1
|
Mohanty P, Phan TM, Mittal J. Transient interdomain interactions modulate the monomeric structural ensemble and oligomerization landscape of Huntingtin Exon 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592468. [PMID: 38766024 PMCID: PMC11100600 DOI: 10.1101/2024.05.03.592468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Polyglutamine expansion (≥ 36 residues) within the N-terminal exon-1 of Huntingtin (Httex1) leads to Huntington's disease, a neurogenerative condition marked by the presence of intranuclear Htt inclusions. Notably, the polyglutamine tract in Httex1 is flanked by an N-terminal coiled-coil domain - N17 (17 amino acids), which undergoes self-association to promote the formation of soluble Httex1 oligomers and brings the aggregation-prone polyQ tracts in close spatial proximity. However, the mechanisms underlying the subsequent conversion of soluble oligomers into insoluble β-rich aggregates with increasing polyQ length, remain unclear. Current knowledge suggests that expansion of the polyQ tract increases its helicity, and this favors its oligomerization and aggregation. In addition, studies utilizing conformation-specific antibodies and a stable coiled-coil heterotetrametric system fused to polyQ indicate that domain "cross-talk" (i.e., interdomain interactions) may be necessary to efficiently promote the emergence of toxic conformations (in monomers and oligomers) and fibrillar aggregation. Here, we performed extensive atomistic molecular dynamics (MD) simulations (aggregate time ∼ 0.7 ms) of N17-polyQ fragments to uncover the interplay between structural transformation and domain "cross-talk" on the monomeric structural ensemble and oligomerization landscape of Httex1. Our simulation ensembles of N17-polyQ monomers validated against 13 C NMR chemical shifts indicated that in addition to elevated α-helicity, polyQ expansion also favors transient, interdomain (N17-polyQ) interactions which result in the emergence of β-conformations. Further, interdomain interactions decreased the overall stability of N17-mediated dimers by counteracting the stabilizing effect of increased α-helicity and promoted a heterogenous oligomerization landscape on the sub-microsecond timescale. Overall, our study uncovers the significance of domain "cross-talk" in modulating the monomeric conformational ensemble and oligomerization landscape of Httex1 to favor the formation of amyloid aggregates.
Collapse
|
2
|
Ding Y, Xing D, Fei Y, Lu B. Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev 2022; 51:8832-8876. [PMID: 36218065 PMCID: PMC9620493 DOI: 10.1039/d2cs00624c] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) provides unprecedented opportunities for drug discovery. While the proteolysis-targeting chimera (PROTAC) technology has already entered clinical trials and changed the landscape of small-molecule drugs, new degrader technologies harnessing alternative degradation machineries, especially lysosomal pathways, have emerged and broadened the spectrum of degradable targets. We have recently proposed the concept of autophagy-tethering compounds (ATTECs) that hijack the autophagy protein microtubule-associated protein 1A/1B light chain 3 (LC3) for targeted degradation. Other groups also reported degrader technologies engaging lysosomal pathways through different mechanisms including AUTACs, AUTOTACs, LYTACs and MoDE-As. In this review, we analyse and discuss ATTECs along with other lysosomal-relevant degrader technologies. Finally, we will briefly summarize the current status of these degrader technologies and envision possible future studies.
Collapse
Affiliation(s)
- Yu Ding
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Siu HW, Hauser K. Observation of Oligomeric States Indicates a High Structural Flexibility Required for the Onset of Polyglutamine Fibrillization. J Phys Chem Lett 2022; 13:4543-4548. [PMID: 35580015 DOI: 10.1021/acs.jpclett.2c00203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyglutamine (polyQ) diseases are caused by misfolding and aggregation of expanded polyQ tracts in the affected protein. PolyQ fibrils have been studied in detail; however, less is known about oligomeric precursor states. By a combination of time-resolved temperature-jump (T-jump) infrared (IR) spectroscopy and an appropriately tailored polyQ model peptide, we succeeded in disentangling conformational dynamics in the heterogeneous ensemble of states evolving during aggregation. Individual structural elements could be differentiated by IR-specific signatures, i.e., hairpin monomers, β-structured oligomers, and disordered structure. Submillisecond dynamics were observed for early oligomeric states in contrast to the slow dynamics of fibril growth. We propose that a high structural flexibility of oligomers is required to initiate fibril formation, but not after a fibrillar structure has consolidated and the fibril just grows. Our study reveals that structural flexibility changes at different stages in the aggregation process, from fibril initiation to fibril growth.
Collapse
Affiliation(s)
- Ho-Wah Siu
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
4
|
Harding RJ, Deme JC, Hevler JF, Tamara S, Lemak A, Cantle JP, Szewczyk MM, Begeja N, Goss S, Zuo X, Loppnau P, Seitova A, Hutchinson A, Fan L, Truant R, Schapira M, Carroll JB, Heck AJR, Lea SM, Arrowsmith CH. Huntingtin structure is orchestrated by HAP40 and shows a polyglutamine expansion-specific interaction with exon 1. Commun Biol 2021; 4:1374. [PMID: 34880419 PMCID: PMC8654980 DOI: 10.1038/s42003-021-02895-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.
Collapse
Affiliation(s)
- Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Alexander Lemak
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Jeffrey P Cantle
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, 98225, USA
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Nola Begeja
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Siobhan Goss
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core of NCI, National Institutes of Health, Frederick, MD, 21701, USA
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey B Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, 98225, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
5
|
Siu HW, Heck B, Kovermann M, Hauser K. Template-assisted design of monomeric polyQ models to unravel the unique role of glutamine side chains in disease-related aggregation. Chem Sci 2020; 12:412-426. [PMID: 33552461 PMCID: PMC7863018 DOI: 10.1039/d0sc05299j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 01/28/2023] Open
Abstract
PolyQ model peptides reveal the effect of individual glutamine side chains on fibril formation.
Expanded polyglutamine (polyQ) sequences cause numerous neurodegenerative diseases which are accompanied by the formation of polyQ fibrils. The unique role of glutamines in the aggregation onset is undoubtedly accepted and a lot structural data of the fibrils have been acquired, however side-chain specific structural dynamics inducing oligomerization are not well understood yet. To analyze spectroscopically the nucleation process, we designed various template-assisted glutamine-rich β-hairpin monomers mimicking the structural motif of a polyQ fibril. In a top-down strategy, we use a template which forms a well-defined stable hairpin in solution, insert polyQ-rich sequences into each strand and monitor the effects of individual glutamines by NMR, CD and IR spectroscopic approaches. The design was further advanced by alternating glutamines with other amino acids (T, W, E, K), thereby enhancing the solubility and increasing the number of cross-strand interacting glutamine side chains. Our spectroscopic studies reveal a decreasing hairpin stability with increased glutamine content and demonstrate the enormous impact of only a few glutamines – far below the disease threshold – to destabilize structure. Furthermore, we could access sub-ms conformational dynamics of monomeric polyQ-rich peptides by laser-excited temperature-jump IR spectroscopy. Both, the increased number of interacting glutamines and higher concentrations are key parameters to induce oligomerization. Concentration-dependent time-resolved IR measurements indicate an additional slower kinetic phase upon oligomer formation. The here presented peptide models enable spectroscopic molecular analyses to distinguish between monomer and oligomer dynamics in the early steps of polyQ fibril formation and in a side-chain specific manner.
Collapse
Affiliation(s)
- Ho-Wah Siu
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany . ;
| | - Benjamin Heck
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany . ;
| | - Michael Kovermann
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany . ;
| | - Karin Hauser
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany . ;
| |
Collapse
|
6
|
Wetzel R. Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease. Acc Chem Res 2020; 53:2347-2357. [PMID: 32975927 DOI: 10.1021/acs.accounts.0c00450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Huntington's disease (HD) is a progressive, familial neurodegenerative disease triggered by the expansion of a polyglutamine (polyQ) track in the protein huntingtin (htt). PolyQ sequences up to Q36 in htt are not known to be toxic, while polyQ lengths above Q36 almost invariably lead to increased disease risk and decreased ages of onset. The large number of physical states (monomers, dimers, tetramers, non-β oligomers, nanofibrils, and clustered amyloid fibrils) on the self-association landscape, with their overlapping kinetics of formation, have greatly complicated identification of the molecular species responsible for HD toxicity, drawing attention to the need for innovative approaches.After reports of HD-associated intraneuronal htt inclusions in 1997, we elucidated aggregation mechanisms of both simple polyQ sequences and the more complex polyQ-containing "exon1" fragment of htt (htt-ex1). Grounded in this work, the more recent results described here were made possible by breakthroughs in the molecular design of diagnostic polyQ derivatives and in fluorescence applications for characterizing amyloid assembly intermediates. Thus, insertion of β-turn-promoting mutations into relatively short, disordered polyQ sequences created "pro-β-hairpin" polyQs (βHPs) that exhibit amyloid formation rates comparable to the enhanced rates seen with expanded polyQ peptides. Introduction of "β-breaker" mutations into these βHP polyQ sequences created molecules that are blocked from aggregating into amyloid and also can inhibit amyloid formation by other polyQ proteins. These mutational effects were then successfully transferred into more complex htt-ex1 sequence backgrounds. Insights into the aggregation properties of htt-ex1 derivatives-as well as into the nucleation process itself-were obtained using fluorescence correlation spectroscopy (FCS) and a novel thioflavin-T (ThT) protocol that allows quantitation of htt-ex1 assembly intermediates.Using these tools, we quantified physical states of htt-ex1 at different growth times in mammalian PC12 cells engineered for inducible expression of both normal and expanded polyQ repeat length versions of htt-ex1. For expanded polyQ versions, we found tetramers, oligomers, and fibrils (but no monomers) all populated in these cells at a time when the first indication of toxicity (nuclear DNA damage) was observed. These experiments provided a strong hint that monomeric forms of htt-ex1 are not involved in toxicity, but we were otherwise unable to implicate a specific toxic self-assembled state because of the overlapping kinetics of formation. To gain a more intimate focus and control over the timelines of htt-ex1 self-assembly and the resulting toxic response, we engineered various htt-ex1-βHP molecules-with and without added β-breaker mutations-that could be expressed in rat neuronal and Drosophila models of HD. In both models, novel htt-ex1-βHP analogues exhibiting strong aggregation in spite of their very short polyQ repeat lengths proved to be toxic, dramatically breaking the "repeat length paradigm" and strongly suggesting that the toxic species must be some kind of aggregate. In both models, β-breaker analogues of htt-ex1-βHP that are slow to make amyloid-instead favoring accumulation of non-β oligomers-were nontoxic. In contrast, htt-ex1-βHP analogues that rapidly progress to amyloid states were toxic, suggesting that an aggregate possessing the fundamental amyloid folding motif is very likely the major toxic species in HD.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Aravindan S, Chen S, Choudhry H, Molfetta C, Chen KY, Liu AYC. Osmolytes dynamically regulate mutant Huntingtin aggregation and CREB function in Huntington's disease cell models. Sci Rep 2020; 10:15511. [PMID: 32968182 PMCID: PMC7511939 DOI: 10.1038/s41598-020-72613-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Osmolytes are organic solutes that change the protein folding landscape shifting the equilibrium towards the folded state. Herein, we use osmolytes to probe the structuring and aggregation of the intrinsically disordered mutant Huntingtin (mHtt) vis-a-vis the pathogenicity of mHtt on transcription factor function and cell survival. Using an inducible PC12 cell model of Huntington's disease (HD), we show that stabilizing polyol osmolytes drive the aggregation of Htt103QExon1-EGFP from a diffuse ensemble into inclusion bodies (IBs), whereas the destabilizing osmolyte urea does not. This effect of stabilizing osmolytes is innate, generic, countered by urea, and unaffected by HSP70 and HSC70 knockdown. A qualitatively similar result of osmolyte-induced mHtt IB formation is observed in a conditionally immortalized striatal neuron model of HD, and IB formation correlates with improved survival under stress. Increased expression of diffuse mHtt sequesters the CREB transcription factor to repress CREB-reporter gene activity. This repression is mitigated either by stabilizing osmolytes, which deplete diffuse mHtt or by urea, which negates protein-protein interaction. Our results show that stabilizing polyol osmolytes promote mHtt aggregation, alleviate CREB dysfunction, and promote survival under stress to support the hypothesis that lower molecular weight entities of disease protein are relevant pathogenic species in neurodegeneration.
Collapse
Affiliation(s)
- Shreyaas Aravindan
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Samantha Chen
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Hannaan Choudhry
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Celine Molfetta
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Alice Y C Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Yang J, Yang X. Phase Transition of Huntingtin: Factors and Pathological Relevance. Front Genet 2020; 11:754. [PMID: 32849783 PMCID: PMC7396480 DOI: 10.3389/fgene.2020.00754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
Formation of intracellular mutant Huntingtin (mHtt) aggregates is a hallmark of Huntington’s disease (HD). The mechanisms underlying mHtt aggregation, however, are still not fully understood. A few recent studies indicated mHtt undergoes phase transition, bringing new clues to understand how mHtt aggregates assemble. Here in this mini review, we will summarize these findings with a focus on the factors that affect mHtt phase transition. We will also discuss the possible pathological roles of mHtt phase separation in HD.
Collapse
Affiliation(s)
- Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiaotong Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Urbanek A, Popovic M, Morató A, Estaña A, Elena-Real CA, Mier P, Fournet A, Allemand F, Delbecq S, Andrade-Navarro MA, Cortés J, Sibille N, Bernadó P. Flanking Regions Determine the Structure of the Poly-Glutamine in Huntingtin through Mechanisms Common among Glutamine-Rich Human Proteins. Structure 2020; 28:733-746.e5. [PMID: 32402249 DOI: 10.1016/j.str.2020.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
The causative agent of Huntington's disease, the poly-Q homo-repeat in the N-terminal region of huntingtin (httex1), is flanked by a 17-residue-long fragment (N17) and a proline-rich region (PRR), which promote and inhibit the aggregation propensity of the protein, respectively, by poorly understood mechanisms. Based on experimental data obtained from site-specifically labeled NMR samples, we derived an ensemble model of httex1 that identified both flanking regions as opposing poly-Q secondary structure promoters. While N17 triggers helicity through a promiscuous hydrogen bond network involving the side chains of the first glutamines in the poly-Q tract, the PRR promotes extended conformations in neighboring glutamines. Furthermore, a bioinformatics analysis of the human proteome showed that these structural traits are present in many human glutamine-rich proteins and that they are more prevalent in proteins with longer poly-Q tracts. Taken together, these observations provide the structural bases to understand previous biophysical and functional data on httex1.
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France; LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Carlos A Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
10
|
Sicorello A, Kelly G, Oregioni A, Nováček J, Sklenář V, Pastore A. The Structural Properties in Solution of the Intrinsically Mixed Folded Protein Ataxin-3. Biophys J 2019; 115:59-71. [PMID: 29972812 DOI: 10.1016/j.bpj.2018.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 10/28/2022] Open
Abstract
It has increasingly become clear over the last two decades that proteins can contain both globular domains and intrinsically unfolded regions that can both contribute to function. Although equally interesting, the disordered regions are difficult to study, because they usually do not crystallize unless bound to partners and are not easily amenable to cryo-electron microscopy studies. NMR spectroscopy remains the best technique to capture the structural features of intrinsically mixed folded proteins and describe their dynamics. These studies rely on the successful assignment of the spectrum, a task not easy per se given the limited spread of the resonances of the disordered residues. Here, we describe the structural properties of ataxin-3, the protein responsible for the neurodegenerative Machado-Joseph disease. Ataxin-3 is a 42-kDa protein containing a globular N-terminal Josephin domain and a C-terminal tail that comprises 13 polyglutamine repeats within a low complexity region. We developed a strategy that allowed us to achieve 87% assignment of the NMR spectrum using a mixed protocol based on high-dimensionality, high-resolution experiments and different labeling schemes. Thanks to the almost complete spectral assignment, we proved that the C-terminal tail is flexible, with extended helical regions, and interacts only marginally with the rest of the protein. We could also, for the first time to our knowledge, observe the structural propensity of the polyglutamine repeats within the context of the full-length protein and show that its structure is stabilized by the preceding region.
Collapse
Affiliation(s)
- Alessandro Sicorello
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Geoff Kelly
- Medical Research Council Biomolecular NMR Centre, The Francis Crick Institute, London, United Kingdom
| | - Alain Oregioni
- Medical Research Council Biomolecular NMR Centre, The Francis Crick Institute, London, United Kingdom
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vladimír Sklenář
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Annalisa Pastore
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Bravo-Arredondo JM, Kegulian NC, Schmidt T, Pandey NK, Situ AJ, Ulmer TS, Langen R. The folding equilibrium of huntingtin exon 1 monomer depends on its polyglutamine tract. J Biol Chem 2018; 293:19613-19623. [PMID: 30315108 DOI: 10.1074/jbc.ra118.004808] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Indexed: 11/06/2022] Open
Abstract
Expansion of the polyglutamine (polyQ) tract in exon 1 of the huntingtin protein (Httex1) leads to Huntington's disease resulting in fatal neurodegeneration. However, it remains poorly understood how polyQ expansions alter protein structure and cause toxicity. Using CD, EPR, and NMR spectroscopy, we found here that monomeric Httex1 consists of two co-existing structural states whose ratio is determined by polyQ tract length. We observed that short Q-lengths favor a largely random-coil state, whereas long Q-lengths increase the proportion of a predominantly α-helical state. We also note that by following a mobility gradient, Httex1 α-helical conformation is restricted to the N-terminal N17 region and to the N-terminal portion of the adjoining polyQ tract. Structuring in both regions was interdependent and likely stabilized by tertiary contacts. Although little helicity was present in N17 alone, each Gln residue in Httex1 enhanced helix stability by 0.03-0.05 kcal/mol, causing a pronounced preference for the α-helical state at pathological Q-lengths. The Q-length-dependent structuring and rigidification could be mimicked in proteins with shorter Q-lengths by a decrease in temperature, indicating that lower temperatures similarly stabilize N17 and polyQ intramolecular contacts. The more rigid α-helical state of Httex1 with an expanded polyQ tract is expected to alter interactions with cellular proteins and modulate the toxic Httex1 misfolding process. We propose that the polyQ-dependent shift in the structural equilibrium may enable future therapeutic strategies that specifically target Httex1 with toxic Q-lengths.
Collapse
Affiliation(s)
- Jose M Bravo-Arredondo
- From the Departments of Physiology and Neuroscience and.,the Facultad de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Calzada Apizaquito S/N, 90300 Apizaco, Tlaxcala, Mexico
| | - Natalie C Kegulian
- Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Thomas Schmidt
- Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | | | - Alan J Situ
- From the Departments of Physiology and Neuroscience and
| | - Tobias S Ulmer
- From the Departments of Physiology and Neuroscience and.,Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Ralf Langen
- From the Departments of Physiology and Neuroscience and .,Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| |
Collapse
|
12
|
Drombosky KW, Rode S, Kodali R, Jacob TC, Palladino MJ, Wetzel R. Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease. Neurobiol Dis 2018; 120:126-138. [PMID: 30171891 DOI: 10.1016/j.nbd.2018.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022] Open
Abstract
In Huntington disease (HD), an expanded polyglutamine (polyQ > 37) sequence within huntingtin (htt) exon1 leads to enhanced disease risk. It has proved difficult, however, to determine whether the toxic form generated by polyQ expansion is a misfolded or avid-binding monomer, an α-helix-rich oligomer, or a β-sheet-rich amyloid fibril. Here we describe an engineered htt exon1 analog featuring a short polyQ sequence that nonetheless quickly forms amyloid fibrils and causes HD-like toxicity in rat neurons and Drosophila. Additional modifications within the polyQ segment produce htt exon1 analogs that populate only spherical oligomers and are non-toxic in cells and flies. Furthermore, in mixture with expanded-polyQ htt exon1, the latter analogs in vitro suppress amyloid formation and promote oligomer formation, and in vivo rescue neurons and flies expressing mhtt exon1 from dysfunction and death. Thus, in our experiments, while htt exon1 toxicity tracks with aggregation propensity, it does so in spite of the toxic construct's possessing polyQ tracts well below those normally considered to be disease-associated. That is, aggregation propensity proves to be a more accurate surrogate for toxicity than is polyQ repeat length itself, strongly supporting a major toxic role for htt exon1 aggregation in HD. In addition, the results suggest that the aggregates that are most toxic in these model systems are amyloid-related. These engineered analogs are novel tools for mapping properties of polyQ self-assembly intermediates and products that should similarly be useful in the analysis of other expanded polyQ diseases. Small molecules with similar amyloid inhibitory properties might be developed into effective therapeutic agents.
Collapse
Affiliation(s)
- Kenneth W Drombosky
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sascha Rode
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ravi Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Palladino
- Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci 2018; 43:424-435. [PMID: 29636213 DOI: 10.1016/j.tibs.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/29/2023]
Abstract
Expanded polyglutamine (polyQ) stretches within endogenous proteins cause at least nine human diseases. The structural basis of polyQ pathogenesis is the key to understanding fundamental mechanisms of these diseases, but it remains unclear and controversial due to a lack of polyQ protein structures at the single-atom level. Various hypotheses have been proposed to explain the structure-cytotoxicity relationship of pathogenic proteins with polyQ expansion, largely based on indirect evidence. Here we review these hypotheses and their supporting evidence, along with additional insights from recent structural biology and chemical biology studies, with a focus on Huntingtin (HTT), the most extensively studied polyQ disease protein. Lastly, we propose potential novel strategies that may further clarify the conformation-cytotoxicity relationship of polyQ proteins.
Collapse
|
14
|
Newcombe EA, Ruff KM, Sethi A, Ormsby AR, Ramdzan YM, Fox A, Purcell AW, Gooley PR, Pappu RV, Hatters DM. Tadpole-like Conformations of Huntingtin Exon 1 Are Characterized by Conformational Heterogeneity that Persists regardless of Polyglutamine Length. J Mol Biol 2018; 430:1442-1458. [PMID: 29627459 DOI: 10.1016/j.jmb.2018.03.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 11/30/2022]
Abstract
Soluble huntingtin exon 1 (Httex1) with expanded polyglutamine (polyQ) engenders neurotoxicity in Huntington's disease. To uncover the physical basis of this toxicity, we performed structural studies of soluble Httex1 for wild-type and mutant polyQ lengths. Nuclear magnetic resonance experiments show evidence for conformational rigidity across the polyQ region. In contrast, hydrogen-deuterium exchange shows absence of backbone amide protection, suggesting negligible persistence of hydrogen bonds. The seemingly conflicting results are explained by all-atom simulations, which show that Httex1 adopts tadpole-like structures with a globular head encompassing the N-terminal amphipathic and polyQ regions and the tail encompassing the C-terminal proline-rich region. The surface area of the globular domain increases monotonically with polyQ length. This stimulates sharp increases in gain-of-function interactions in cells for expanded polyQ, and one of these interactions is with the stress-granule protein Fus. Our results highlight plausible connections between Httex1 structure and routes to neurotoxicity.
Collapse
Affiliation(s)
- Estella A Newcombe
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Angelique R Ormsby
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Yasmin M Ramdzan
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Archa Fox
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St Louis, MO 63130, USA.
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
15
|
Wagner AS, Politi AZ, Ast A, Bravo-Rodriguez K, Baum K, Buntru A, Strempel NU, Brusendorf L, Hänig C, Boeddrich A, Plassmann S, Klockmeier K, Ramirez-Anguita JM, Sanchez-Garcia E, Wolf J, Wanker EE. Self-assembly of Mutant Huntingtin Exon-1 Fragments into Large Complex Fibrillar Structures Involves Nucleated Branching. J Mol Biol 2018; 430:1725-1744. [PMID: 29601786 DOI: 10.1016/j.jmb.2018.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022]
Abstract
Huntingtin (HTT) fragments with extended polyglutamine tracts self-assemble into amyloid-like fibrillar aggregates. Elucidating the fibril formation mechanism is critical for understanding Huntington's disease pathology and for developing novel therapeutic strategies. Here, we performed systematic experimental and theoretical studies to examine the self-assembly of an aggregation-prone N-terminal HTT exon-1 fragment with 49 glutamines (Ex1Q49). Using high-resolution imaging techniques such as electron microscopy and atomic force microscopy, we show that Ex1Q49 fragments in cell-free assays spontaneously convert into large, highly complex bundles of amyloid fibrils with multiple ends and fibril branching points. Furthermore, we present experimental evidence that two nucleation mechanisms control spontaneous Ex1Q49 fibrillogenesis: (1) a relatively slow primary fibril-independent nucleation process, which involves the spontaneous formation of aggregation-competent fibrillary structures, and (2) a fast secondary fibril-dependent nucleation process, which involves nucleated branching and promotes the rapid assembly of highly complex fibril bundles with multiple ends. The proposed aggregation mechanism is supported by studies with the small molecule O4, which perturbs early events in the aggregation cascade and delays Ex1Q49 fibril assembly, comprehensive mathematical and computational modeling studies, and seeding experiments with small, preformed fibrillar Ex1Q49 aggregates that promote the assembly of amyloid fibrils. Together, our results suggest that nucleated branching in vitro plays a critical role in the formation of complex fibrillar HTT exon-1 aggregates with multiple ends.
Collapse
Affiliation(s)
- Anne S Wagner
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Antonio Z Politi
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Ast
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Kenny Bravo-Rodriguez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 2, 45470 Mülheim an der Ruhr, Germany; Computational Biochemistry, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Katharina Baum
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Alexander Buntru
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Nadine U Strempel
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Lydia Brusendorf
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian Hänig
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Annett Boeddrich
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Stephanie Plassmann
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Konrad Klockmeier
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Juan M Ramirez-Anguita
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 2, 45470 Mülheim an der Ruhr, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 2, 45470 Mülheim an der Ruhr, Germany; Computational Biochemistry, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
16
|
Urbanek A, Morató A, Allemand F, Delaforge E, Fournet A, Popovic M, Delbecq S, Sibille N, Bernadó P. A General Strategy to Access Structural Information at Atomic Resolution in Polyglutamine Homorepeats. Angew Chem Int Ed Engl 2018; 57:3598-3601. [PMID: 29359503 PMCID: PMC5901001 DOI: 10.1002/anie.201711530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/28/2017] [Indexed: 12/31/2022]
Abstract
Homorepeat (HR) proteins are involved in key biological processes and multiple pathologies, however their high-resolution characterization has been impaired due to their homotypic nature. To overcome this problem, we have developed a strategy to isotopically label individual glutamines within HRs by combining nonsense suppression and cell-free expression. Our method has enabled the NMR investigation of huntingtin exon1 with a 16-residue polyglutamine (poly-Q) tract, and the results indicate the presence of an N-terminal α-helix at near neutral pH that vanishes towards the end of the HR. The generality of the strategy was demonstrated by introducing a labeled glutamine into a pathological version of huntingtin with 46 glutamines. This methodology paves the way to decipher the structural and dynamic perturbations induced by HR extensions in poly-Q-related diseases. Our approach can be extended to other amino acids to investigate biological processes involving proteins containing low-complexity regions (LCRs).
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Elise Delaforge
- Centre de Biochimie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire, (LBCM-EA4558 Vaccination Antiparasitaire)UFR PharmacieUniversité de MontpellierMontpellierFrance
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| |
Collapse
|
17
|
Urbanek A, Morató A, Allemand F, Delaforge E, Fournet A, Popovic M, Delbecq S, Sibille N, Bernadó P. A General Strategy to Access Structural Information at Atomic Resolution in Polyglutamine Homorepeats. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS; Université de Montpellier; 29 rue de Navacelles 34090 Montpellier France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS; Université de Montpellier; 29 rue de Navacelles 34090 Montpellier France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS; Université de Montpellier; 29 rue de Navacelles 34090 Montpellier France
| | - Elise Delaforge
- Centre de Biochimie Structurale (CBS), INSERM, CNRS; Université de Montpellier; 29 rue de Navacelles 34090 Montpellier France
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS; Université de Montpellier; 29 rue de Navacelles 34090 Montpellier France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS; Université de Montpellier; 29 rue de Navacelles 34090 Montpellier France
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire, (LBCM-EA4558 Vaccination Antiparasitaire); UFR Pharmacie; Université de Montpellier; Montpellier France
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS; Université de Montpellier; 29 rue de Navacelles 34090 Montpellier France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS; Université de Montpellier; 29 rue de Navacelles 34090 Montpellier France
| |
Collapse
|
18
|
Fu Y, Wu P, Pan Y, Sun X, Yang H, Difiglia M, Lu B. A toxic mutant huntingtin species is resistant to selective autophagy. Nat Chem Biol 2017; 13:1152-1154. [PMID: 28869595 DOI: 10.1038/nchembio.2461] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023]
Abstract
Protein misfolding is a common theme in neurodegenerative disorders including Huntington's disease (HD). The HD-causing mutant huntingtin protein (mHTT) has an expanded polyglutamine (polyQ) stretch that may adopt multiple conformations, and the most toxic of these is the one recognized by antibody 3B5H10. Here we show that the 3B5H10-recognized mHTT species has a slower degradation rate due to its resistance to selective autophagy in human cells and brains, revealing mechanisms of its higher toxicity.
Collapse
Affiliation(s)
- Yuhua Fu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Wu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuyin Pan
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoli Sun
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huiya Yang
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Marian Difiglia
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Boston, USA
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| |
Collapse
|
19
|
Kar K, Baker MA, Lengyel GA, Hoop CL, Kodali R, Byeon IJ, Horne WS, van der Wel PCA, Wetzel R. Backbone Engineering within a Latent β-Hairpin Structure to Design Inhibitors of Polyglutamine Amyloid Formation. J Mol Biol 2016; 429:308-323. [PMID: 27986569 DOI: 10.1016/j.jmb.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 11/28/2022]
Abstract
Candidates for the toxic molecular species in the expanded polyglutamine (polyQ) repeat diseases range from various types of aggregates to "misfolded" monomers. One way to vet these candidates is to develop mutants that restrict conformational landscapes. Previously, we inserted two self-complementary β-hairpin enhancing motifs into a short polyQ sequence to generate a mutant, here called "βHP," that exhibits greatly improved amyloid nucleation without measurably enhancing β-structure in the monomer ensemble. We extend these studies here by introducing single-backbone H-bond impairing modifications αN-methyl Gln or l-Pro at key positions within βHP. Modifications predicted to allow formation of a fully H-bonded β-hairpin at the fibril edge while interfering with H-bonding to the next incoming monomer exhibit poor amyloid formation and act as potent inhibitors in trans of simple polyQ peptide aggregation. In contrast, a modification that disrupts intra-β-hairpin H-bonding within βHP, while also aggregating poorly, is ineffective at inhibiting amyloid formation in trans. The inhibitors constitute a dynamic version of the edge-protection negative design strategy used in protein evolution to limit unwanted protein aggregation. Our data support a model in which polyQ peptides containing strong β-hairpin encouraging motifs only rarely form β-hairpin conformations in the monomer ensemble, but nonetheless take on such conformations at key steps during amyloid formation. The results provide insights into polyQ solution structure and fibril formation while also suggesting an approach to the design of inhibitors of polyQ amyloid growth that focuses on conformational requirements for fibril and nucleus elongation.
Collapse
Affiliation(s)
- Karunakar Kar
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Matthew A Baker
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - George A Lengyel
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cody L Hoop
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ravindra Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - In-Ja Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
20
|
CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun 2016; 7:13821. [PMID: 27929117 PMCID: PMC5155164 DOI: 10.1038/ncomms13821] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Aberrant protein aggregation is controlled by various chaperones, including CCT (chaperonin containing TCP-1)/TCP-1/TRiC. Mutated CCT4/5 subunits cause sensory neuropathy and CCT5 expression is decreased in Alzheimer's disease. Here, we show that CCT integrity is essential for autophagosome degradation in cells or Drosophila and this phenomenon is orchestrated by the actin cytoskeleton. When autophagic flux is reduced by compromise of individual CCT subunits, various disease-relevant autophagy substrates accumulate and aggregate. The aggregation of proteins like mutant huntingtin, ATXN3 or p62 after CCT2/5/7 depletion is predominantly autophagy dependent, and does not further increase with CCT knockdown in autophagy-defective cells/organisms, implying surprisingly that the effect of loss-of-CCT activity on mutant ATXN3 or huntingtin oligomerization/aggregation is primarily a consequence of autophagy inhibition rather than loss of physiological anti-aggregation activity for these proteins. Thus, our findings reveal an essential partnership between two key components of the proteostasis network and implicate autophagy defects in diseases with compromised CCT complex activity.
Collapse
|
21
|
Walsh PS, Blodgett KN, McBurney C, Gellman SH, Zwier TS. Inherent Conformational Preferences of Ac-Gln-Gln-NHBn: Sidechain Hydrogen Bonding Supports a β-Turn in the Gas Phase. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patrick S. Walsh
- Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| | - Karl N. Blodgett
- Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| | - Carl McBurney
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Samuel H. Gellman
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Timothy S. Zwier
- Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| |
Collapse
|
22
|
Walsh PS, Blodgett KN, McBurney C, Gellman SH, Zwier TS. Inherent Conformational Preferences of Ac‐Gln‐Gln‐NHBn: Sidechain Hydrogen Bonding Supports a β‐Turn in the Gas Phase. Angew Chem Int Ed Engl 2016; 55:14618-14622. [PMID: 27775204 DOI: 10.1002/anie.201607842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/04/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Patrick S. Walsh
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Karl N. Blodgett
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Carl McBurney
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Samuel H. Gellman
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Timothy S. Zwier
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
23
|
Shen K, Calamini B, Fauerbach JA, Ma B, Shahmoradian SH, Serrano Lachapel IL, Chiu W, Lo DC, Frydman J. Control of the structural landscape and neuronal proteotoxicity of mutant Huntingtin by domains flanking the polyQ tract. eLife 2016; 5. [PMID: 27751235 PMCID: PMC5135392 DOI: 10.7554/elife.18065] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases are linked to amyloid aggregation. In Huntington’s disease (HD), neurotoxicity correlates with an increased aggregation propensity of a polyglutamine (polyQ) expansion in exon 1 of mutant huntingtin protein (mHtt). Here we establish how the domains flanking the polyQ tract shape the mHtt conformational landscape in vitro and in neurons. In vitro, the flanking domains have opposing effects on the conformation and stabilities of oligomers and amyloid fibrils. The N-terminal N17 promotes amyloid fibril formation, while the C-terminal Proline Rich Domain destabilizes fibrils and enhances oligomer formation. However, in neurons both domains act synergistically to engage protective chaperone and degradation pathways promoting mHtt proteostasis. Surprisingly, when proteotoxicity was assessed in rat corticostriatal brain slices, either flanking region alone sufficed to generate a neurotoxic conformation, while the polyQ tract alone exhibited minimal toxicity. Linking mHtt structural properties to its neuronal proteostasis should inform new strategies for neuroprotection in polyQ-expansion diseases. DOI:http://dx.doi.org/10.7554/eLife.18065.001 Huntington’s disease is a neurodegenerative disorder in which misshapen proteins accumulate in the brain and kill neurons. The misshapen proteins form as a result of specific mutations in the gene that encodes a protein called huntingtin. These mutations result in a region of the protein called the polyQ tract being longer than normal. Other regions of huntingtin that are near to the polyQ tract can dramatically change the behavior of the mutant protein. Shen et al. investigated how these regions control the shape of mutant huntingtin and how this affects the toxicity of the mutant protein in neurons. The experiments found that the two regions on either side of the polyQ tract dramatically change the shape of mutant huntingtin proteins. In the absence of these flanking regions, the extended polyQ region is not very toxic, demonstrating that the flanking sequences play important roles in generating the toxic protein shapes. These flanking regions help mutant huntingtin to form a particular shape that was strongly linked with the death of neurons in rat brain slices. The flanking regions also change the way that the cellular machinery in neurons recognizes mutated huntingtin proteins and acts to prevent them from causing harm. Misshapen forms of other proteins are responsible for causing other neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Therefore, the findings of Shen et al. may help researchers to develop new drugs for these conditions, as well as for Huntingdon’s disease. DOI:http://dx.doi.org/10.7554/eLife.18065.002
Collapse
Affiliation(s)
- Koning Shen
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Barbara Calamini
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Jonathan A Fauerbach
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Boxue Ma
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Sarah H Shahmoradian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Ivana L Serrano Lachapel
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Donald C Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| |
Collapse
|
24
|
Owens GE, New DM, Olvera AI, Manzella JA, Macon BL, Dunn JC, Cooper DA, Rouleau RL, Connor DS, Bjorkman PJ. Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity. Acta Crystallogr F Struct Biol Commun 2016; 72:762-771. [PMID: 27710941 PMCID: PMC5053161 DOI: 10.1107/s2053230x16014011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022] Open
Abstract
Huntington's disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity.
Collapse
Affiliation(s)
- Gwen E. Owens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Graduate Option in Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- UCLA–Caltech Medical Scientist Training Program, Los Angeles, CA 90095, USA
| | - Danielle M. New
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alejandra I. Olvera
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Julia Ashlyn Manzella
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Brittney L. Macon
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Joshua C. Dunn
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - David A. Cooper
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Robyn L. Rouleau
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Daniel S. Connor
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
25
|
Kratter IH, Zahed H, Lau A, Tsvetkov AS, Daub AC, Weiberth KF, Gu X, Saudou F, Humbert S, Yang XW, Osmand A, Steffan JS, Masliah E, Finkbeiner S. Serine 421 regulates mutant huntingtin toxicity and clearance in mice. J Clin Invest 2016; 126:3585-97. [PMID: 27525439 PMCID: PMC5004962 DOI: 10.1172/jci80339] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/30/2016] [Indexed: 01/17/2023] Open
Abstract
Huntington's disease (HD) is a progressive, adult-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the N-terminal region of the protein huntingtin (HTT). There are no cures or disease-modifying therapies for HD. HTT has a highly conserved Akt phosphorylation site at serine 421, and prior work in HD models found that phosphorylation at S421 (S421-P) diminishes the toxicity of mutant HTT (mHTT) fragments in neuronal cultures. However, whether S421-P affects the toxicity of mHTT in vivo remains unknown. In this work, we used murine models to investigate the role of S421-P in HTT-induced neurodegeneration. Specifically, we mutated the human mHTT gene within a BAC to express either an aspartic acid or an alanine at position 421, mimicking tonic phosphorylation (mHTT-S421D mice) or preventing phosphorylation (mHTT-S421A mice), respectively. Mimicking HTT phosphorylation strongly ameliorated mHTT-induced behavioral dysfunction and striatal neurodegeneration, whereas neuronal dysfunction persisted when S421 phosphorylation was blocked. We found that S421 phosphorylation mitigates neurodegeneration by increasing proteasome-dependent turnover of mHTT and reducing the presence of a toxic mHTT conformer. These data indicate that S421 is a potent modifier of mHTT toxicity and offer in vivo validation for S421 as a therapeutic target in HD.
Collapse
Affiliation(s)
- Ian H. Kratter
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Hengameh Zahed
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Alice Lau
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, USA
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aaron C. Daub
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
- Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
| | - Kurt F. Weiberth
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Frédéric Saudou
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
- Inserm, U1216, Grenoble, France
- Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Sandrine Humbert
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
- Inserm, U1216, Grenoble, France
- Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - X. William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alex Osmand
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Joan S. Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, UCSD, La Jolla, California, USA
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Departments of Neurology and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
26
|
Strømland Ø, Jakubec M, Furse S, Halskau Ø. Detection of misfolded protein aggregates from a clinical perspective. J Clin Transl Res 2016; 2:11-26. [PMID: 30873457 PMCID: PMC6410640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer's (AD), Parkinson's (PD) and prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Finally, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear which approach may yield a reliable clinical test first. Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for these are subject of this review.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
27
|
Kokona B, May CA, Cunningham NR, Richmond L, Jay Garcia F, Durante JC, Ulrich KM, Roberts CM, Link CD, Stafford WF, Laue TM, Fairman R. Studying polyglutamine aggregation in Caenorhabditis elegans using an analytical ultracentrifuge equipped with fluorescence detection. Protein Sci 2015; 25:605-17. [PMID: 26647351 DOI: 10.1002/pro.2854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022]
Abstract
This work explores the heterogeneity of aggregation of polyglutamine fusion constructs in crude extracts of transgenic Caenorhabditis elegans animals. The work takes advantage of the recent technical advances in fluorescence detection for the analytical ultracentrifuge. Further, new sedimentation velocity methods, such as the multi-speed method for data capture and wide distribution analysis for data analysis, are applied to improve the resolution of the measures of heterogeneity over a wide range of sizes. The focus here is to test the ability to measure sedimentation of polyglutamine aggregates in complex mixtures as a prelude to future studies that will explore the effects of genetic manipulation and environment on aggregation and toxicity. Using sedimentation velocity methods, we can detect a wide range of aggregates, ranging from robust analysis of the monomer species through an intermediate and quite heterogeneous population of oligomeric species, and all the way up to detecting species that likely represent intact inclusion bodies based on comparison to an analysis of fluorescent puncta in living worms by confocal microscopy. Our results support the hypothesis that misfolding of expanded polyglutamine tracts into insoluble aggregates involves transitions through a number of stable intermediate structures, a model that accounts for how an aggregation pathway can lead to intermediates that can have varying toxic or protective attributes. An understanding of the details of intermediate and large-scale aggregation for polyglutamine sequences, as found in neurodegenerative diseases such as Huntington's Disease, will help to more precisely identify which aggregated species may be involved in toxicity and disease.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041
| | - Carrie A May
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | | | - Lynn Richmond
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041
| | - F Jay Garcia
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041
| | - Julia C Durante
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041
| | - Kathleen M Ulrich
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041
| | - Christine M Roberts
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Christopher D Link
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Walter F Stafford
- Boston Biomedical Research Institute, Watertown, Massachusetts, 02472
| | - Thomas M Laue
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041
| |
Collapse
|
28
|
Perevozchikova T, Stanley CB, McWilliams-Koeppen HP, Rowe EL, Berthelier V. Investigating the structural impact of the glutamine repeat in huntingtin assembly. Biophys J 2015; 107:411-421. [PMID: 25028883 DOI: 10.1016/j.bpj.2014.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/19/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022] Open
Abstract
Acquiring detailed structural information about the various aggregation states of the huntingtin-exon1 protein (Htt-exon1) is crucial not only for identifying the true nature of the neurotoxic species responsible for Huntington's disease (HD) but also for designing effective therapeutics. Using time-resolved small-angle neutron scattering (TR-SANS), we followed the conformational changes that occurred during fibrillization of the pathologic form of Htt-exon1 (NtQ42P10) and compared the results with those obtained for the wild-type (NtQ22P10). Our results show that the aggregation pathway of NtQ22P10 is very different from that of NtQ42P10, as the initial steps require a monomer to 7-mer transition stage. In contrast, the earliest species identified for NtQ42P10 are monomer and dimer. The divergent pathways ultimately result in NtQ22P10 fibrils that possess a packing arrangement consistent with the common amyloid sterical zipper model, whereas NtQ42P10 fibrils present a better fit to the Perutz β-helix structural model. The structural details obtained by TR-SANS should help to delineate the key mechanisms that underpin Htt-exon1 aggregation leading to HD.
Collapse
Affiliation(s)
- Tatiana Perevozchikova
- Department of Medicine, University of Tennessee Health Science Center-Graduate School of Medicine, Knoxville, Tennessee
| | - Christopher B Stanley
- Biology and Biomedical Sciences Group, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Helen P McWilliams-Koeppen
- Department of Medicine, University of Tennessee Health Science Center-Graduate School of Medicine, Knoxville, Tennessee
| | - Erica L Rowe
- Department of Medicine, University of Tennessee Health Science Center-Graduate School of Medicine, Knoxville, Tennessee
| | - Valerie Berthelier
- Department of Medicine, University of Tennessee Health Science Center-Graduate School of Medicine, Knoxville, Tennessee.
| |
Collapse
|
29
|
Owens GE, New DM, West AP, Bjorkman PJ. Anti-PolyQ Antibodies Recognize a Short PolyQ Stretch in Both Normal and Mutant Huntingtin Exon 1. J Mol Biol 2015; 427:2507-2519. [PMID: 26047735 DOI: 10.1016/j.jmb.2015.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022]
Abstract
Huntington's disease is caused by expansion of a polyglutamine (polyQ) repeat in the huntingtin protein. A structural basis for the apparent transition between normal and disease-causing expanded polyQ repeats of huntingtin is unknown. The "linear lattice" model proposed random-coil structures for both normal and expanded polyQ in the preaggregation state. Consistent with this model, the affinity and stoichiometry of the anti-polyQ antibody MW1 increased with the number of glutamines. An opposing "structural toxic threshold" model proposed a conformational change above the pathogenic polyQ threshold resulting in a specific toxic conformation for expanded polyQ. Support for this model was provided by the anti-polyQ antibody 3B5H10, which was reported to specifically recognize a distinct pathologic conformation of soluble expanded polyQ. To distinguish between these models, we directly compared binding of MW1 and 3B5H10 to normal and expanded polyQ repeats within huntingtin exon 1 fusion proteins. We found similar binding characteristics for both antibodies. First, both antibodies bound to normal, as well as expanded, polyQ in huntingtin exon 1 fusion proteins. Second, an expanded polyQ tract contained multiple epitopes for fragments antigen-binding (Fabs) of both antibodies, demonstrating that 3B5H10 does not recognize a single epitope specific to expanded polyQ. Finally, small-angle X-ray scattering and dynamic light scattering revealed similar binding modes for MW1 and 3B5H10 Fab-huntingtin exon 1 complexes. Together, these results support the linear lattice model for polyQ binding proteins, suggesting that the hypothesized pathologic conformation of soluble expanded polyQ is not a valid target for drug design.
Collapse
Affiliation(s)
- Gwen E Owens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Graduate Option in Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Danielle M New
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
30
|
Heine EM, Berger TR, Pluciennik A, Orr CR, Zboray L, Merry DE. Proteasome-mediated proteolysis of the polyglutamine-expanded androgen receptor is a late event in spinal and bulbar muscular atrophy (SBMA) pathogenesis. J Biol Chem 2015; 290:12572-84. [PMID: 25795778 DOI: 10.1074/jbc.m114.617894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Indexed: 01/08/2023] Open
Abstract
Proteolysis of polyglutamine-expanded proteins is thought to be a required step in the pathogenesis of several neurodegenerative diseases. The accepted view for many polyglutamine proteins is that proteolysis of the mutant protein produces a "toxic fragment" that induces neuronal dysfunction and death in a soluble form; toxicity of the fragment is buffered by its incorporation into amyloid-like inclusions. In contrast to this view, we show that, in the polyglutamine disease spinal and bulbar muscular atrophy, proteolysis of the mutant androgen receptor (AR) is a late event. Immunocytochemical and biochemical analyses revealed that the mutant AR aggregates as a full-length protein, becoming proteolyzed to a smaller fragment through a process requiring the proteasome after it is incorporated into intranuclear inclusions. Moreover, the toxicity-predicting conformational antibody 3B5H10 bound to soluble full-length AR species but not to fragment-containing nuclear inclusions. These data suggest that the AR is toxic as a full-length protein, challenging the notion of polyglutamine protein fragment-associated toxicity by redefining the role of AR proteolysis in spinal and bulbar muscular atrophy pathogenesis.
Collapse
Affiliation(s)
- Erin M Heine
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Tamar R Berger
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Anna Pluciennik
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Christopher R Orr
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Lori Zboray
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Diane E Merry
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
31
|
Hoffner G, Djian P. Polyglutamine Aggregation in Huntington Disease: Does Structure Determine Toxicity? Mol Neurobiol 2014; 52:1297-1314. [PMID: 25336039 DOI: 10.1007/s12035-014-8932-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/09/2014] [Indexed: 01/14/2023]
Abstract
Huntington disease is a dominantly inherited disease of the central nervous system. The mutational expansion of polyglutamine beyond a critical length produces a toxic gain of function in huntingtin and results in neuronal death. In the course of the disease, expanded huntingtin is proteolyzed, becomes abnormally folded, and accumulates in oligomers, fibrils, and microscopic inclusions. The aggregated forms of the expanded protein are structurally diverse. Structural heterogeneity may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective. When defined, the toxic structures could then specifically be targeted by prophylactic or therapeutic drugs aimed at inhibiting polyglutamine aggregation.
Collapse
Affiliation(s)
- Guylaine Hoffner
- Laboratoire de Physiologie Cérébrale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France
| | - Philippe Djian
- Laboratoire de Physiologie Cérébrale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| |
Collapse
|
32
|
Dunbar J, Knapp B, Fuchs A, Shi J, Deane CM. Examining variable domain orientations in antigen receptors gives insight into TCR-like antibody design. PLoS Comput Biol 2014; 10:e1003852. [PMID: 25233457 PMCID: PMC4168974 DOI: 10.1371/journal.pcbi.1003852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
The variable domains of antibodies and T-Cell receptors (TCRs) share similar structures. Both molecules act as sensors for the immune system but recognise their respective antigens in different ways. Antibodies bind to a diverse set of antigenic shapes whilst TCRs only recognise linear peptides presented by a major histocompatibility complex (MHC). The antigen specificity and affinity of both receptors is determined primarily by the sequence and structure of their complementarity determining regions (CDRs). In antibodies the binding site is also known to be affected by the relative orientation of the variable domains, VH and VL. Here, the corresponding property for TCRs, the Vβ-Vα orientation, is investigated and compared with that of antibodies. We find that TCR and antibody orientations are distinct. General antibody orientations are found to be incompatible with binding to the MHC in a canonical TCR-like mode. Finally, factors that cause the orientation of TCRs and antibodies to be different are investigated. Packing of the long Vα CDR3 in the domain-domain interface is found to be influential. In antibodies, a similar packing affect can be achieved using a bulky residue at IMGT position 50 on the VH domain. Along with IMGT VH 50, other positions are identified that may help to promote a TCR-like orientation in antibodies. These positions should provide useful considerations in the engineering of therapeutic TCR-like antibodies. The immune system needs to be able to sense molecules that might be harmful to the organism. Such harmful molecules are known as antigens. Two classes of receptor proteins that mediate antigen recognition are antibodies and T-Cell receptors (TCRs). Antibodies are able to bind a diverse range of antigen shapes whilst TCRs are specialised to recognise a cell-surface protein, the pMHC. Antibodies that bind the pMHC are rarely created naturally. However, such TCR-like antibodies are of therapeutic importance. The binding regions of the TCR and the antibody have very similar three dimensional structures. Both consist of two independent units, domains, which associate and form the antigen binding site between them. This work examines how the two domains orientate with respect to one another in TCRs and antibodies. Our results show that the conformations that exist in TCRs and antibodies are distinct. Consequently it is difficult for an antibody to bind to a pMHC in the same way a TCR would. However, a similar conformation can be achieved in antibodies as in TCRs by the presence of certain amino-acids in the domain interface. This knowledge should aid the development of therapeutic TCR-like antibodies.
Collapse
Affiliation(s)
- James Dunbar
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Bernhard Knapp
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Angelika Fuchs
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Informatics, Penzberg, Germany
| | - Jiye Shi
- Informatics, UCB Pharma, Slough, United Kingdom
| | - Charlotte M. Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Sahoo B, Singer D, Kodali R, Zuchner T, Wetzel R. Aggregation behavior of chemically synthesized, full-length huntingtin exon1. Biochemistry 2014; 53:3897-907. [PMID: 24921664 PMCID: PMC4075985 DOI: 10.1021/bi500300c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Repeat
length disease thresholds vary among the 10 expanded polyglutamine
(polyQ) repeat diseases, from about 20 to about 50 glutamine residues.
The unique amino acid sequences flanking the polyQ segment are thought
to contribute to these repeat length thresholds. The specific portions
of the flanking sequences that modulate polyQ properties are not always
clear, however. This ambiguity may be important in Huntington’s
disease (HD), for example, where in vitro studies
of aggregation mechanisms have led to distinctly different mechanistic
models. Most in vitro studies of the aggregation
of the huntingtin (HTT) exon1 fragment implicated in the HD mechanism
have been conducted on inexact molecules that are imprecise either
on the N-terminus (recombinantly produced peptides) or on the C-terminus
(chemically synthesized peptides). In this paper, we investigate the
aggregation properties of chemically synthesized HTT exon1 peptides
that are full-length and complete, containing both normal and expanded
polyQ repeat lengths, and compare the results directly to previously
investigated molecules containing truncated C-termini. The results
on the full-length peptides are consistent with a two-step aggregation
mechanism originally developed based on studies of the C-terminally
truncated analogues. Thus, we observe relatively rapid formation of
spherical oligomers containing from 100 to 600 HTT exon1 molecules
and intermediate formation of short protofibril-like structures containing
from 500 to 2600 molecules. In contrast to this relatively rapid assembly,
mature HTT exon1 amyloid requires about one month to dissociate in vitro, which is similar to the time required for neuronal
HTT exon1 aggregates to disappear in vivo after HTT
production is discontinued.
Collapse
Affiliation(s)
- Bankanidhi Sahoo
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
34
|
Miettinen MS, Monticelli L, Nedumpully-Govindan P, Knecht V, Ignatova Z. Stable polyglutamine dimers can contain β-hairpins with interdigitated side chains-but not α-helices, β-nanotubes, β-pseudohelices, or steric zippers. Biophys J 2014; 106:1721-8. [PMID: 24739171 PMCID: PMC4008795 DOI: 10.1016/j.bpj.2014.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/03/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022] Open
Abstract
A common thread connecting nine fatal neurodegenerative protein aggregation diseases is an abnormally expanded polyglutamine tract found in the respective proteins. Although the structure of this tract in the large mature aggregates is increasingly well described, its structure in the small early aggregates remains largely unknown. As experimental evidence suggests that the most toxic species along the aggregation pathway are the small early ones, developing strategies to alleviate disease pathology calls for understanding the structure of polyglutamine peptides in the early stages of aggregation. Here, we present a criterion, grounded in available experimental data, that allows for using kinetic stability of dimers to assess whether a given polyglutamine conformer can be on the aggregation path. We then demonstrate that this criterion can be assessed using present-day molecular dynamics simulations. We find that although the α-helical conformer of polyglutamine is very stable, dimers of α-helices lack the kinetic stability necessary to support further oligomerization. Dimers of steric zipper, β-nanotube, and β-pseudohelix conformers are also too short-lived to initiate aggregation. The β-hairpin-containing conformers, instead, invariably form very stable dimers when their side chains are interdigitated. Combining these findings with the implications of recent solid-state NMR data on mature fibrils, we propose a possible pathway for the initial stages of polyglutamine aggregation, in which β-hairpin-containing conformers act as templates for fibril formation.
Collapse
Affiliation(s)
- Markus S Miettinen
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Luca Monticelli
- Institut National de la santé et de la recherche medicale, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut National de la Transfusion Sanguine, Paris, France
| | | | - Volker Knecht
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
35
|
Hoffner G, Djian P. Monomeric, oligomeric and polymeric proteins in huntington disease and other diseases of polyglutamine expansion. Brain Sci 2014; 4:91-122. [PMID: 24961702 PMCID: PMC4066239 DOI: 10.3390/brainsci4010091] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 01/03/2023] Open
Abstract
Huntington disease and other diseases of polyglutamine expansion are each caused by a different protein bearing an excessively long polyglutamine sequence and are associated with neuronal death. Although these diseases affect largely different brain regions, they all share a number of characteristics, and, therefore, are likely to possess a common mechanism. In all of the diseases, the causative protein is proteolyzed, becomes abnormally folded and accumulates in oligomers and larger aggregates. The aggregated and possibly the monomeric expanded polyglutamine are likely to play a critical role in the pathogenesis and there is increasing evidence that the secondary structure of the protein influences its toxicity. We describe here, with special attention to huntingtin, the mechanisms of polyglutamine aggregation and the modulation of aggregation by the sequences flanking the polyglutamine. We give a comprehensive picture of the characteristics of monomeric and aggregated polyglutamine, including morphology, composition, seeding ability, secondary structure, and toxicity. The structural heterogeneity of aggregated polyglutamine may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective.
Collapse
Affiliation(s)
- Guylaine Hoffner
- Génétique moléculaire et défense antivirale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France.
| | - Philippe Djian
- Génétique moléculaire et défense antivirale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
36
|
Ormsby AR, Ramdzan YM, Mok YF, Jovanoski KD, Hatters DM. A platform to view huntingtin exon 1 aggregation flux in the cell reveals divergent influences from chaperones hsp40 and hsp70. J Biol Chem 2013; 288:37192-203. [PMID: 24196953 PMCID: PMC3873573 DOI: 10.1074/jbc.m113.486944] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 11/05/2013] [Indexed: 12/18/2022] Open
Abstract
Our capacity for tracking how misfolded proteins aggregate inside a cell and how different aggregation states impact cell biology remains enigmatic. To address this, we built a new toolkit that enabled the high throughput tracking of individual cells enriched with polyglutamine-expanded Htt exon 1 (Httex1) monomers, oligomers, and inclusions using biosensors of aggregation state and flow cytometry pulse shape analysis. Supplemented with gel filtration chromatography and fluorescence-adapted sedimentation velocity analysis of cell lysates, we collated a multidimensional view of Httex1 aggregation in cells with respect to time, polyglutamine length, expression levels, cell survival, and overexpression of protein quality control chaperones hsp40 (DNAJB1) and hsp70 (HSPA1A). Cell death rates trended higher for Neuro2a cells containing Httex1 in inclusions than with Httex1 dispersed through the cytosol at time points of expression over 2 days. hsp40 stabilized monomers and suppressed inclusion formation but did not otherwise change Httex1 toxicity. hsp70, however, had no major effect on aggregation of Httex1 but increased the survival rate of cells with inclusions. hsp40 and hsp70 also increased levels of a second bicistronic reporter of Httex1 expression, mKate2, and increased total numbers of cells in culture, suggesting these chaperones partly rectify Httex1-induced deficiencies in quality control and growth rates. Collectively, these data suggest that Httex1 overstretches the protein quality control resources and that the defects can be partly rescued by overexpression of hsp40 and hsp70. Importantly, these effects occurred in a pronounced manner for soluble Httex1, which points to Httex1 aggregation occurring subsequently to more acute impacts on the cell.
Collapse
Affiliation(s)
- Angelique R. Ormsby
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yasmin M. Ramdzan
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yee-Foong Mok
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kristijan D. Jovanoski
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Danny M. Hatters
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
37
|
Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a structural perspective. Front Neurol 2013; 4:76. [PMID: 23801983 PMCID: PMC3687200 DOI: 10.3389/fneur.2013.00076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.
Collapse
Affiliation(s)
- Bruno Almeida
- Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|
38
|
Klein FAC, Zeder-Lutz G, Cousido-Siah A, Mitschler A, Katz A, Eberling P, Mandel JL, Podjarny A, Trottier Y. Linear and extended: a common polyglutamine conformation recognized by the three antibodies MW1, 1C2 and 3B5H10. Hum Mol Genet 2013; 22:4215-23. [PMID: 23777629 DOI: 10.1093/hmg/ddt273] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A long-standing pathomechanistic model proposes that the polyglutamine (polyQ)-length-dependent toxicity threshold observed in all polyQ diseases is triggered by a conformational change within the monomer that occurs only above a certain polyQ length. If true, this yet undefined and elusive mutant-specific toxic conformation would constitute a direct therapeutic target. Three anti-polyQ antibodies-MW1, 1C2 and 3B5H10-have been extensively used to probe the conformation of polyQ. The crystal structure of the MW1 epitope reveals a linear, non-pathogenic polyQ. In contrast, although the detailed structure of its epitope is unknown, the 3B5H10 antibody is widely advertised and used as a conformational antibody that recognizes the toxic conformation of expanded polyQ. We solved the crystal structure of the 1C2 antigen-binding domain (1C2-Fab) and performed a direct comparison between the 1C2, MW1 and 3B5H10 structures. The MW1 and 1C2 antibodies have similar sequences and structures, consistent with their binding to short polyQ and their polyQ length-discrimination properties. Unexpectedly, the 3B5H10 antibody also shares striking features with MW1 and 1C2, which prompted us to revisit its binding properties. We show that the 3B5H10 epitope is actually a short, non-pathogenic polyQ. All three antibodies MW1, 1C2 and 3B5H10 interact similarly with polyQ of various lengths, and bind small polyQ epitopes in similar linear and extended conformations. Together with studies published during the recent years, our work argues against the hypothesis that a mutant-specific conformation in monomeric polyQ molecules is the toxic entity responsible for polyQ diseases.
Collapse
Affiliation(s)
- Fabrice A C Klein
- Present address: Computational Chemistry and Biology Group-DETEMA, Facultad de Química, UdelaR, Isidoro de María 1620 piso 3, CC1157, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kar K, Hoop CL, Drombosky KW, Baker MA, Kodali R, Arduini I, van der Wel PCA, Horne WS, Wetzel R. β-hairpin-mediated nucleation of polyglutamine amyloid formation. J Mol Biol 2013; 425:1183-97. [PMID: 23353826 PMCID: PMC3602386 DOI: 10.1016/j.jmb.2013.01.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 12/01/2022]
Abstract
The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington's disease. Here, we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (tryptophan zipper, disulfide, d-Pro-Gly, Coulombic attraction, l-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well correlated with their known abilities to enhance β-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n=4 for a simple, unbroken Q23 sequence to approximate unitary n values for similar length polyQs containing β-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of solid-state NMR (13)C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a β-hairpin polyQ. Importantly, while β-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn values remain quite low (~10(-)(10)) and there is no evidence for significant enhancement of β-structure within the monomer ensemble. The results indicate an important role for β-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases.
Collapse
Affiliation(s)
- Karunakar Kar
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rhys NH, Soper AK, Dougan L. The Hydrogen-Bonding Ability of the Amino Acid Glutamine Revealed by Neutron Diffraction Experiments. J Phys Chem B 2012; 116:13308-19. [DOI: 10.1021/jp307442f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. H. Rhys
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, U.K
| | - A. K. Soper
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon,
OX11 OQX, U.K
| | - L. Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
41
|
Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, Artates JW, Weiss A, Cheng SH, Shihabuddin LS, Hung G, Bennett CF, Cleveland DW. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 2012; 74:1031-44. [PMID: 22726834 DOI: 10.1016/j.neuron.2012.05.009] [Citation(s) in RCA: 553] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/12/2023]
Abstract
The primary cause of Huntington's disease (HD) is expression of huntingtin with a polyglutamine expansion. Despite an absence of consensus on the mechanism(s) of toxicity, diminishing the synthesis of mutant huntingtin will abate toxicity if delivered to the key affected cells. With antisense oligonucleotides (ASOs) that catalyze RNase H-mediated degradation of huntingtin mRNA, we demonstrate that transient infusion into the cerebrospinal fluid of symptomatic HD mouse models not only delays disease progression but mediates a sustained reversal of disease phenotype that persists longer than the huntingtin knockdown. Reduction of wild-type huntingtin, along with mutant huntingtin, produces the same sustained disease reversal. Similar ASO infusion into nonhuman primates is shown to effectively lower huntingtin in many brain regions targeted by HD pathology. Rather than requiring continuous treatment, our findings establish a therapeutic strategy for sustained HD disease reversal produced by transient ASO-mediated diminution of huntingtin synthesis.
Collapse
Affiliation(s)
- Holly B Kordasiewicz
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|