1
|
Mackowiak M, Adamczyk B, Szachniuk M, Zok T. RNAtango: Analysing and comparing RNA 3D structures via torsional angles. PLoS Comput Biol 2024; 20:e1012500. [PMID: 39374268 PMCID: PMC11486365 DOI: 10.1371/journal.pcbi.1012500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
RNA molecules, essential for viruses and living organisms, derive their pivotal functions from intricate 3D structures. To understand these structures, one can analyze torsion and pseudo-torsion angles, which describe rotations around bonds, whether real or virtual, thus capturing the RNA conformational flexibility. Such an analysis has been made possible by RNAtango, a web server introduced in this paper, that provides a trigonometric perspective on RNA 3D structures, giving insights into the variability of examined models and their alignment with reference targets. RNAtango offers comprehensive tools for calculating torsion and pseudo-torsion angles, generating angle statistics, comparing RNA structures based on backbone torsions, and assessing local and global structural similarities using trigonometric functions and angle measures. The system operates in three scenarios: single model analysis, model-versus-target comparison, and model-versus-model comparison, with results output in text and graphical formats. Compatible with all modern web browsers, RNAtango is accessible freely along with the source code. It supports researchers in accurately assessing structural similarities, which contributes to the precision and efficiency of RNA modeling.
Collapse
Affiliation(s)
- Marta Mackowiak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Bartosz Adamczyk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
2
|
Kumar S, Reddy G. Mechanism of Fluoride Ion Encapsulation by Magnesium Ions in a Bacterial Riboswitch. J Phys Chem B 2023; 127:9267-9281. [PMID: 37851949 DOI: 10.1021/acs.jpcb.3c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Riboswitches sense various ions in bacteria and activate gene expression to synthesize proteins that help maintain ion homeostasis. The crystal structure of the aptamer domain (AD) of the fluoride riboswitch shows that the F- ion is encapsulated by three Mg2+ ions bound to the ligand-binding domain (LBD) located at the core of the AD. The assembly mechanism of this intricate structure is unknown. To this end, we performed computer simulations using coarse-grained and all-atom RNA models to bridge multiple time scales involved in riboswitch folding and ion binding. We show that F- encapsulation by the Mg2+ ions bound to the riboswitch involves multiple sequential steps. Broadly, two Mg2+ ions initially interact with the phosphate groups of the LBD using water-mediated outer-shell coordination and transition to a direct inner-shell interaction through dehydration to strengthen their interaction with the LBD. We propose that the efficient binding mode of the third Mg2+ and F- is that they form a water-mediated ion pair and bind to the LBD simultaneously to minimize the electrostatic repulsion between three Mg2+ bound to the LBD. The tertiary stacking interactions among the LBD nucleobases alone are insufficient to stabilize the alignment of the phosphate groups to facilitate Mg2+ binding. We show that the stability of the whole assembly is an intricate balance of the interactions among the five phosphate groups, three Mg2+, and the encapsulated F- ion aided by the Mg2+ solvated water. These insights are helpful in the rational design of RNA-based ion sensors and fast-switching logic gates.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
3
|
Hori N, Thirumalai D. Watching ion-driven kinetics of ribozyme folding and misfolding caused by energetic and topological frustration one molecule at a time. Nucleic Acids Res 2023; 51:10737-10751. [PMID: 37758176 PMCID: PMC10602927 DOI: 10.1093/nar/gkad755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Folding of ribozymes into well-defined tertiary structures usually requires divalent cations. How Mg2+ ions direct the folding kinetics has been a long-standing unsolved problem because experiments cannot detect the positions and dynamics of ions. To address this problem, we used molecular simulations to dissect the folding kinetics of the Azoarcus ribozyme by monitoring the path each molecule takes to reach the folded state. We quantitatively establish that Mg2+ binding to specific sites, coupled with counter-ion release of monovalent cations, stimulate the formation of secondary and tertiary structures, leading to diverse pathways that include direct rapid folding and trapping in misfolded structures. In some molecules, key tertiary structural elements form when Mg2+ ions bind to specific RNA sites at the earliest stages of the folding, leading to specific collapse and rapid folding. In others, the formation of non-native base pairs, whose rearrangement is needed to reach the folded state, is the rate-limiting step. Escape from energetic traps, driven by thermal fluctuations, occurs readily. In contrast, the transition to the native state from long-lived topologically trapped native-like metastable states is extremely slow. Specific collapse and formation of energetically or topologically frustrated states occur early in the assembly process.
Collapse
Affiliation(s)
- Naoto Hori
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - D Thirumalai
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- Department of Physics, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
4
|
Imamoto JM, Zauhar RJ, Bruist MF. Sarcin/Ricin Domain RNA Retains Its Structure Better Than A-RNA in Adaptively Biased Molecular Dynamics Simulations. J Phys Chem B 2022; 126:10018-10033. [PMID: 36417896 DOI: 10.1021/acs.jpcb.2c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Less than one in thirty of the RNA sequences transcribed in humans are translated into protein. The noncoding RNA (ncRNA) functions in catalysis, structure, regulation, and more. However, for the most part, these functions are poorly characterized. RNA is modular and described by motifs that include helical A-RNA with canonical Watson-Crick base-pairing as well as structures with only noncanonical base pairs. Understanding the structure and dynamics of motifs will aid in deciphering functions of specific ncRNAs. We present computational studies on a standard sarcin/ricin domain (SRD), citrus bark cracking viroid SRD, as well as A-RNA. We have applied enhanced molecular dynamics techniques that construct an inverse free-energy surface (iFES) determined by collective variables that monitor base-pairing and backbone conformation. Each SRD RNA is flanked on each side by A-RNA, allowing comparison of the behavior of these motifs in the same molecule. The RNA iFESs have single peaks, indicating that the combined motifs should denature as a single cohesive unit, rather than by regional melting. Local root-mean-square deviation (RMSD) analysis and communication propensity (CProp, variance in distances between residue pairs) reveal distinct motif properties. Our analysis indicates that the standard SRD is more stable than the viroid SRD, which is more stable than A-RNA. Base pairs at SRD to A-RNA transitions have limited flexibility. Application of CProp reveals extraordinary stiffness of the SRD, allowing residues on opposite sides of the motif to sense each other's motions.
Collapse
Affiliation(s)
- Jason M Imamoto
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| | - Randy J Zauhar
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| | - Michael F Bruist
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| |
Collapse
|
5
|
Kumar S, Reddy G. TPP Riboswitch Populates Holo-Form-like Structure Even in the Absence of Cognate Ligand at High Mg 2+ Concentration. J Phys Chem B 2022; 126:2369-2381. [PMID: 35298161 DOI: 10.1021/acs.jpcb.1c10794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Riboswitches are noncoding RNA that regulate gene expression by folding into specific three-dimensional structures (holo-form) upon binding by their cognate ligand in the presence of Mg2+. Riboswitch functioning is also hypothesized to be under kinetic control requiring large cognate ligand concentrations. We ask the question under thermodynamic conditions, can the riboswitches populate structures similar to the holo-form only in the presence of Mg2+ and absence of cognate ligand binding. We addressed this question using thiamine pyrophosphate (TPP) riboswitch as a model system and computer simulations using a coarse-grained model for RNA. The folding free energy surface (FES) shows that with the initial increase in Mg2+ concentration ([Mg2+]), the aptamer domain (AD) of TPP riboswitch undergoes a barrierless collapse in its dimensions. On further increase in [Mg2+], intermediates separated by barriers appear on the FES, and one of the intermediates has a TPP ligand-binding competent structure. We show that site-specific binding of the Mg2+ aids in the formation of tertiary contacts. For [Mg2+] greater than physiological concentration, AD folds into a structure similar to the crystal structure of the TPP holo-form even in the absence of the TPP ligand. The folding kinetics shows that TPP AD populates an intermediate due to the misalignment of two arms present in the structure, which acts as a kinetic trap, leading to larger folding timescales. The predictions of the intermediate structures from the simulations are amenable for experimental verification.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
6
|
Shape changes and cooperativity in the folding of the central domain of the 16S ribosomal RNA. Proc Natl Acad Sci U S A 2021; 118:2020837118. [PMID: 33658370 DOI: 10.1073/pnas.2020837118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both the small and large subunits of the ribosome, the molecular machine that synthesizes proteins, are complexes of ribosomal RNAs (rRNAs) and a number of proteins. In bacteria, the small subunit has a single 16S rRNA whose folding is the first step in its assembly. The central domain of the 16S rRNA folds independently, driven either by Mg2+ ions or by interaction with ribosomal proteins. To provide a quantitative description of ion-induced folding of the ∼350-nucleotide rRNA, we carried out extensive coarse-grained molecular simulations spanning Mg2+ concentration between 0 and 30 mM. The Mg2+ dependence of the radius of gyration shows that globally the rRNA folds cooperatively. Surprisingly, various structural elements order at different Mg2+ concentrations, indicative of the heterogeneous assembly even within a single domain of the rRNA. Binding of Mg2+ ions is highly specific, with successive ion condensation resulting in nucleation of tertiary structures. We also predict the Mg2+-dependent protection factors, measurable in hydroxyl radical footprinting experiments, which corroborate the specificity of Mg2+-induced folding. The simulations, which agree quantitatively with several experiments on the folding of a three-way junction, show that its folding is preceded by formation of other tertiary contacts in the central junction. Our work provides a starting point in simulating the early events in the assembly of the small subunit of the ribosome.
Collapse
|
7
|
Bergsch J, Devillier JC, Jeschke G, Lipps G. Stringent Primer Termination by an Archaeo-Eukaryotic DNA Primase. Front Microbiol 2021; 12:652928. [PMID: 33927705 PMCID: PMC8076596 DOI: 10.3389/fmicb.2021.652928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Priming of single stranded templates is essential for DNA replication. In recent years, significant progress was made in understanding how DNA primase fulfils this fundamental function, particularly with regard to the initiation. Equally intriguing is the unique property of archeao-eukaryotic primases to terminate primer formation at a well-defined unit length. The apparent ability to “count” the number of bases incorporated prior to primer release is not well understood, different mechanisms having been proposed for different species. We report a mechanistic investigation of primer termination by the pRN1 primase from Sulfolobus islandicus. Using an HPLC-based assay we determined structural features of the primer 5′-end that are required for consistent termination. Mutations within the unstructured linker connecting the catalytic domain to the template binding domain allowed us to assess the effect of altered linker length and flexibility on primer termination.
Collapse
Affiliation(s)
- Jan Bergsch
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Jean-Christophe Devillier
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Georg Lipps
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
8
|
Jeschke G. MMM: Integrative ensemble modeling and ensemble analysis. Protein Sci 2021; 30:125-135. [PMID: 33015891 PMCID: PMC7737775 DOI: 10.1002/pro.3965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022]
Abstract
Proteins and their complexes can be heterogeneously disordered. In ensemble modeling of such systems with restraints from several experimental techniques the following problems arise: (a) integration of diverse restraints obtained on different samples under different conditions; (b) estimation of a realistic ensemble width; (c) sufficient sampling of conformational space; (d) representation of the ensemble by an interpretable number of conformers; (e) recognition of weak order with site resolution. Here, I introduce several tools that address these problems, focusing on utilization of distance distribution information for estimating ensemble width. The RigiFlex approach integrates such information with high-resolution structures of ordered domains and small-angle scattering data. The EnsembleFit module provides moderately sized ensembles by fitting conformer populations and discarding conformers with low population. EnsembleFit balances the loss in fit quality upon combining restraint subsets from different techniques. Pair correlation analysis for residues and local compaction analysis help in feature detection. The RigiFlex pipeline is tested on data simulated from the structure 70 kDa protein-RNA complex RsmE/RsmZ. It recovers this structure with ensemble width and difference from ground truth both being on the order of 4.2 Å. EnsembleFit reduces the ensemble of the proliferating-cell-nuclear-antigen-associated factor p15PAF from 4,939 to 75 conformers while maintaining good fit quality of restraints. Local compaction analysis for the PaaA2 antitoxin from E. coli O157 revealed correlations between compactness and enhanced residual dipolar couplings in the original NMR restraint set.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zürich, Department of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland
| |
Collapse
|
9
|
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol 2020; 55:662-690. [PMID: 33043695 DOI: 10.1080/10409238.2020.1828259] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| |
Collapse
|
10
|
Černý J, Božíková P, Malý M, Tykač M, Biedermannová L, Schneider B. Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org. Acta Crystallogr D Struct Biol 2020; 76:805-813. [PMID: 32876056 PMCID: PMC7466747 DOI: 10.1107/s2059798320009389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
A detailed description of the dnatco.datmos.org web server implementing the universal structural alphabet of nucleic acids is presented. It is capable of processing any mmCIF- or PDB-formatted files containing DNA or RNA molecules; these can either be uploaded by the user or supplied as the wwPDB or PDB-REDO structural database access code. The web server performs an assignment of the nucleic acid conformations and presents the results for the intuitive annotation, validation, modeling and refinement of nucleic acids.
Collapse
Affiliation(s)
- Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Paulína Božíková
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Michal Malý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Michal Tykač
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Lada Biedermannová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| |
Collapse
|
11
|
A deep learning framework to predict binding preference of RNA constituents on protein surface. Nat Commun 2019; 10:4941. [PMID: 31666519 PMCID: PMC6821705 DOI: 10.1038/s41467-019-12920-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Protein-RNA interaction plays important roles in post-transcriptional regulation. However, the task of predicting these interactions given a protein structure is difficult. Here we show that, by leveraging a deep learning model NucleicNet, attributes such as binding preference of RNA backbone constituents and different bases can be predicted from local physicochemical characteristics of protein structure surface. On a diverse set of challenging RNA-binding proteins, including Fem-3-binding-factor 2, Argonaute 2 and Ribonuclease III, NucleicNet can accurately recover interaction modes discovered by structural biology experiments. Furthermore, we show that, without seeing any in vitro or in vivo assay data, NucleicNet can still achieve consistency with experiments, including RNAcompete, Immunoprecipitation Assay, and siRNA Knockdown Benchmark. NucleicNet can thus serve to provide quantitative fitness of RNA sequences for given binding pockets or to predict potential binding pockets and binding RNAs for previously unknown RNA binding proteins.
Collapse
|
12
|
Antczak M, Zok T, Osowiecki M, Popenda M, Adamiak RW, Szachniuk M. RNAfitme: a webserver for modeling nucleobase and nucleoside residue conformation in fixed-backbone RNA structures. BMC Bioinformatics 2018; 19:304. [PMID: 30134831 PMCID: PMC6106928 DOI: 10.1186/s12859-018-2317-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Computational RNA 3D structure prediction and modeling are rising as complementary approaches to high-resolution experimental techniques for structure determination. They often apply to substitute or complement them. Recently, researchers' interests have directed towards in silico methods to fit, remodel and refine RNA tertiary structure models. Their power lies in a problem-specific exploration of RNA conformational space and efficient optimization procedures. The aim is to improve the accuracy of models obtained either computationally or experimentally. RESULTS Here, we present RNAfitme, a versatile webserver tool for remodeling of nucleobase- and nucleoside residue conformations in the fixed-backbone RNA 3D structures. Our approach makes use of dedicated libraries that define RNA conformational space. They have been built upon torsional angle characteristics of PDB-deposited RNA structures. RNAfitme can be applied to reconstruct full-atom model of RNA from its backbone; remodel user-selected nucleobase/nucleoside residues in a given RNA structure; predict RNA 3D structure based on the sequence and the template of a homologous molecule of the same size; refine RNA 3D model by reducing steric clashes indicated during structure quality assessment. RNAfitme is a publicly available tool with an intuitive interface. It is freely accessible at http://rnafitme.cs.put.poznan.pl/ CONCLUSIONS: RNAfitme has been applied in various RNA 3D remodeling scenarios for several types of input data. Computational experiments proved its efficiency, accuracy, and usefulness in the processing of RNAs of any size. Fidelity of RNAfitme predictions has been thoroughly tested for RNA 3D structures determined experimentally and modeled in silico.
Collapse
Affiliation(s)
- Maciej Antczak
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.,Poznan Supercomputing and Networking Center, Jana Pawla II 10, 61-139, Poznan, Poland
| | - Maciej Osowiecki
- Department of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland. .,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
13
|
Plumridge A, Meisburger SP, Pollack L. Visualizing single-stranded nucleic acids in solution. Nucleic Acids Res 2017; 45:e66. [PMID: 28034955 PMCID: PMC5435967 DOI: 10.1093/nar/gkw1297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Single-stranded nucleic acids (ssNAs) are ubiquitous in many key cellular functions. Their flexibility limits both the number of high-resolution structures available, leaving only a small number of protein-ssNA crystal structures, while forcing solution investigations to report ensemble averages. A description of the conformational distributions of ssNAs is essential to more fully characterize biologically relevant interactions. We combine small angle X-ray scattering (SAXS) with ensemble-optimization methods (EOM) to dynamically build and refine sets of ssNA structures. By constructing candidate chains in representative dinucleotide steps and refining the models against SAXS data, a broad array of structures can be obtained to match varying solution conditions and strand sequences. In addition to the distribution of large scale structural parameters, this approach reveals, for the first time, intricate details of the phosphate backbone and underlying strand conformations. Such information on unperturbed strands will critically inform a detailed understanding of an array of problems including protein-ssNA binding, RNA folding and the polymer nature of NAs. In addition, this scheme, which couples EOM selection with an iteratively refining pool to give confidence in the underlying structures, is likely extendable to the study of other flexible systems.
Collapse
Affiliation(s)
- Alex Plumridge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Adamczak R, Meller J. UQlust: combining profile hashing with linear-time ranking for efficient clustering and analysis of big macromolecular data. BMC Bioinformatics 2016; 17:546. [PMID: 28031034 PMCID: PMC5198500 DOI: 10.1186/s12859-016-1381-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/23/2016] [Indexed: 12/01/2022] Open
Abstract
Background Advances in computing have enabled current protein and RNA structure prediction and molecular simulation methods to dramatically increase their sampling of conformational spaces. The quickly growing number of experimentally resolved structures, and databases such as the Protein Data Bank, also implies large scale structural similarity analyses to retrieve and classify macromolecular data. Consequently, the computational cost of structure comparison and clustering for large sets of macromolecular structures has become a bottleneck that necessitates further algorithmic improvements and development of efficient software solutions. Results uQlust is a versatile and easy-to-use tool for ultrafast ranking and clustering of macromolecular structures. uQlust makes use of structural profiles of proteins and nucleic acids, while combining a linear-time algorithm for implicit comparison of all pairs of models with profile hashing to enable efficient clustering of large data sets with a low memory footprint. In addition to ranking and clustering of large sets of models of the same protein or RNA molecule, uQlust can also be used in conjunction with fragment-based profiles in order to cluster structures of arbitrary length. For example, hierarchical clustering of the entire PDB using profile hashing can be performed on a typical laptop, thus opening an avenue for structural explorations previously limited to dedicated resources. The uQlust package is freely available under the GNU General Public License at https://github.com/uQlust. Conclusion uQlust represents a drastic reduction in the computational complexity and memory requirements with respect to existing clustering and model quality assessment methods for macromolecular structure analysis, while yielding results on par with traditional approaches for both proteins and RNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1381-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafal Adamczak
- Department of Informatics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland.
| | - Jarek Meller
- Department of Informatics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland. .,Departments of Environmental Health and Electrical Engineering & Computing Systems, University of Cincinnati, Cincinnati, USA. .,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
| |
Collapse
|
15
|
Abstract
In recent years a wide variety of RNA molecules regulating fundamental cellular processes has been discovered. Therefore, RNA structure determination is experiencing a boost and many more RNA structures are likely to be determined in the years to come. The broader availability of experimentally determined RNA structures implies that molecular replacement (MR) will be used more and more frequently as a method for phasing future crystallographic structures. In this report we describe various aspects relative to RNA structure determination by MR. First, we describe how to select and create MR search models for nucleic acids. Second, we describe how to perform MR searches on RNA using available crystallographic software. Finally, we describe how to refine and interpret the successful MR solutions. These protocols are applicable to determine novel RNA structures as well as to establish structural-functional relationships on existing RNA structures.
Collapse
|
16
|
Sedova A, Banavali NK. RNA approaches the B-form in stacked single strand dinucleotide contexts. Biopolymers 2015; 105:65-82. [PMID: 26443416 DOI: 10.1002/bip.22750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 01/04/2023]
Abstract
Duplex RNA adopts an A-form structure, while duplex DNA interconverts between the A- and B-forms depending on the environment. The C2'-endo sugar pucker seen in B-form DNA can occur infrequently in ribose sugars as well, but RNA is not understood to assume B-form conformations. Through analysis of over 45,000 stacked single strand dinucleotide (SSD) crystal structure conformations, this study demonstrates that RNA is capable of adopting a wide conformational range between the canonical A- and B-forms at the localized SSD level, including many B-form-like conformations. It does so through C2'-endo ribose conformations in one or both nucleotides, and B-form-like neighboring base stacking patterns. As chemical reactions on nucleic acids involve localized changes in chemical bonds, the understanding of how enzymes distinguish between DNA and RNA nucleotides is altered by the energetic accessibility of these rare B-form-like RNA SSD conformations. The existence of these conformations also has direct implications in parametrization of molecular mechanics energy functions used extensively to model nucleic acid behavior., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 65-82, 2016.
Collapse
Affiliation(s)
- Ada Sedova
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY
| | - Nilesh K Banavali
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY.,New York State Department of Health, Division of Genetics, Laboratory of Computational and Structural Biology, Wadsworth Center, NY
| |
Collapse
|
17
|
Wang J, Zhao Y, Zhu C, Xiao Y. 3dRNAscore: a distance and torsion angle dependent evaluation function of 3D RNA structures. Nucleic Acids Res 2015; 43:e63. [PMID: 25712091 PMCID: PMC4446410 DOI: 10.1093/nar/gkv141] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 02/06/2015] [Indexed: 01/02/2023] Open
Abstract
Model evaluation is a necessary step for better prediction and design of 3D RNA structures. For proteins, this has been widely studied and the knowledge-based statistical potential has been proved to be one of effective ways to solve this problem. Currently, a few knowledge-based statistical potentials have also been proposed to evaluate predicted models of RNA tertiary structures. The benchmark tests showed that they can identify the native structures effectively but further improvements are needed to identify near-native structures and those with non-canonical base pairs. Here, we present a novel knowledge-based potential, 3dRNAscore, which combines distance-dependent and dihedral-dependent energies. The benchmarks on different testing datasets all show that 3dRNAscore are more efficient than existing evaluation methods in recognizing native state from a pool of near-native states of RNAs as well as in ranking near-native states of RNA models.
Collapse
Affiliation(s)
- Jian Wang
- Biomolecular Physics and Modeling Group, Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Chunyan Zhu
- Biomolecular Physics and Modeling Group, Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
18
|
Shi YZ, Wang FH, Wu YY, Tan ZJ. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect. J Chem Phys 2014; 141:105102. [DOI: 10.1063/1.4894752] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ya-Zhou Shi
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Feng-Hua Wang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuan-Yan Wu
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Graph-based sampling for approximating global helical topologies of RNA. Proc Natl Acad Sci U S A 2014; 111:4079-84. [PMID: 24591615 DOI: 10.1073/pnas.1318893111] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A current challenge in RNA structure prediction is the description of global helical arrangements compatible with a given secondary structure. Here we address this problem by developing a hierarchical graph sampling/data mining approach to reduce conformational space and accelerate global sampling of candidate topologies. Starting from a 2D structure, we construct an initial graph from size measures deduced from solved RNAs and junction topologies predicted by our data-mining algorithm RNAJAG trained on known RNAs. We sample these graphs in 3D space guided by knowledge-based statistical potentials derived from bending and torsion measures of internal loops as well as radii of gyration for known RNAs. Graph sampling results for 30 representative RNAs are analyzed and compared with reference graphs from both solved structures and predicted structures by available programs. This comparison indicates promise for our graph-based sampling approach for characterizing global helical arrangements in large RNAs: graph rmsds range from 2.52 to 28.24 Å for RNAs of size 25-158 nucleotides, and more than half of our graph predictions improve upon other programs. The efficiency in graph sampling, however, implies an additional step of translating candidate graphs into atomic models. Such models can be built with the same idea of graph partitioning and build-up procedures we used for RNA design.
Collapse
|
20
|
Marcia M, Humphris-Narayanan E, Keating KS, Somarowthu S, Rajashankar K, Pyle AM. Solving nucleic acid structures by molecular replacement: examples from group II intron studies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2174-85. [PMID: 24189228 PMCID: PMC3817690 DOI: 10.1107/s0907444913013218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/14/2013] [Indexed: 12/17/2022]
Abstract
Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts.
Collapse
Affiliation(s)
- Marco Marcia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | - Kevin S. Keating
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Kanagalaghatta Rajashankar
- The Northeastern Collaborative Access Team (NE-CAT), Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
21
|
Kim N, Petingi L, Schlick T. Network Theory Tools for RNA Modeling. WSEAS TRANSACTIONS ON MATHEMATICS 2013; 9:941-955. [PMID: 25414570 PMCID: PMC4235620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An introduction into the usage of graph or network theory tools for the study of RNA molecules is presented. By using vertices and edges to define RNA secondary structures as tree and dual graphs, we can enumerate, predict, and design RNA topologies. Graph connectivity and associated Laplacian eigenvalues relate to biological properties of RNA and help understand RNA motifs as well as build, by computational design, various RNA target structures. Importantly, graph theoretical representations of RNAs reduce drastically the conformational space size and therefore simplify modeling and prediction tasks. Ongoing challenges remain regarding general RNA design, representation of RNA pseudoknots, and tertiary structure prediction. Thus, developments in network theory may help advance RNA biology.
Collapse
Affiliation(s)
- Namhee Kim
- New York University Department of Chemistry Courant Institute of Mathematical Sciences 251 Mercer Street New York, NY 10012, USA
| | - Louis Petingi
- College of Staten Island City University of New York Department of Computer Science 2800 Victory Boulevard Staten Island, NY 10314, USA
| | - Tamar Schlick
- New York University Department of Chemistry Courant Institute of Mathematical Sciences 251 Mercer Street New York, NY 10012, USA
| |
Collapse
|
22
|
A New Toolkit for Modeling RNA from a Pseudo-Torsional Space. J Mol Biol 2012; 421:1-5. [DOI: 10.1016/j.jmb.2012.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|