1
|
A viral genome packaging ring-ATPase is a flexibly coordinated pentamer. Nat Commun 2021; 12:6548. [PMID: 34772936 PMCID: PMC8589836 DOI: 10.1038/s41467-021-26800-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
Multi-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, using single-molecule fluorescence, we determine that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise number of active or inactive subunits, we find that the packaging motor can tolerate an inactive subunit. However, motors containing one or more inactive subunits exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a DNA packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, suggesting that strict coordination amongst motor subunits of packaging motors is not crucial for function.
Collapse
|
2
|
Liang C, Guo P. Identification of Arginine Finger as the Starter of the Biomimetic Motor in Driving Double-Stranded DNA. ACS NANO 2021; 15:13260-13266. [PMID: 34323470 PMCID: PMC8388119 DOI: 10.1021/acsnano.1c02973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanomotors in nanotechnology may be as important as cars in daily life. Biomotors are nanoscale machines ubiquitous in living systems to carry out ATP-driven activities such as walking, breathing, blinking, mitosis, replication, transcription, and trafficking. The sequential action in an asymmetrical hexamer by a revolving mechanism has been confirmed in dsDNA packaging motors of phi29, herpesviruses, bacterial dsDNA translocase FtsK, and Streptomyces TraB for conjugative dsDNA transfer. These elaborate, delicate, and exquisite ring structures have inspired scientists to design biomimetics in nanotechnology. Many multisubunit ATPase rings generate force via sequential action of multiple modules, such as the Walker A, Walker B, P-loop, arginine finger, sensors, and lid. The chemical to mechanical energy conversion usually takes place in sequential order. It is commonly believed that ATP binding triggers such conversion, but how the multimodule motor starts the sequential process has not been explicitly investigated. Identification of the starter is of great significance for biomimetic motor fabrication. Here, we report that the arginine finger is the starter of the motor. Only one amino acid residue change in the arginine finger led to the impediment and elimination of all following steps. Without the arginine finger, the motor failed to assemble, bind ATP, recruit DNA, or hydrolyze ATP and was eventually unable to package DNA. However, the loss of ATPase activity due to an inactive arginine finger can be rescued by an arginine finger from the adjacent subunit of Walker A mutant through trans-complementation. Taken together, we demonstrate that the formation of dimers triggered by the arginine finger initiates the motor action rather than the general belief of initiation by ATP binding.
Collapse
Affiliation(s)
- Chenxi Liang
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and
College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Biomedical
Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and
College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Biomedical
Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Agafontsev AM, Ravi A, Shumilova TA, Oshchepkov AS, Kataev EA. Molecular Receptors for Recognition and Sensing of Nucleotides. Chemistry 2018; 25:2684-2694. [PMID: 30289184 DOI: 10.1002/chem.201802978] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Nucleotides are constituents of nucleic acids and they have a variety of functions in cellular metabolism. Synthetic receptors and sensors are required to reveal the role of nucleotides in living organisms and mechanisms of signal transduction events. In recent years, a large number of nucleotide-selective synthetic receptors have been devised, which utilize different molecular designs and sensing mechanisms. This Minireview presents recent progress in the design of synthetic molecular receptors for selective recognition of nucleotides in aqueous solution. The binding properties of receptors and the origins of their selectivity for a particular nucleotide are discussed.
Collapse
Affiliation(s)
- Aleksandr M Agafontsev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova St. 1, 630090, Novosibirsk, Russia
| | - Anil Ravi
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Aleksandr S Oshchepkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russia
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
4
|
delToro D, Ortiz D, Ordyan M, Sippy J, Oh CS, Keller N, Feiss M, Catalano CE, Smith DE. Walker-A Motif Acts to Coordinate ATP Hydrolysis with Motor Output in Viral DNA Packaging. J Mol Biol 2016; 428:2709-29. [PMID: 27139643 PMCID: PMC4905814 DOI: 10.1016/j.jmb.2016.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/15/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function. We identify 55 point mutations that reduce virus yield to below detectable levels in a highly sensitive genetic complementation assay and 33 that cause varying reductions in yield. Most changes in the predicted conserved residues K76, R79, G81, and S83 produce no detectable yield. Biochemical analyses show that R79A and S83A mutant proteins fold, assemble, and display genome maturation activity similar to wild-type (WT) but exhibit little ATPase or DNA packaging activity. Kinetic DNA cleavage and ATPase measurements implicate R79 in motor ring assembly on DNA, supporting recent structural models that locate the P-loop at the interface between motor subunits. Single-molecule measurements detect no translocation for K76A and K76R, while G81A and S83A exhibit strong impairments, consistent with their predicted roles in ATP binding. We identify eight residue changes spanning A78-K84 that yield impaired translocation phenotypes and show that Walker-A residues play important roles in determining motor velocity, pausing, and processivity. The efficiency of initiation of packaging correlates strongly with motor velocity. Frequent pausing and slipping caused by changes A78V and R79K suggest that these residues are important for ATP alignment and coupling of ATP binding to DNA gripping. Our findings support recent structural models implicating the P-loop arginine in ATP hydrolysis and mechanochemical coupling.
Collapse
Affiliation(s)
- Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Abstract
Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead's portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL's N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage ϕ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064;
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| |
Collapse
|