but is enriched on the gene bodies of highly expressed genes and could cooperate with the histone code to regulate tissue-specific gene expression.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
UHRF1 establishes crosstalk between somatic and germ cells in male reproduction. Cell Death Dis 2022; 13:377. [PMID: 35440090 PMCID: PMC9018721 DOI: 10.1038/s41419-022-04837-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/08/2022]
Abstract
AbstractSertoli cells (SCs) support and nourish germ cells (GCs) through their crosstalk during spermatogenesis. However, the underlying epigenetic mechanism that ensures SCs’ functions in this process remains unclear. Here, we report that UHRF1, a critical epigenetic regulator, is mainly expressed in human and mouse pre-mature SCs, and is essential for establishing Sertoli-Germ cell crosstalk. SC-specific UHRF1 knockout mice exhibit complete sterility with Sertoli cell (SC) proliferation and differentiation aberrance, blood-testis barrier (BTB) disruption, and immature germ cell (GC) sloughing. RNA sequencing and Whole Genome Bisulfite Sequencing (WGBS) revealed that many extracellular matrix (ECM)-related genes (e.g., Timp1, Trf, and Spp1) appeared upregulated with the DNA hypomethylation status in UHRF1-deficient SCs. Strikingly, overexpression of Timp1, Trf, and Spp1 in SCs in vitro and in vivo could phenocopy the SC-specific UHRF1-deficient mice. Our data demonstrated that UHRF1 regulates the transcriptional program of ECM-related genes in SCs and establishes SC-GC crosstalk.
Collapse
|
10
|
Janssen SM, Lorincz MC. Interplay between chromatin marks in development and disease. Nat Rev Genet 2022; 23:137-153. [PMID: 34608297 DOI: 10.1038/s41576-021-00416-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.
Collapse
Affiliation(s)
- Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Ginnard SM, Winkler AE, Mellado Fritz C, Bluhm T, Kemmer R, Gilliam M, Butkevich N, Abdrabbo S, Bricker K, Feiler J, Miller I, Zoerman J, El-Mohri Z, Khuansanguan P, Basch M, Petzold T, Kostoff M, Konopka S, Kociba B, Gillis T, Heyl DL, Trievel RC, Albaugh BN. Molecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator UHRF2. Proteins 2021; 90:835-847. [PMID: 34766381 DOI: 10.1002/prot.26278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 11/12/2022]
Abstract
Ubiquitin-like containing PHD and ring finger (UHRF)1 and UHRF2 are multidomain epigenetic proteins that play a critical role in bridging crosstalk between histone modifications and DNA methylation. Both proteins contain two histone reader domains, called tandem Tudor domain (TTD) and plant homeodomain (PHD), which read the modification status on histone H3 to regulate DNA methylation and gene expression. To shed light on the mechanism of histone binding by UHRF2, we have undergone a detailed molecular investigation with the TTD, PHD and TTD-PHD domains and compared the binding activity to its UHRF1 counterpart. We found that unlike UHRF1 where the PHD is the primary binding contributor, the TTD of UHRF2 has modestly higher affinity toward the H3 tail, while the PHD has a weaker binding interaction. We also demonstrated that like UHRF1, the aromatic amino acids within the TTD are important for binding to H3K9me3 and a conserved aspartic acid within the PHD forms an ionic interaction with R2 of H3. However, while the aromatic amino acids in the TTD of UHRF1 contribute to selectivity, the analogous residues in UHRF2 contribute to both selectivity and affinity. We also discovered that the PHD of UHRF2 contains a distinct asparagine in the H3R2 binding pocket that lowers the binding affinity of the PHD by reducing a potential electrostatic interaction with the H3 tail. Furthermore, we demonstrate the PHD and TTD of UHRF2 cooperate to interact with the H3 tail and that dual domain engagement with the H3 tail relies on specific amino acids. Lastly, our data indicate that the unique stretch region in the TTD of UHRF2 can decrease the melting temperature of the TTD-PHD and represents a disordered region. Thus, these subtle but important mechanistic differences are potential avenues for selectively targeting the histone binding interactions of UHRF1 and UHRF2 with small molecules.
Collapse
Affiliation(s)
- Shane M Ginnard
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Alyssa E Winkler
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | | | - Tatum Bluhm
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Ray Kemmer
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Marisa Gilliam
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Nick Butkevich
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Sara Abdrabbo
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Kaitlyn Bricker
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Justin Feiler
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Isaak Miller
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Jenna Zoerman
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Zeineb El-Mohri
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Panida Khuansanguan
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Madyson Basch
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Timothy Petzold
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Matthew Kostoff
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Sean Konopka
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Brendon Kociba
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Thomas Gillis
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Deborah L Heyl
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brittany N Albaugh
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| |
Collapse
|
12
|
Newkirk SJ, An W. UHRF1: a jack of all trades, and a master epigenetic regulator during spermatogenesis. Biol Reprod 2021; 102:1147-1152. [PMID: 32101289 DOI: 10.1093/biolre/ioaa026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
13
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
14
|
Marx N, Dhiman H, Schmieder V, Freire CM, Nguyen LN, Klanert G, Borth N. Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells. Metab Eng 2021; 66:268-282. [PMID: 33965614 DOI: 10.1016/j.ymben.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available. In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells. Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.
Collapse
Affiliation(s)
- Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Heena Dhiman
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Valerie Schmieder
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | | | - Ly Ngoc Nguyen
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
15
|
Li Y, Chen X, Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep 2021; 22:e51803. [PMID: 33844406 PMCID: PMC8097341 DOI: 10.15252/embr.202051803] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides and histone lysine and arginine residues is a chromatin modification that critically contributes to the regulation of genome integrity, replication, and accessibility. A strong correlation exists between the genome-wide distribution of DNA and histone methylation, suggesting an intimate relationship between these epigenetic marks. Indeed, accumulating literature reveals complex mechanisms underlying the molecular crosstalk between DNA and histone methylation. These in vitro and in vivo discoveries are further supported by the finding that genes encoding DNA- and histone-modifying enzymes are often mutated in overlapping human diseases. Here, we summarize recent advances in understanding how DNA and histone methylation cooperate to maintain the cellular epigenomic landscape. We will also discuss the potential implication of these insights for understanding the etiology of, and developing biomarkers and therapies for, human congenital disorders and cancers that are driven by chromatin abnormalities.
Collapse
Affiliation(s)
- Yinglu Li
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Xiao Chen
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
16
|
Moderate DNA hypomethylation suppresses intestinal tumorigenesis by promoting caspase-3 expression and apoptosis. Oncogenesis 2021; 10:38. [PMID: 33947834 PMCID: PMC8096944 DOI: 10.1038/s41389-021-00328-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Global DNA hypomethylation is a most common epigenetic alteration in human neoplasia. However, accumulative evidence shows that global DNA hypomethylation impacts tumorigenesis in a tissue-specific manner, promoting tumorigenesis in some but suppressing tumorigenesis in others including colorectal cancer. The underlying mechanisms, especially how DNA hypomethylation suppresses tumorigenesis, remain largely unknown. Here, we investigate how DNA hypomethylation affects intestinal tumorigenesis by using an Uhrf1 tandem tudor domain knockin mutant mouse model (Uhrf1ki/ki) that exhibits a moderate ~10% reduction of global DNA methylation. We found that both chemical-induced colorectal carcinogenesis and Apc loss of heterozygosity (LOH)-induced intestinal tumorigenesis are substantially suppressed in the Uhrf1 mutant mice. Furthermore, unlike Dnmt1 hypomorphic mice in which DNA hypomethylation suppresses the incidence of macroscopic intestinal tumors but promotes the formation of microadenoma in ApcMin/+ background, Uhrf1ki/ki/ApcMin/+ mice have markedly reduced incidence of both microadenoma and macroadenoma. DNA hypomethylation does not appear to affect Apc LOH, activation of the Wnt or Hippo pathway, or tumor cell proliferation, but acts cooperatively with activated Wnt pathway to enhance the caspase-3 gene expression, activation, and apoptosis. Furthermore, increased caspase-3 expression correlates with DNA hypomethylation within the caspase-3 enhancer regions. Taken together, we present a new mouse model for investigating the role of and the molecular mechanisms by which DNA hypomethylation suppresses intestinal tumorigenesis. Our finding that a moderate DNA hypomethylation is sufficient to suppress intestinal tumorigenesis by promoting caspase-3 expression and apoptosis sheds new light on DNA-methylation inhibitor-based colorectal cancer therapeutics.
Collapse
|
17
|
Li B, Zhao J, Ma J, Chen W, Zhou C, Wei W, Li S, Li G, Xin G, Zhang Y, Liu J, Wang Y, Ma X. Cross-talk Between Histone and DNA Methylation Mediates Bone Loss in Hind Limb Unloading. J Bone Miner Res 2021; 36:956-967. [PMID: 33465813 DOI: 10.1002/jbmr.4253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Bone loss induced by mechanical unloading is a common skeletal disease, but the precise mechanism remains unclear. The current study investigated the role of histone methylation, a key epigenetic marker, and its cross-talk with DNA methylation in bone loss induced by mechanical unloading. The expression of G9a, ubiquitin-like with PHD and ring finger domains 1 (UHRF1), and DNA methylation transferase 1 (DNMT1) were increased in hind limb unloading (HLU) rats. This was accompanied by an increased level of histone H3 lysine 9 (H3K9) di-/tri-methylation at lncH19 promoter. Then, alteration of G9a, DNMT1, or UHRF1 expression significantly affected lncH19 level and osteogenic activity in UMR106 cells. Osteogenic gene expression and matrix mineralization were robustly promoted after simultaneous knockdown of G9a, DNMT1, and UHRF1. Furthermore, physical interactions of lncH19 promoter with G9a and DNMT1, as well as direct interactions among DNMT1, G9a, and UHRF1 were detected. Importantly, overexpression of DNMT1, G9a, or UHRF1, respectively, resulted in enrichment of H3K9me2/me3 and 5-methylcytosine at lncH19 promoter. Finally, in vivo rescue experiments indicated that knockdown of DNMT1, G9a, or UHRF1 significantly relieved bone loss in HLU rats. In conclusion, our research demonstrated the critical role of H3K9 methylation and its cross-talk with DNA methylation in regulating lncH19 expression and bone loss in HLU rats. Combined targeting of DNMT1, G9a, and UHRF1 could be a promising strategy for the treatment of bone loss induced by mechanical unloading. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Bing Li
- Joint Department, Tianjin Hospital, Tianjin, China
| | - Jie Zhao
- Orthopedic Department, Tianjin Hospital, Tianjin, China
| | - Jianxiong Ma
- Tianjin Orthopedic Research Institute, Tianjin, China
| | - Weibo Chen
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ce Zhou
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wuzeng Wei
- Joint Department, Tianjin Hospital, Tianjin, China
| | - Shuai Li
- Joint Department, Tianjin Hospital, Tianjin, China
| | - Guomin Li
- Joint Department, Tianjin Hospital, Tianjin, China
| | - Guosheng Xin
- Tianjin Orthopedic Research Institute, Tianjin, China
| | - Yang Zhang
- Tianjin Orthopedic Research Institute, Tianjin, China
| | - Jun Liu
- Joint Department, Tianjin Hospital, Tianjin, China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xinlong Ma
- Joint Department, Tianjin Hospital, Tianjin, China.,Orthopedic Department, Tianjin Hospital, Tianjin, China.,Tianjin Orthopedic Research Institute, Tianjin, China
| |
Collapse
|
18
|
The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 2021; 32:135-152. [PMID: 33860357 DOI: 10.1007/s00335-021-09870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mechanism, of which the main functions are stabilizing the transcription of genes and promoting genetic conservation. In animals, the direct molecular inducers of DNA methylation mainly include histone covalent modification and non-coding RNA, whereas the fundamental regulators of DNA methylation are genetic and environmental factors. As is well known, competition is present everywhere in life systems, and will finally strike a balance that is optimal for the animal's survival and reproduction. The same goes for the regulation of DNA methylation. Genetic and environmental factors, respectively, are responsible for the programmed and plasticity changes of DNA methylation, and keen competition exists between genetically influenced procedural remodeling and environmentally influenced plastic alteration. In this process, genetic and environmental factors collaboratively decide the methylation patterns of corresponding loci. DNA methylation alterations induced by environmental factors can be transgenerationally inherited, and exhibit the characteristic of Lamarckian inheritance. Further research on regulatory mechanisms and the environmental plasticity of DNA methylation will provide strong support for understanding the biological function and evolutionary effects of DNA methylation.
Collapse
|
19
|
Wu Y, Dong J, Feng S, Zhao Q, Duan P, Xiong M, Wen Y, Lv C, Wang X, Yuan S. Maternal UHRF1 Is Essential for Transcription Landscapes and Repression of Repetitive Elements During the Maternal-to-Zygotic Transition. Front Cell Dev Biol 2021; 8:610773. [PMID: 33634103 PMCID: PMC7902027 DOI: 10.3389/fcell.2020.610773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Maternal factors that modulate maternal-to-zygotic transition (MZT) are essential for the growth from specialized oocytes to totipotent embryos. Despite several studies, the mechanisms regulating epigenetic reprogramming during MZT remain largely elusive. UHRF1 plays a role in maintaining GC methylation in oocytes and early embryos. However, little is known about its role in mouse MZT. Here, we explored the function of maternal UHRF1 in zygotic genome regulation during early embryonic development in mice. We showed that the conditional knockout (cKO) of UHRF1 in either primordial or growing oocytes causes infertility but differentially affects early embryonic development. UHRF1 deficiency in primordial oocytes led to early embryonic developmental arrest at the two-cell stage, accompanied by significant alterations in global DNA and H3K4me3 methylation patterns. In comparison, UHRF1 ablation in growing oocytes significantly reduced developmental competence from two-cell embryos to blastocysts. At the transcriptional level, the absence of maternal UHRF1 led to aberrant transcriptional regulation of the zygotic genome during MZT at the two-cell stage. Furthermore, we observed that retrotransposable elements in UHRF1-deficient oocytes and embryos were not silenced properly; in particular, the LINE-1 and long terminal repeat (LTR) subfamily were activated abnormally. Collectively, the findings of our study reveal that maternal UHRF1 plays a critical role in establishing the correct epigenetic chromatin reprogramming of early embryos, regulating essential genes during MZT, and preserving genome integrity that drives early embryonic development in mice.
Collapse
Affiliation(s)
- Yanqing Wu
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Dong
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglei Feng
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhao
- Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Laboratory of Gynecological Oncology and Reproductive Health, Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Mengneng Xiong
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Yujiao Wen
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Lv
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Tongji Medical College, Institute Reproductive Health, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
20
|
Discovery of small molecules targeting the tandem tudor domain of the epigenetic factor UHRF1 using fragment-based ligand discovery. Sci Rep 2021; 11:1121. [PMID: 33441849 PMCID: PMC7806715 DOI: 10.1038/s41598-020-80588-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies. Unlike previous reported ligands, 2,4-lutidine binds to two binding pockets that are in close proximity on TTD and so has the potential to be evolved into more potent inhibitors using a fragment-linking strategy. Our study provides a useful starting point for developing potent chemical probes against UHRF1.
Collapse
|
21
|
Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proc Natl Acad Sci U S A 2020; 117:18439-18447. [PMID: 32675241 DOI: 10.1073/pnas.2009316117] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammals, repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3), frequently coexist with DNA methylation, producing a more stable and silenced chromatin state. However, it remains elusive how these epigenetic modifications crosstalk. Here, through structural and biochemical characterizations, we identified the replication foci targeting sequence (RFTS) domain of maintenance DNA methyltransferase DNMT1, a module known to bind the ubiquitylated H3 (H3Ub), as a specific reader for H3K9me3/H3Ub, with the recognition mode distinct from the typical trimethyl-lysine reader. Disruption of the interaction between RFTS and the H3K9me3Ub affects the localization of DNMT1 in stem cells and profoundly impairs the global DNA methylation and genomic stability. Together, this study reveals a previously unappreciated pathway through which H3K9me3 directly reinforces DNMT1-mediated maintenance DNA methylation.
Collapse
|
22
|
Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res 2020; 30:980-996. [PMID: 32581343 DOI: 10.1038/s41422-020-0359-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic inheritance of the DNA methylome is a challenging task for the maintenance of cell identity. Whether DNA methylation pattern in different genomic contexts can all be faithfully maintained is an open question. A replication-coupled DNA methylation maintenance model was proposed decades ago, but some observations suggest that a replication-uncoupled maintenance mechanism exists. However, the capacity and the underlying molecular events of replication-uncoupled maintenance are unclear. By measuring maintenance kinetics at the single-molecule level and assessing mutant cells with perturbation of various mechanisms, we found that the kinetics of replication-coupled maintenance are governed by the UHRF1-Ligase 1 and PCNA-DNMT1 interactions, whereas nucleosome occupancy and the interaction between UHRF1 and methylated H3K9 specifically regulate replication-uncoupled maintenance. Surprisingly, replication-uncoupled maintenance is sufficiently robust to largely restore the methylome when replication-coupled maintenance is severely impaired. However, solo-WCGW sites and other CpG sites displaying aging- and cancer-associated hypomethylation exhibit low maintenance efficiency, suggesting that although quite robust, mitotic inheritance of methylation is imperfect and that this imperfection may contribute to selective hypomethylation during aging and tumorigenesis.
Collapse
|
23
|
Sabou M, Doderer-Lang C, Leyer C, Konjic A, Kubina S, Lennon S, Rohr O, Viville S, Cianférani S, Candolfi E, Pfaff AW, Brunet J. Toxoplasma gondii ROP16 kinase silences the cyclin B1 gene promoter by hijacking host cell UHRF1-dependent epigenetic pathways. Cell Mol Life Sci 2020; 77:2141-2156. [PMID: 31492965 PMCID: PMC7256068 DOI: 10.1007/s00018-019-03267-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii, is one of the most common infections in the world due to the lifelong persistence of this parasite in a latent stage. This parasite hijacks host signaling pathways through epigenetic mechanisms which converge on key nuclear proteins. Here, we report a new parasite persistence strategy involving T. gondii rhoptry protein ROP16 secreted early during invasion, which targets the transcription factor UHRF1 (ubiquitin-like containing PHD and RING fingers domain 1), and leads to host cell cycle arrest. This is mediated by DNMT activity and chromatin remodeling at the cyclin B1 gene promoter through recruitment of phosphorylated UHRF1 associated with a repressive multienzymatic protein complex. This leads to deacetylation and methylation of histone H3 surrounding the cyclin B1 promoter to epigenetically silence its transcriptional activity. Moreover, T. gondii infection causes DNA hypermethylation in its host cell, by upregulation of DNMTs. ROP16 is already known to activate and phosphorylate protective immunity transcription factors such as STAT 3/6/5 and modulate host signaling pathways in a strain-dependent manner. Like in the case of STAT6, the strain-dependent effects of ROP16 on UHRF1 are dependent on a single amino-acid polymorphism in ROP16. This study demonstrates that Toxoplasma hijacks a new epigenetic initiator, UHRF1, through an early event initiated by the ROP16 parasite kinase.
Collapse
Affiliation(s)
- Marcela Sabou
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Centre National de Référence de la Toxoplasmose, Pôle Sérologie, Strasbourg, France
| | - Cécile Doderer-Lang
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Caroline Leyer
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Ana Konjic
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Sophie Kubina
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Sarah Lennon
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, CNRS, UMR7178, Strasbourg, France
| | - Olivier Rohr
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Stéphane Viville
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, CNRS, UMR7178, Strasbourg, France
| | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Centre National de Référence de la Toxoplasmose, Pôle Sérologie, Strasbourg, France
| | - Alexander W Pfaff
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France.
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Centre National de Référence de la Toxoplasmose, Pôle Sérologie, Strasbourg, France.
| | - Julie Brunet
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Centre National de Référence de la Toxoplasmose, Pôle Sérologie, Strasbourg, France
| |
Collapse
|
24
|
Ginno PA, Gaidatzis D, Feldmann A, Hoerner L, Imanci D, Burger L, Zilbermann F, Peters AHFM, Edenhofer F, Smallwood SA, Krebs AR, Schübeler D. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat Commun 2020; 11:2680. [PMID: 32471981 PMCID: PMC7260214 DOI: 10.1038/s41467-020-16354-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is considered a stable epigenetic mark, yet methylation patterns can vary during differentiation and in diseases such as cancer. Local levels of DNA methylation result from opposing enzymatic activities, the rates of which remain largely unknown. Here we developed a theoretical and experimental framework enabling us to infer methylation and demethylation rates at 860,404 CpGs in mouse embryonic stem cells. We find that enzymatic rates can vary as much as two orders of magnitude between CpGs with identical steady-state DNA methylation. Unexpectedly, de novo and maintenance methylation activity is reduced at transcription factor binding sites, while methylation turnover is elevated in transcribed gene bodies. Furthermore, we show that TET activity contributes substantially more than passive demethylation to establishing low methylation levels at distal enhancers. Taken together, our work unveils a genome-scale map of methylation kinetics, revealing highly variable and context-specific activity for the DNA methylation machinery.
Collapse
Affiliation(s)
- Paul Adrian Ginno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Angelika Feldmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dilek Imanci
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Frank Edenhofer
- Leopold-Franzens-University Innsbruck & CMBI, Innsbruck, Austria
| | | | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- EMBL Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
25
|
Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Molecules 2020; 25:molecules25030578. [PMID: 32013155 PMCID: PMC7037402 DOI: 10.3390/molecules25030578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications (or epigenetic tags) on DNA and histones not only alter the chromatin structure, but also provide a recognition platform for subsequent protein recruitment and enable them to acquire executive instructions to carry out specific intracellular biological processes. In cells, different epigenetic-tags on DNA and histones are often recognized by the specific domains in proteins (readers), such as bromodomain (BRD), chromodomain (CHD), plant homeodomain (PHD), Tudor domain, Pro-Trp-Trp-Pro (PWWP) domain and malignant brain tumor (MBT) domain. Recent accumulating data reveal that abnormal intracellular histone modifications (histone marks) caused by tumors can be modulated by small molecule-mediated changes in the activity of the above domains, suggesting that small molecules targeting histone-mark reader domains may be the trend of new anticancer drug development. Here, we summarize the protein domains involved in histone-mark recognition, and introduce recent research findings about small molecules targeting histone-mark readers in cancer therapy.
Collapse
|
26
|
Dong J, Wang X, Cao C, Wen Y, Sakashita A, Chen S, Zhang J, Zhang Y, Zhou L, Luo M, Liu M, Liao A, Namekawa SH, Yuan S. UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nat Commun 2019; 10:4705. [PMID: 31624244 PMCID: PMC6797737 DOI: 10.1038/s41467-019-12455-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
DNA methylation, repressive histone marks, and PIWI-interacting RNA (piRNA) are essential for the control of retrotransposon silencing in the mammalian germline. However, it remains unknown how these repressive epigenetic pathways crosstalk to ensure retrotransposon silencing in the male germline. Here, we show that UHRF1 is responsible for retrotransposon silencing and cooperates with repressive epigenetic pathways in male germ cells. Conditional loss of UHRF1 in postnatal germ cells causes DNA hypomethylation, upregulation of retrotransposons, the activation of a DNA damage response, and switches in the global chromatin status, leading to complete male sterility. Furthermore, we show that UHRF1 interacts with PRMT5, an arginine methyltransferase, to regulate the repressive histone arginine modifications (H4R3me2s and H3R2me2s), and cooperates with the PIWI pathway during spermatogenesis. Collectively, UHRF1 regulates retrotransposon silencing in male germ cells and provides a molecular link between DNA methylation, histone modification, and the PIWI pathway in the germline.
Collapse
Affiliation(s)
- Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Si Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yue Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
27
|
Li T, Wang L, Du Y, Xie S, Yang X, Lian F, Zhou Z, Qian C. Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nucleic Acids Res 2019; 46:3218-3231. [PMID: 29471350 PMCID: PMC5887372 DOI: 10.1093/nar/gky104] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
UHRF1 plays multiple roles in regulating DNMT1-mediated DNA methylation maintenance during DNA replication. The UHRF1 C-terminal RING finger functions as an ubiquitin E3 ligase to establish histone H3 ubiquitination at Lys18 and/or Lys23, which is subsequently recognized by DNMT1 to promote its localization onto replication foci. Here, we present the crystal structure of DNMT1 RFTS domain in complex with ubiquitin and highlight a unique ubiquitin binding mode for the RFTS domain. We provide evidence that UHRF1 N-terminal ubiquitin-like domain (UBL) also binds directly to DNMT1. Despite sharing a high degree of structural similarity, UHRF1 UBL and ubiquitin bind to DNMT1 in a very distinct fashion and exert different impacts on DNMT1 enzymatic activity. We further show that the UHRF1 UBL-mediated interaction between UHRF1 and DNMT1, and the binding of DNMT1 to ubiquitinated histone H3 that is catalyzed by UHRF1 RING domain are critical for the proper subnuclear localization of DNMT1 and maintenance of DNA methylation. Collectively, our study adds another layer of complexity to the regulatory mechanism of DNMT1 activation by UHRF1 and supports that individual domains of UHRF1 participate and act in concert to maintain DNA methylation patterns.
Collapse
Affiliation(s)
- Tao Li
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Linsheng Wang
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Yongming Du
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Si Xie
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Xi Yang
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Fuming Lian
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Chengmin Qian
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| |
Collapse
|
28
|
Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns. Genes (Basel) 2019; 10:genes10010065. [PMID: 30669400 PMCID: PMC6360023 DOI: 10.3390/genes10010065] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5′-carbon of the cytosine mainly within cytosine–phosphate–guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.
Collapse
|
29
|
Ren W, Gao L, Song J. Structural Basis of DNMT1 and DNMT3A-Mediated DNA Methylation. Genes (Basel) 2018; 9:genes9120620. [PMID: 30544982 PMCID: PMC6316889 DOI: 10.3390/genes9120620] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation, one of the major epigenetic mechanisms, plays critical roles in regulating gene expression, genomic stability and cell lineage commitment. The establishment and maintenance of DNA methylation in mammals is achieved by two groups of DNA methyltransferases (DNMTs): DNMT3A and DNMT3B, which are responsible for installing DNA methylation patterns during gametogenesis and early embryogenesis, and DNMT1, which is essential for propagating DNA methylation patterns during replication. Both groups of DNMTs are multi-domain proteins, containing a large N-terminal regulatory region in addition to the C-terminal methyltransferase domain. Recent structure-function investigations of the individual domains or large fragments of DNMT1 and DNMT3A have revealed the molecular basis for their substrate recognition and specificity, intramolecular domain-domain interactions, as well as their crosstalk with other epigenetic mechanisms. These studies highlight a multifaceted regulation for both DNMT1 and DNMT3A/3B, which is essential for the precise establishment and maintenance of lineage-specific DNA methylation patterns in cells. This review summarizes current understanding of the structure and mechanism of DNMT1 and DNMT3A-mediated DNA methylation, with emphasis on the functional cooperation between the methyltransferase and regulatory domains.
Collapse
Affiliation(s)
- Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | - Linfeng Gao
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
30
|
The Growing Complexity of UHRF1-Mediated Maintenance DNA Methylation. Genes (Basel) 2018; 9:genes9120600. [PMID: 30513966 PMCID: PMC6316679 DOI: 10.3390/genes9120600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Mammalian DNMT1 is mainly responsible for maintenance DNA methylation that is critical in maintaining stem cell pluripotency and controlling lineage specification during early embryonic development. A number of studies have demonstrated that DNMT1 is an auto-inhibited enzyme and its enzymatic activity is allosterically regulated by a number of interacting partners. UHRF1 has previously been reported to regulate DNMT1 in multiple ways, including control of substrate specificity and the proper genome targeting. In this review, we discuss the recent advances in our understanding of the regulation of DNMT1 enzymatic activity by UHRF1 and highlight a number of unresolved questions.
Collapse
|
31
|
Jeltsch A, Broche J, Bashtrykov P. Molecular Processes Connecting DNA Methylation Patterns with DNA Methyltransferases and Histone Modifications in Mammalian Genomes. Genes (Basel) 2018; 9:genes9110566. [PMID: 30469440 PMCID: PMC6266221 DOI: 10.3390/genes9110566] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is an essential part of the epigenome chromatin modification network, which also comprises several covalent histone protein post-translational modifications. All these modifications are highly interconnected, because the writers and erasers of one mark, DNA methyltransferases (DNMTs) and ten eleven translocation enzymes (TETs) in the case of DNA methylation, are directly or indirectly targeted and regulated by other marks. Here, we have collected information about the genomic distribution and variability of DNA methylation in human and mouse DNA in different genomic elements. After summarizing the impact of DNA methylation on genome evolution including CpG depletion, we describe the connection of DNA methylation with several important histone post-translational modifications, including methylation of H3K4, H3K9, H3K27, and H3K36, but also with nucleosome remodeling. Moreover, we present the mechanistic features of mammalian DNA methyltransferases and their associated factors that mediate the crosstalk between DNA methylation and chromatin modifications. Finally, we describe recent advances regarding the methylation of non-CpG sites, methylation of adenine residues in human cells and methylation of mitochondrial DNA. At several places, we highlight controversial findings or open questions demanding future experimental work.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Julian Broche
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany.
| |
Collapse
|
32
|
Foster BM, Stolz P, Mulholland CB, Montoya A, Kramer H, Bultmann S, Bartke T. Critical Role of the UBL Domain in Stimulating the E3 Ubiquitin Ligase Activity of UHRF1 toward Chromatin. Mol Cell 2018; 72:739-752.e9. [PMID: 30392929 PMCID: PMC6242706 DOI: 10.1016/j.molcel.2018.09.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
The RING E3 ubiquitin ligase UHRF1 controls DNA methylation through its ability to target the maintenance DNA methyltransferase DNMT1 to newly replicated chromatin. DNMT1 recruitment relies on ubiquitylation of histone H3 by UHRF1; however, how UHRF1 deposits ubiquitin onto the histone is unknown. Here, we demonstrate that the ubiquitin-like domain (UBL) of UHRF1 is essential for RING-mediated H3 ubiquitylation. Using chemical crosslinking and mass spectrometry, biochemical assays, and recombinant chromatin substrates, we show that the UBL participates in structural rearrangements of UHRF1 upon binding to chromatin and the E2 ubiquitin conjugating enzyme UbcH5a/UBE2D1. Similar to ubiquitin, the UBL exerts its effects through a hydrophobic patch that contacts a regulatory surface on the “backside” of the E2 to stabilize the E2-E3-chromatin complex. Our analysis of the enzymatic mechanism of UHRF1 uncovers an unexpected function of the UBL domain and defines a new role for this domain in DNMT1-dependent inheritance of DNA methylation. The UBL domain of UHRF1 is required for its E3 ubiquitin ligase activity A hydrophobic patch on the UBL is required to form a stable E2/E3/chromatin complex The UHRF1 N terminus and UBL hydrophobic patch control targeted H3 ubiquitylation DNMT1-mediated maintenance DNA methylation requires the UBL hydrophobic patch
Collapse
Affiliation(s)
- Benjamin M Foster
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Paul Stolz
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Christopher B Mulholland
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Alex Montoya
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Sebastian Bultmann
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
33
|
Gowher H, Jeltsch A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans 2018; 46:1191-1202. [PMID: 30154093 PMCID: PMC6581191 DOI: 10.1042/bst20170574] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
As part of the epigenetic network, DNA methylation is a major regulator of chromatin structure and function. In mammals, it mainly occurs at palindromic CpG sites, but asymmetric methylation at non-CpG sites is also observed. Three enzymes are involved in the generation and maintenance of DNA methylation patterns. DNMT1 has high preference for hemimethylated CpG sites, and DNMT3A and DNMT3B equally methylate unmethylated and hemimethylated DNA, and also introduce non-CpG methylation. Here, we review recent observations and novel insights into the structure and function of mammalian DNMTs (DNA methyltransferases), including new structures of DNMT1 and DNMT3A, data on their mechanism, regulation by post-translational modifications and on the function of DNMTs in cells. In addition, we present news findings regarding the allosteric regulation and targeting of DNMTs by chromatin modifications and chromatin proteins. In combination, the recent publications summarized here impressively illustrate the intensity of ongoing research in this field. They provide a deeper understanding of key mechanistic properties of DNMTs, but they also document still unsolved issues, which need to be addressed in future research.
Collapse
Affiliation(s)
- Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
34
|
Tsagaratou A. TET mediated epigenetic regulation of iNKT cell lineage fate choice and function. Mol Immunol 2018; 101:564-573. [PMID: 30176520 DOI: 10.1016/j.molimm.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/19/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
During the last years, intensive research has shed light in the transcriptional networks that shape the invariant NKT (iNKT) cell lineage and guide the choices towards functionally distinct iNKT cell subsets (Constantinides and Bendelac, 2013; Engel and Kronenberg, 2014; Gapin, 2016; Kim et al., 2015). However, the epigenetic players that regulate gene expression and orchestrate the iNKT cell lineage choices remain poorly understood. Here, we summarize recent advances in our understanding of epigenetic regulation of iNKT cell development and lineage choice. Particular emphasis is placed on DNA modifications and the Ten Eleven Translocation (TET) family of DNA demethylases.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, San Diego, CA, 92037, USA.
| |
Collapse
|
35
|
Patnaik D, Estève PO, Pradhan S. Targeting the SET and RING-associated (SRA) domain of ubiquitin-like, PHD and ring finger-containing 1 (UHRF1) for anti-cancer drug development. Oncotarget 2018; 9:26243-26258. [PMID: 29899856 PMCID: PMC5995235 DOI: 10.18632/oncotarget.25425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-like containing PHD Ring Finger 1 (UHRF1) is a multi-domain protein with a methyl-DNA binding SRA (SET and RING-associated) domain, required for maintenance DNA methylation mediated by DNMT1. Primarily expressed in proliferating cells, UHRF1 is a cell-cycle regulated protein that is required for S phase entry. Furthermore, UHRF1 participates in transcriptional gene regulation by connecting DNA methylation to histone modifications. Upregulation of UHRF1 may serve as a biomarker for a variety of cancers; including breast, gastric, prostate, lung and colorectal carcinoma. To this end, overexpression of UHRF1 promotes cancer metastasis by triggering aberrant patterns of DNA methylation, and subsequently, silencing tumor suppressor genes. Various small molecule effectors of UHRF1 have been reported in the literature, although the mechanism of action may not be fully characterized. Small molecules that potentially bind to the SRA domain may affect the ability of UHRF1 to bind hemimethylated DNA; thereby reducing aberrant DNA methylation. Therefore, in a subset of cancers, small molecule UHRF1 inhibitors may restore normal gene expression and serve as useful anti-cancer therapeutics.
Collapse
|
36
|
Abhishek S, Nivya MA, Nakarakanti NK, Deeksha W, Khosla S, Rajakumara E. Biochemical and dynamic basis for combinatorial recognition of H3R2K9me2 by dual domains of UHRF1. Biochimie 2018; 149:105-114. [PMID: 29656054 DOI: 10.1016/j.biochi.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/10/2018] [Indexed: 01/10/2023]
Abstract
UHRF1 is a multi-domain protein comprising of a tandem tudor (UHRF1 TTD), a PHD finger, and a SET and RING-associated domain. It is required for the maintenance of CG methylation, heterochromatin formation and DNA repair. Isothermal titration calorimetry binding studies of unmodified and methylated lysine histone peptides establish that the UHRF1 TTD binds dimethylated Lys9 on histone H3 (H3K9me2). Further, MD simulation and binding studies reveal that TTD-PHD of UHRF1 (UHRF1 TTD-PHD) preferentially recognizes dimethyl-lysine status. Importantly, we show that Asp145 in the binding pocket determines the preferential recognition of the dimethyl-ammonium group of H3K9me2. Interestingly, PHD finger of the UHRF1 TTD-PHD has a negligible contribution to the binding affinity for recognition of K9me2 by the UHRF1 TTD. Surprisingly, Lys4 methylation on H3 peptide has an insignificant effect on combinatorial recognition of R2 and K9me2 on H3 by the UHRF1 TTD-PHD. We propose that subtle variations of key residues at the binding pocket determine status specific recognition of histone methyl-lysines by the reader domains.
Collapse
Affiliation(s)
- Suman Abhishek
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - M Angel Nivya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Naveen Kumar Nakarakanti
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, 500001, India.
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| |
Collapse
|
37
|
Gao L, Tan XF, Zhang S, Wu T, Zhang ZM, Ai HW, Song J. An Intramolecular Interaction of UHRF1 Reveals Dual Control for Its Histone Association. Structure 2018; 26:304-311.e3. [PMID: 29395786 DOI: 10.1016/j.str.2017.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) is one of the essential components of mammalian DNA methylation machinery. Chromatin association of UHRF1 is controlled via an interplay between its intramolecular interaction and dual recognition of histone H3 trimethylated at lysine 9 (H3K9me3) and hemimethylated DNA. Here, we report the crystal structure of the N-terminal tandem Tudor domain (TTD) of UHRF1 in complex with the C-terminal polybasic region (PBR). Structural analysis reveals that PBR binding leads to displacement of the TTD-plant homeodomain (PHD) linker, as well as blockage of the H3K9me3-engaging cage, both of which contribute to a chromatin-occluded UHRF1 conformation. Disruption of the TTD-PBR interaction, which is facilitated by the binding of UHRF1 to hemimethylated DNA or regulatory protein USP7, shifts the UHRF1 conformation toward an open state, allowing for efficient H3K9me3 binding. Together, this study provides structural basis for the allosteric regulation of UHRF1.
Collapse
Affiliation(s)
- Linfeng Gao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Xiao-Feng Tan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Shen Zhang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Tianchen Wu
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Hui-Wang Ai
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Chemistry, University of California, Riverside, CA 92521, USA; Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Jikui Song
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
38
|
Boamah D, Lin T, Poppinga FA, Basu S, Rahman S, Essel F, Chakravarty S. Characteristics of a PHD Finger Subtype. Biochemistry 2018; 57:525-539. [PMID: 29253329 DOI: 10.1021/acs.biochem.7b00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the plant homeodomain (PHD) finger superfamily is known for its site-specific readouts of histone tails, the origins of the mechanistic differences in histone H3 readout by different PHD subtypes remain less clear. We show that sequences containing the xCDxCDx motif in the PHD treble clef (xCDxCDx-PHD) constitute a distinct subtype, based on the following observations: (i) the amino acid composition of the binding site is strikingly different from other subtypes due to position-specific enrichment of negatively charged and bulky nonpolar residues, (ii) the binding site positions are mutually and positively correlated, and this correlation is absent in other subtypes, and (iii) there are only small structural deviations, despite low sequence similarity. The xCDxCDx-PHD constitutes ∼20% of the PHD family, and the double PHD fingers (DPFs) are 10% of the total number of xCDxCDx-PHDs. This subtype originated early in the evolution of eukaryotes but has diversified within the metazoan lineage. Despite sequence diversification, the positions of the enriched nonpolar residues, in particular, show very small structural deviations, suggesting critical contributions of nonpolar residues in the binding mechanism of this subtype. Using mutagenesis, we probed the contributions of the binding-site positions enriched in nonpolar residues in four xCDxCDx-PHD proteins and found that they contribute to the tight packing of the H3 residues. This effect may potentially be exploited, as we observed affinity enhancement upon substituting a bulky nonpolar residue at the same binding site in another histone reader. Overall, we present a detailed characterization of PHD subtypes.
Collapse
Affiliation(s)
- Daniel Boamah
- Chemistry & Biochemistry, South Dakota State University , Brookings, South Dakota 57007, United States
| | - Tao Lin
- Chemistry & Biochemistry, South Dakota State University , Brookings, South Dakota 57007, United States
| | - Franchesca A Poppinga
- Chemistry & Biochemistry, South Dakota State University , Brookings, South Dakota 57007, United States
| | - Shraddha Basu
- Chemistry & Biochemistry, South Dakota State University , Brookings, South Dakota 57007, United States
| | - Shahariar Rahman
- Chemistry & Biochemistry, South Dakota State University , Brookings, South Dakota 57007, United States
| | - Francisca Essel
- Chemistry & Biochemistry, South Dakota State University , Brookings, South Dakota 57007, United States
| | - Suvobrata Chakravarty
- Chemistry & Biochemistry, South Dakota State University , Brookings, South Dakota 57007, United States.,BioSNTR, Brookings, South Dakota 57007, United States
| |
Collapse
|
39
|
Houliston RS, Lemak A, Iqbal A, Ivanochko D, Duan S, Kaustov L, Ong MS, Fan L, Senisterra G, Brown PJ, Wang YX, Arrowsmith CH. Conformational dynamics of the TTD-PHD histone reader module of the UHRF1 epigenetic regulator reveals multiple histone-binding states, allosteric regulation, and druggability. J Biol Chem 2017; 292:20947-20959. [PMID: 29074623 PMCID: PMC5743070 DOI: 10.1074/jbc.m117.799700] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/29/2017] [Indexed: 11/06/2022] Open
Abstract
UHRF1 is a key mediator of inheritance of epigenetic DNA methylation patterns during cell division and is a putative target for cancer therapy. Recent studies indicate that interdomain interactions critically influence UHRF1's chromatin-binding properties, including allosteric regulation of its histone binding. Here, using an integrative approach that combines small angle X-ray scattering, NMR spectroscopy, and molecular dynamics simulations, we characterized the dynamics of the tandem tudor domain-plant homeodomain (TTD-PHD) histone reader module, including its 20-residue interdomain linker. We found that the apo TTD-PHD module in solution comprises a dynamic ensemble of conformers, approximately half of which are compact conformations, with the linker lying in the TTD peptide-binding groove. These compact conformations are amenable to cooperative, high-affinity histone binding. In the remaining conformations, the linker position was in flux, and the reader adopted both extended and compact states. Using a small-molecule fragment screening approach, we identified a compound, 4-benzylpiperidine-1-carboximidamide, that binds to the TTD groove, competes with linker binding, and promotes open TTD-PHD conformations that are less efficient at H3K9me3 binding. Our work reveals a mechanism by which the dynamic TTD-PHD module can be allosterically targeted with small molecules to modulate its histone reader function for therapeutic or experimental purposes.
Collapse
Affiliation(s)
- R Scott Houliston
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alexander Lemak
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aman Iqbal
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Danton Ivanochko
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Shili Duan
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lilia Kaustov
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Michelle S Ong
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lixin Fan
- the Small-Angle X-ray Scattering Core Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, and
| | - Guillermo Senisterra
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter J Brown
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yun-Xing Wang
- the NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Cheryl H Arrowsmith
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada,
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
40
|
Structural basis of molecular recognition of helical histone H3 tail by PHD finger domains. Biochem J 2017; 474:1633-1651. [PMID: 28341809 PMCID: PMC5415848 DOI: 10.1042/bcj20161053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The plant homeodomain (PHD) fingers are among the largest family of epigenetic domains, first characterized as readers of methylated H3K4. Readout of histone post-translational modifications by PHDs has been the subject of intense investigation; however, less is known about the recognition of secondary structure features within the histone tail itself. We solved the crystal structure of the PHD finger of the bromodomain adjacent to zinc finger 2A [BAZ2A, also known as TIP5 (TTF-I/interacting protein 5)] in complex with unmodified N-terminal histone H3 tail. The peptide is bound in a helical folded-back conformation after K4, induced by an acidic patch on the protein surface that prevents peptide binding in an extended conformation. Structural bioinformatics analyses identify a conserved Asp/Glu residue that we name ‘acidic wall’, found to be mutually exclusive with the conserved Trp for K4Me recognition. Neutralization or inversion of the charges at the acidic wall patch in BAZ2A, and homologous BAZ2B, weakened H3 binding. We identify simple mutations on H3 that strikingly enhance or reduce binding, as a result of their stabilization or destabilization of H3 helicity. Our work unravels the structural basis for binding of the helical H3 tail by PHD fingers and suggests that molecular recognition of secondary structure motifs within histone tails could represent an additional layer of regulation in epigenetic processes.
Collapse
|
41
|
Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes. Proc Natl Acad Sci U S A 2016; 114:E142-E151. [PMID: 27956603 DOI: 10.1073/pnas.1612967114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision.
Collapse
|
42
|
Zhao Q, Zhang J, Chen R, Wang L, Li B, Cheng H, Duan X, Zhu H, Wei W, Li J, Wu Q, Han JDJ, Yu W, Gao S, Li G, Wong J. Dissecting the precise role of H3K9 methylation in crosstalk with DNA maintenance methylation in mammals. Nat Commun 2016; 7:12464. [PMID: 27554592 PMCID: PMC5426519 DOI: 10.1038/ncomms12464] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
In mammals it is unclear if UHRF1-mediated DNA maintenance methylation by DNMT1 is strictly dependent on histone H3K9 methylation. Here we have generated an Uhrf1 knockin (KI) mouse model that specifically abolishes the H3K9me2/3-binding activity of Uhrf1. The homozygous Uhrf1 KI mice are viable and fertile, and exhibit ∼10% reduction of DNA methylation in various tissues. The reduced DNA methylation occurs globally in the genome and does not restrict only to the H3K9me2/3 enriched repetitive sequences. In vitro UHRF1 binds with higher affinity to reconstituted nucleosome with hemi-methylated CpGs than that with H3K9me2/3, although it binds cooperatively to nucleosome with both modifications. We also show that the nucleosome positioning affects the binding of methylated DNA by UHRF1. Thus, while our study supports a role for H3K9 methylation in promoting DNA methylation, it demonstrates for the first time that DNA maintenance methylation in mammals is largely independent of H3K9 methylation.
Collapse
Affiliation(s)
- Qian Zhao
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiqin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ruoyu Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lina Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bo Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Cheng
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xiaoya Duan
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haijun Zhu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qihan Wu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Wenqiang Yu
- Department of Biochemistry and Molecular Biology, Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity, Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
43
|
Chung HR, Xu C, Fuchs A, Mund A, Lange M, Staege H, Schubert T, Bian C, Dunkel I, Eberharter A, Regnard C, Klinker H, Meierhofer D, Cozzuto L, Winterpacht A, Di Croce L, Min J, Will H, Kinkley S. PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3. eLife 2016; 5. [PMID: 27223324 PMCID: PMC4915813 DOI: 10.7554/elife.10607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 05/19/2016] [Indexed: 02/04/2023] Open
Abstract
PHF13 is a chromatin affiliated protein with a functional role in differentiation, cell division, DNA damage response and higher chromatin order. To gain insight into PHF13's ability to modulate these processes, we elucidate the mechanisms targeting PHF13 to chromatin, its genome wide localization and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA PolII. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes. DOI:http://dx.doi.org/10.7554/eLife.10607.001 In human and other eukaryotic cells, DNA is packaged around proteins called histones to form a structure known as chromatin. Chemical tags added to the histones alter how the DNA is packaged and the activity of the genes encoded by that DNA. For example, many active genes are packaged around histone H3 proteins that have “Lysine 4 tri-methyl” tags attached to them. Another protein that is associated with chromatin is called PHF13 and it has several roles, including repairing damaged DNA. However, it was not known whether PHF13 binds to chromatin via the chemical tags, or in another way. Ho-Ryun, Xu, Fuchs et al. used several biochemical techniques in mouse and human cells to explore how PHF13 specifically interacts with chromatin. These experiments showed that PHF13 binds specifically to DNA and to two types of methyl tags (lysine 4-tri-methyl or lysine 4-di-methyl). These chemical tags are predominantly found at active promoters as well as at a small subset of less active promoters known as bivalent promoters. PHF13 interacted with other proteins on the chromatin that are known to either drive or repress gene activity and it’s depletion affected the activity of many genes. Whether PHF13 increased or decreased gene activity depended on whether it was bound to active or bivalent promoters. The active promoters targeted by PHF13 had higher numbers of the tri-methyl tags whereas the di-methyl tags were more common on the bivalent promoters. These findings provide preliminary evidence that a protein binding to different methyl tags in the same place on histone H3 can have opposite effects on gene activity. Ho-Ryun, Xu, Fuchs et al. now intend to find out more about the other proteins that interact with PHF13 on chromatin. DOI:http://dx.doi.org/10.7554/eLife.10607.002
Collapse
Affiliation(s)
- Ho-Ryun Chung
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chao Xu
- Structural Genomics Consortium, Toronto, Canada
| | - Alisa Fuchs
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas Mund
- Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Hannah Staege
- Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tobias Schubert
- Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Ilona Dunkel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anton Eberharter
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| | - Catherine Regnard
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| | - Henrike Klinker
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| | | | - Luca Cozzuto
- Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andreas Winterpacht
- Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luciano Di Croce
- Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys, Barcelona, Spain
| | - Jinrong Min
- Structural Genomics Consortium, Toronto, Canada
| | - Hans Will
- Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sarah Kinkley
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
44
|
Lai M, Liang L, Chen J, Qiu N, Ge S, Ji S, Shi T, Zhen B, Liu M, Ding C, Wang Y, Qin J. Multidimensional Proteomics Reveals a Role of UHRF2 in the Regulation of Epithelial-Mesenchymal Transition (EMT). Mol Cell Proteomics 2016; 15:2263-78. [PMID: 27114453 DOI: 10.1074/mcp.m115.057448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 01/07/2023] Open
Abstract
UHRF1 is best known for its positive role in the maintenance of DNMT1-mediated DNA methylation and is implicated in a variety of tumor processes. In this paper, we provided evidence to demonstrate a role of UHRF2 in cell motility and invasion through the regulation of the epithelial-mesenchymal transition (EMT) process by acting as a transcriptional co-regulator of the EMT-transcription factors (TFs). We ectopically expressed UHRF2 in gastric cancer cell lines and performed multidimensional proteomics analyses. Proteome profiling analysis suggested a role of UHRF2 in repression of cell-cell adhesion; analysis of proteome-wide TF DNA binding activities revealed the up-regulation of many EMT-TFs in UHRF2-overexpressing cells. These data suggest that UHRF2 is a regulator of cell motility and the EMT program. Indeed, cell invasion experiments demonstrated that silencing of UHRF2 in aggressive cells impaired their abilities of migration and invasion in vitro Further ChIP-seq identified UHRF2 genomic binding motifs that coincide with several TF binding motifs including EMT-TFs, and the binding of UHRF2 to CDH1 promoter was validated by ChIP-qPCR. Moreover, the interactome analysis with IP-MS uncovered the interaction of UHRF2 with TFs including TCF7L2 and several protein complexes that regulate chromatin remodeling and histone modifications, suggesting that UHRF2 is a transcription co-regulator for TFs such as TCF7L2 to regulate the EMT process. Taken together, our study identified a role of UHRF2 in EMT and tumor metastasis and demonstrated an effective approach to obtain clues of UHRF2 function without prior knowledge through combining evidence from multidimensional proteomics analyses.
Collapse
Affiliation(s)
- Mi Lai
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Lizhu Liang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Jiwei Chen
- §Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, College of Life Science, East China Normal University, Shanghai, China
| | - Naiqi Qiu
- §Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, College of Life Science, East China Normal University, Shanghai, China
| | - Sai Ge
- ¶Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shuhui Ji
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Tieliu Shi
- §Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, College of Life Science, East China Normal University, Shanghai, China
| | - Bei Zhen
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Mingwei Liu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Chen Ding
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Yi Wang
- ‖Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jun Qin
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China; ‖Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
45
|
Cui Y, Chen X, Zhang J, Sun X, Liu H, Bai L, Xu C, Liu X. Uhrf1 Controls iNKT Cell Survival and Differentiation through the Akt-mTOR Axis. Cell Rep 2016; 15:256-63. [DOI: 10.1016/j.celrep.2016.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/12/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023] Open
|
46
|
Abstract
Histones are subject to frequent combinatorial post-translational modifications (PTMs), forming a complex chemical "language" that is interpreted by PTM-specific histone-interacting protein modules (reader domains). These specific interactions are thought to instruct gene expression and downstream biological functions. While the majority of studies have focused on individual modifications, our current understanding of the combinatorial PTM patterns on histones is starting to emerge, benefiting from the convergence of multiple technologies. Here, we review the key technical advances and progress on discovery and characterization of combinatorial histone PTM patterns. We focus on the interactions between reader domains and combinatorial PTMs, which is essential for understanding the mechanism and biological meaning of establishing and interpreting information embedded in histone PTM patterns.
Collapse
Affiliation(s)
- Zhangli Su
- Department
of Biomolecular
Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin 53715, United States
| | - John M. Denu
- Department
of Biomolecular
Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
47
|
Patel DJ. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harb Perspect Biol 2016; 8:a018754. [PMID: 26931326 DOI: 10.1101/cshperspect.a018754] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
48
|
Tauber M, Fischle W. Conserved linker regions and their regulation determine multiple chromatin-binding modes of UHRF1. Nucleus 2016; 6:123-32. [PMID: 25891992 PMCID: PMC4615792 DOI: 10.1080/19491034.2015.1026022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is an important nuclear protein that is mutated and aberrantly expressed in many tumors. The protein integrates different chromatin modifications and is essential for their maintenance throughout the cell cycle. Separate chromatin-binding modules of UHRF1 have been studied on a functional and structural level. The unmodified N-terminus of histone H3 is recognized by a PHD domain, while a TTD domain specifically interacts with histone H3 Lysine 9 trimethylation. A SRA region binds hemimethylatd DNA. Emerging evidence indicates that the modules of UHRF1 do not act independently of each other but establish complex modes of interaction with patterns of chromatin modifications. This multivalent readout is regulated by allosteric binding of phosphatidylinositol 5-phosphate to a region outside the PHD, TTD and SRA domains as well as by phosphorylation of one of the linker regions connecting these modules. Here, we summarize the current knowledge on UHRF1 chromatin interaction and introduce a novel model of conformational transitions of the protein that are directed by the flexible and highly charged linker regions. We propose that these are essential in setting up defined structural states of the protein where different domains or combinations thereof are available for binding chromatin modifications or are prevented from doing so. Lastly, we suggest that controlled tuning of intramolecular linker interactions by ligands and posttranslational modifications establishes a rational framework for comprehending UHRF1 regulation and putatively the working mode of other chromatin factors in different physiological contexts.
Collapse
Affiliation(s)
- Maria Tauber
- a Laboratory of Chromatin Biochemistry ; Max Planck Institute for Biophysical Chemistry ; Göttingen , Germany
| | | |
Collapse
|
49
|
Greiner VJ, Kovalenko L, Humbert N, Richert L, Birck C, Ruff M, Zaporozhets OA, Dhe-Paganon S, Bronner C, Mély Y. Site-Selective Monitoring of the Interaction of the SRA Domain of UHRF1 with Target DNA Sequences Labeled with 2-Aminopurine. Biochemistry 2015; 54:6012-20. [PMID: 26368281 DOI: 10.1021/acs.biochem.5b00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UHRF1 plays a central role in the maintenance and transmission of epigenetic modifications by recruiting DNMT1 to hemimethylated CpG sites via its SET and RING-associated (SRA) domain, ensuring error-free duplication of methylation profiles. To characterize SRA-induced changes in the conformation and dynamics of a target 12 bp DNA duplex as a function of the methylation status, we labeled duplexes by the environment-sensitive probe 2-aminopurine (2-Ap) at various positions near or far from the central CpG recognition site containing either a nonmodified cytosine (NM duplex), a methylated cytosine (HM duplex), or methylated cytosines on both strands (BM duplex). Steady-state and time-resolved fluorescence indicated that binding of SRA induced modest conformational and dynamical changes in NM, HM, and BM duplexes, with only slight destabilization of base pairs, restriction of global duplex flexibility, and diminution of local nucleobase mobility. Moreover, significant restriction of the local motion of residues flanking the methylcytosine in the HM duplex suggested that these residues are more rigidly bound to SRA, in line with a slightly higher affinity of the HM duplex as compared to that of the NM or BM duplex. Our results are consistent with a "reader" role, in which the SRA domain scans DNA sequences for hemimethylated CpG sites without perturbation of the structure of contacted nucleotides.
Collapse
Affiliation(s)
- Vanille J Greiner
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Lesia Kovalenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France.,Analytical Chemistry Department, Taras Shevchenko National University of Kyiv , 64 Volodymyrska Street, 01033 Kyiv, Ukraine
| | - Nicolas Humbert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Olga A Zaporozhets
- Analytical Chemistry Department, Taras Shevchenko National University of Kyiv , 64 Volodymyrska Street, 01033 Kyiv, Ukraine
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School , 360 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Christian Bronner
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
50
|
Zhang ZM, Rothbart SB, Allison DF, Cai Q, Harrison JS, Li L, Wang Y, Strahl BD, Wang GG, Song J. An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1. Cell Rep 2015; 12:1400-6. [PMID: 26299963 DOI: 10.1016/j.celrep.2015.07.046] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/30/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023] Open
Abstract
The protein stability and chromatin functions of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) are regulated in a cell-cycle-dependent manner. We report a structural characterization of the complex between UHRF1 and the deubiquitinase USP7. The first two UBL domains of USP7 bind to the polybasic region (PBR) of UHRF1, and this interaction is required for the USP7-mediated deubiquitination of UHRF1. Importantly, we find that the USP7-binding site of the UHRF1 PBR overlaps with the region engaging in an intramolecular interaction with the N-terminal tandem Tudor domain (TTD). We show that the USP7-UHRF1 interaction perturbs the TTD-PBR interaction of UHRF1, thereby shifting the conformation of UHRF1 from a TTD-"occluded" state to a state open for multivalent histone binding. Consistently, introduction of a USP7-interaction-defective mutation to UHRF1 significantly reduces its chromatin association. Together, these results link USP7 interaction to the dynamic deubiquitination and chromatin association of UHRF1.
Collapse
Affiliation(s)
- Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - David F Allison
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Qian Cai
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Joseph S Harrison
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Brian D Strahl
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|