1
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Diversity and features of proteins with structural repeats. Biophys Rev 2023; 15:1159-1169. [PMID: 37974986 PMCID: PMC10643770 DOI: 10.1007/s12551-023-01130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.
Collapse
Affiliation(s)
- Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
2
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
4
|
Barik S. An Analytical Review of the Structural Features of Pentatricopeptide Repeats: Strategic Amino Acids, Repeat Arrangements and Superhelical Architecture. Int J Mol Sci 2021; 22:ijms22105407. [PMID: 34065603 PMCID: PMC8160929 DOI: 10.3390/ijms22105407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Tricopeptide repeats are common in natural proteins, and are exemplified by 34- and 35-residue repeats, known respectively as tetratricopeptide repeats (TPRs) and pentatricopeptide repeats (PPRs). In both classes, each repeat unit forms an antiparallel bihelical structure, so that multiple such units in a polypeptide are arranged in a parallel fashion. The primary structures of the motifs are nonidentical, but amino acids of similar properties occur in strategic positions. The focus of the present work was on PPR, but TPR, its better-studied cousin, is often included for comparison. The analyses revealed that critical amino acids, namely Gly, Pro, Ala and Trp, were placed at distinct locations in the higher order structure of PPR domains. While most TPRs occur in repeats of three, the PPRs exhibited a much greater diversity in repeat numbers, from 1 to 30 or more, separated by spacers of various sequences and lengths. Studies of PPR strings in proteins showed that the majority of PPR units are single, and that the longer tandems (i.e., without space in between) occurred in decreasing order. The multi-PPR domains also formed superhelical vortices, likely governed by interhelical angles rather than the spacers. These findings should be useful in designing and understanding the PPR domains.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
5
|
Evolution of Protein Structure and Stability in Global Warming. Int J Mol Sci 2020; 21:ijms21249662. [PMID: 33352933 PMCID: PMC7767258 DOI: 10.3390/ijms21249662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the molecular signatures of protein structures in relation to evolution and survival in global warming. It is based on the premise that the power of evolutionary selection may lead to thermotolerant organisms that will repopulate the planet and continue life in general, but perhaps with different kinds of flora and fauna. Our focus is on molecular mechanisms, whereby known examples of thermoresistance and their physicochemical characteristics were noted. A comparison of interactions of diverse residues in proteins from thermophilic and mesophilic organisms, as well as reverse genetic studies, revealed a set of imprecise molecular signatures that pointed to major roles of hydrophobicity, solvent accessibility, disulfide bonds, hydrogen bonds, ionic and π-electron interactions, and an overall condensed packing of the higher-order structure, especially in the hydrophobic regions. Regardless of mutations, specialized protein chaperones may play a cardinal role. In evolutionary terms, thermoresistance to global warming will likely occur in stepwise mutational changes, conforming to the molecular signatures, such that each "intermediate" fits a temporary niche through punctuated equilibrium, while maintaining protein functionality. Finally, the population response of different species to global warming may vary substantially, and, as such, some may evolve while others will undergo catastrophic mass extinction.
Collapse
|
6
|
Barik S. The Nature and Arrangement of Pentatricopeptide Domains and the Linker Sequences Between Them. Bioinform Biol Insights 2020; 14:1177932220906434. [PMID: 32180683 PMCID: PMC7059232 DOI: 10.1177/1177932220906434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
The tricopeptide (amino acid number in the 30s) repeats constitute some of the
most common amino acid repeats in proteins of diverse organisms. The most
important representatives of this class are the 34-residue and 35-residue
repeats, eponymously known as tetratricopeptide repeat (TPR) and
pentatricopeptide repeat (PPR), respectively. The unit motif of both consists of
a pair of alpha helices. As members of the large, all-helical repeat classes,
TPR and PPR share structural similarities, but also play specific roles in
protein function. In this study, a comprehensive bioinformatic analysis of the
PPR units and the linkers that connect them was conducted. The results suggested
the existence of PPR repeats of various formats, as well as smaller,
PPR-unrelated repeats. Besides their length, these repeats differed in amino
acid arrangements and location of key amino acids. These findings provide a
broader and unified perspective of the pentatricopeptide family while raising
provocative questions about the assembly and evolution of these domains.
Collapse
|
7
|
McCord JP, Grove TZ. Engineering repeat proteins of the immune system. Biopolymers 2020; 111:e23348. [PMID: 32031681 DOI: 10.1002/bip.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Limitations associated with immunoglobulins have motivated the search for novel binding scaffolds. Repeat proteins have emerged as one promising class of scaffolds, but often are limited to binding protein and peptide targets. An exception is the repeat proteins of the immune system, which have in recent years served as an inspiration for binding scaffolds which can bind glycans and other classes of biomolecule. Like other repeat proteins, these proteins can be very stable and have a monomeric mode of binding, with elongated and highly variable binding surfaces. The ability to target glycans and glycoproteins fill an important gap in current tools for research and biomedical applications.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A
| | - Tijana Z Grove
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.,Zarkovic Grove Consulting, LLC, Blacksburg, VA, U.S.A
| |
Collapse
|
8
|
Barik S. Protein Tetratricopeptide Repeat and the Companion Non-tetratricopeptide Repeat Helices: Bioinformatic Analysis of Interhelical Interactions. Bioinform Biol Insights 2019; 13:1177932219863363. [PMID: 31579101 PMCID: PMC6759711 DOI: 10.1177/1177932219863363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/22/2019] [Indexed: 12/28/2022] Open
Abstract
The tetratricopeptide repeat (TPR) of proteins consists of a 34-amino acid, alpha-helical motif that comprises a pattern of small and large hydrophobic residues, leading to a recognizable signature sequence. Structural and functional studies have documented that tandem TPRs form a superhelix that interacts with client molecules through strategically placed amino acids. Interestingly, most of the known TPRs are flanked by alpha-helices that lack the TPR signature but often appear as a continuation of the TPR superhelix. The exact role and specificity of these TPR-accompanying non-TPR helices have remained a mystery. Here, starting with TPR proteins of known structure, bioinformatic analyses were conducted on these helices, which revealed that they are diverse in sequence, lacking a clear consensus. However, they display significant atomic contacts with the nearest TPR helix and, to some extent, with the next TPR helix over. The majority of these contacts do not use the signature residues of the TPR helix but rather involve hydrophobic side chains on the facing sides. Thus, compared with the TPR helices, these companion helices are generic in nature, and seem to serve as relatively passive gatekeepers, leaving the terminal TPR helices to encode the signature residues that interact with cognate clients.
Collapse
Affiliation(s)
- Sailen Barik
- Sailen Barik, 3780 Pelham Drive, Mobile, AL 36619, USA.
| |
Collapse
|
9
|
Goyal VD, Sullivan BJ, Magliery TJ. Phylogenetic spread of sequence data affects fitness of consensus enzymes: Insights from triosephosphate isomerase. Proteins 2019; 88:274-283. [PMID: 31407418 DOI: 10.1002/prot.25799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 11/08/2022]
Abstract
The concept of consensus in multiple sequence alignments (MSAs) has been used to design and engineer proteins previously with some success. However, consensus design implicitly assumes that all amino acid positions function independently, whereas in reality, the amino acids in a protein interact with each other and work cooperatively to produce the optimum structure required for its function. Correlation analysis is a tool that can capture the effect of such interactions. In a previously published study, we made consensus variants of the triosephosphate isomerase (TIM) protein using MSAs that included sequences form both prokaryotic and eukaryotic organisms. These variants were not completely native-like and were also surprisingly different from each other in terms of oligomeric state, structural dynamics, and activity. Extensive correlation analysis of the TIM database has revealed some clues about factors leading to the unusual behavior of the previously constructed consensus proteins. Among other things, we have found that the more ill-behaved consensus mutant had more broken correlations than the better-behaved consensus variant. Moreover, we report three correlation and phylogeny-based consensus variants of TIM. These variants were more native-like than the previous consensus mutants and considerably more stable than a wild-type TIM from a mesophilic organism. This study highlights the importance of choosing the appropriate diversity of MSA for consensus analysis and provides information that can be used to engineer stable enzymes.
Collapse
Affiliation(s)
- Venuka Durani Goyal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Brandon J Sullivan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.,Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2019; 54:103-118. [PMID: 31023093 DOI: 10.1080/10409238.2019.1590305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.
Collapse
Affiliation(s)
- Jill B Graham
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Nathan P Canniff
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Daniel N Hebert
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|
11
|
Wright JN, Wong WL, Harvey JA, Garnett JA, Itzhaki LS, Main ERG. Scalable Geometrically Designed Protein Cages Assembled via Genetically Encoded Split Inteins. Structure 2019; 27:776-784.e4. [PMID: 30879889 DOI: 10.1016/j.str.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 01/20/2023]
Abstract
Engineering proteins to assemble into user-defined structures is key in their development for biotechnological applications. However, designing generic rather than bespoke solutions is challenging. Here we describe an expandable recombinant assembly system that produces scalable protein cages via split intein-mediated native chemical ligation. Three types of component are used: two complementary oligomeric "half-cage" protein fusions and an extendable monomeric "linker" fusion. All are composed of modular protein domains chosen to fulfill the required geometries, with two orthogonal pairs of split intein halves to drive assembly when mixed. This combination enables both one-pot construction of two-component cages and stepwise assembly of larger three-component scalable cages. To illustrate the system's versatility, trimeric half-cages and linker constructs comprising consensus-designed repeat proteins were ligated in one-pot and stepwise reactions. Under mild conditions, rapid high-yielding ligations were obtained, from which discrete proteins cages were easily purified and shown to form the desired trigonal bipyramidal structures.
Collapse
Affiliation(s)
- James N Wright
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Wan Ling Wong
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Joseph A Harvey
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - James A Garnett
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
12
|
Hwang HJ, Han JW, Jeon H, Han JW. Induction of Recombinant Lectin Expression by an Artificially Constructed Tandem Repeat Structure: A Case Study Using Bryopsis plumosa Mannose-Binding Lectin. Biomolecules 2018; 8:E146. [PMID: 30441842 PMCID: PMC6316659 DOI: 10.3390/biom8040146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
Lectin is an important protein in medical and pharmacological applications. Impurities in lectin derived from natural sources and the generation of inactive proteins by recombinant technology are major obstacles for the use of lectins. Expressing recombinant lectin with a tandem repeat structure can potentially overcome these problems, but few studies have systematically examined this possibility. This was investigated in the present study using three distinct forms of recombinant mannose-binding lectin from Bryopsis plumosa (BPL2)-i.e., the monomer (rD1BPL2), as well as the dimer (rD2BPL2), and tetramer (rD4BPL2) arranged as tandem repeats. The concentration of the inducer molecule isopropyl β-D-1-thiogalactopyranoside and the induction time had no effect on the efficiency of the expression of each construct. Of the tested constructs, only rD4BPL2 showed hemagglutination activity towards horse erythrocytes; the activity of towards the former was 64 times higher than that of native BPL2. Recombinant and native BPL2 showed differences in carbohydrate specificity; the activity of rD4BPL2 was inhibited by the glycoprotein fetuin, whereas that of native BPL2 was also inhibited by d-mannose. Our results indicate that expression as tandem repeat sequences can increase the efficiency of lectin production on a large scale using a bacterial expression system.
Collapse
Affiliation(s)
- Hyun-Ju Hwang
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jin-Woo Han
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Hancheol Jeon
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jong Won Han
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| |
Collapse
|
13
|
Goyal VD, Magliery TJ. Phylogenetic spread of sequence data affects fitness of SOD1 consensus enzymes: Insights from sequence statistics and structural analyses. Proteins 2018; 86:609-620. [PMID: 29490429 DOI: 10.1002/prot.25486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Non-natural protein sequences with native-like structures and functions can be constructed successfully using consensus design. This design strategy is relatively well understood in repeat proteins with simple binding function, however detailed studies are lacking in globular enzymes. The SOD1 family is a good model for such studies due to the availability of large amount of sequence and structure data motivated by involvement of human SOD1 in the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). We constructed two consensus SOD1 enzymes from multiple sequence alignments from all organisms and eukaryotic organisms. A significant difference in their catalytic activities shows that the phylogenetic spread of the sequences used affects the fitness of the construct obtained. A mutation in an electrostatic loop and overall design incompatibilities between bacterial and eukaryotic sequences were implicated in this disparity. Based on this analysis, a bioinformatics approach was used to classify mutations thought to cause familial ALS providing a unique high level view of the physical basis of disease-causing aggregation of human SOD1.
Collapse
Affiliation(s)
- Venuka Durani Goyal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210.,Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
14
|
Barik S. On the role, ecology, phylogeny, and structure of dual-family immunophilins. Cell Stress Chaperones 2017; 22:833-845. [PMID: 28567569 PMCID: PMC5655371 DOI: 10.1007/s12192-017-0813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 01/26/2023] Open
Abstract
The novel class of dual-family immunophilins (henceforth abbreviated as DFI) represents naturally occurring chimera of classical FK506-binding protein (FKBP) and cyclophilin (CYN), connected by a flexible linker that may include a three-unit tetratricopeptide (TPR) repeat. Here, I report a comprehensive analysis of all current DFI sequences and their host organisms. DFIs are of two kinds: CFBP (cyclosporin- and FK506-binding protein) and FCBP (FK506- and cyclosporin-binding protein), found in eukaryotes. The CFBP type occurs in select bacteria that are mostly extremophiles, such as psychrophilic, thermophilic, halophilic, and sulfur-reducing. Essentially all DFI organisms are unicellular. I suggest that DFIs are specialized bifunctional chaperones that use their flexible interdomain linker to associate with large polypeptides or multisubunit megacomplexes to promote simultaneous folding or renaturation of two clients in proximity, essential in stressful and denaturing environments. Analysis of sequence homology and predicted 3D structures of the FKBP and CYN domains as well as the TPR linkers upheld the modular nature of the DFIs and revealed the uniqueness of their TPR domain. The CFBP and FCBP genes appear to have evolved in parallel pathways with no obvious single common ancestor. The occurrence of both types of DFI in multiple unrelated phylogenetic clades supported their selection in metabolic and environmental niche roles rather than a traditional taxonomic relationship. Nonetheless, organisms with these rare immunophilins may define an operational taxonomic unit (OTU) bound by the commonality of chaperone function.
Collapse
Affiliation(s)
- Sailen Barik
- , EonBio, 3780 Pelham Drive, Mobile, AL, 36619, USA.
| |
Collapse
|
15
|
Designing repeat proteins: a modular approach to protein design. Curr Opin Struct Biol 2017; 45:116-123. [DOI: 10.1016/j.sbi.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
|
16
|
Voet ARD, Simoncini D, Tame JRH, Zhang KYJ. Evolution-Inspired Computational Design of Symmetric Proteins. Methods Mol Biol 2017; 1529:309-322. [PMID: 27914059 DOI: 10.1007/978-1-4939-6637-0_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Monomeric proteins with a number of identical repeats creating symmetrical structures are potentially very valuable building blocks with a variety of bionanotechnological applications. As such proteins do not occur naturally, the emerging field of computational protein design serves as an excellent tool to create them from nonsymmetrical templates. Existing pseudo-symmetrical proteins are believed to have evolved from oligomeric precursors by duplication and fusion of identical repeats. Here we describe a computational workflow to reverse-engineer this evolutionary process in order to create stable proteins consisting of identical sequence repeats.
Collapse
Affiliation(s)
- Arnout R D Voet
- Laboratory for Biomolecular Modelling and Design, KU Leuven, Celestijnenlaan 200G, Leuven, 3000, Belgium.
| | - David Simoncini
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
- MIAT, UR-875, INRA, F-31320, Castanet Tolosan, France
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, 1-7-22 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
17
|
Ernst P, Plückthun A. Advances in the design and engineering of peptide-binding repeat proteins. Biol Chem 2017; 398:23-29. [DOI: 10.1515/hsz-2016-0233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/23/2016] [Indexed: 11/15/2022]
Abstract
Abstract
The specific recognition of peptides, which we define to include unstructured regions or denatured forms of proteins, is an intrinsic part of a multitude of biochemical assays and procedures. Many cellular interactions are also based on this principle as well. While it would be highly desirable to have a stockpile of sequence-specific binders for essentially any sequence, a de novo selection of individual binders against every possible target peptide sequence would be rather difficult to reduce to practice. Modular peptide binders could overcome this problem, as preselected and/or predesigned modules could be reused for the generation of new binders and thereby revolutionize the generation of binding proteins. This minireview summarizes advances in the development of peptide binders and possible scaffolds for their design.
Collapse
|
18
|
Zhu H, Sepulveda E, Hartmann MD, Kogenaru M, Ursinus A, Sulz E, Albrecht R, Coles M, Martin J, Lupas AN. Origin of a folded repeat protein from an intrinsically disordered ancestor. eLife 2016; 5:e16761. [PMID: 27623012 PMCID: PMC5074805 DOI: 10.7554/elife.16761] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
Repetitive proteins are thought to have arisen through the amplification of subdomain-sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2-5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin.
Collapse
Affiliation(s)
- Hongbo Zhu
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Edgardo Sepulveda
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Manjunatha Kogenaru
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Astrid Ursinus
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eva Sulz
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Murray Coles
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
19
|
Combining Design and Selection to Create Novel Protein-Peptide Interactions. Methods Enzymol 2016. [PMID: 27586335 DOI: 10.1016/bs.mie.2016.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The ability to design new protein-protein interactions (PPIs) has many applications in biotechnology and medicine. The goal of designed PPIs is to achieve both high affinity and specificity for the target protein. A great challenge in protein design is to identify such proteins from an enormous number of potential sequences. Many computational and experimental methods have been developed to contend with this challenge. Here we describe one particularly powerful approach-semirational design-that combines design and selection. This approach has been applied to generate new PPIs for many applications, including novel affinity reagents for protein detection/purification and bioorthogonal modules for synthetic biology (Jackrel, Valverde, & Regan, 2009; Sawyer et al., 2014; Speltz, Brown, Hajare, Schlieker, & Regan, 2015; Speltz, Nathan, & Regan, 2015).
Collapse
|
20
|
Using natural sequences and modularity to design common and novel protein topologies. Curr Opin Struct Biol 2016; 38:26-36. [PMID: 27270240 DOI: 10.1016/j.sbi.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Protein design is still a challenging undertaking, often requiring multiple attempts or iterations for success. Typically, the source of failure is unclear, and scoring metrics appear similar between successful and failed cases. Nevertheless, the use of sequence statistics, modularity and symmetry from natural proteins, combined with computational design both at the coarse-grained and atomistic levels is propelling a new wave of design efforts to success. Here we highlight recent examples of design, showing how the wealth of natural protein sequence and topology data may be leveraged to reduce the search space and increase the likelihood of achieving desired outcomes.
Collapse
|
21
|
Steinmetz A, Vallée F, Beil C, Lange C, Baurin N, Beninga J, Capdevila C, Corvey C, Dupuy A, Ferrari P, Rak A, Wonerow P, Kruip J, Mikol V, Rao E. CODV-Ig, a universal bispecific tetravalent and multifunctional immunoglobulin format for medical applications. MAbs 2016; 8:867-78. [PMID: 26984268 DOI: 10.1080/19420862.2016.1162932] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bispecific immunoglobulins (Igs) typically contain at least two distinct variable domains (Fv) that bind to two different target proteins. They are conceived to facilitate clinical development of biotherapeutic agents for diseases where improved clinical outcome is obtained or expected by combination therapy compared to treatment by single agents. Almost all existing formats are linear in their concept and differ widely in drug-like and manufacture-related properties. To overcome their major limitations, we designed cross-over dual variable Ig-like proteins (CODV-Ig). Their design is akin to the design of circularly closed repeat architectures. Indeed, initial results showed that the traditional approach of utilizing (G4S)x linkers for biotherapeutics design does not identify functional CODV-Igs. Therefore, we applied an unprecedented molecular modeling strategy for linker design that consistently results in CODV-Igs with excellent biochemical and biophysical properties. CODV architecture results in a circular self-contained structure functioning as a self-supporting truss that maintains the parental antibody affinities for both antigens without positional effects. The format is universally suitable for therapeutic applications targeting both circulating and membrane-localized proteins. Due to the full functionality of the Fc domains, serum half-life extension as well as antibody- or complement-dependent cytotoxicity may support biological efficiency of CODV-Igs. We show that judicious choice in combination of epitopes and paratope orientations of bispecific biotherapeutics is anticipated to be critical for clinical outcome. Uniting the major advantages of alternative bispecific biotherapeutics, CODV-Igs are applicable in a wide range of disease areas for fast-track multi-parametric drug optimization.
Collapse
Affiliation(s)
- Anke Steinmetz
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - François Vallée
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Christian Beil
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Christian Lange
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Nicolas Baurin
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Jochen Beninga
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Cécile Capdevila
- b Sanofi R&D, Global Biotherapeutics, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Carsten Corvey
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Alain Dupuy
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Paul Ferrari
- b Sanofi R&D, Global Biotherapeutics, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Alexey Rak
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Peter Wonerow
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Jochen Kruip
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Vincent Mikol
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Ercole Rao
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| |
Collapse
|
22
|
Bowman A, Lercher L, Singh HR, Zinne D, Timinszky G, Carlomagno T, Ladurner AG. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats. Nucleic Acids Res 2015; 44:3105-17. [PMID: 26673727 PMCID: PMC4838342 DOI: 10.1093/nar/gkv1372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/25/2015] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic chromatin is a complex yet dynamic structure, which is regulated in part by the assembly and disassembly of nucleosomes. Key to this process is a group of proteins termed histone chaperones that guide the thermodynamic assembly of nucleosomes by interacting with soluble histones. Here we investigate the interaction between the histone chaperone sNASP and its histone H3 substrate. We find that sNASP binds with nanomolar affinity to a conserved heptapeptide motif in the globular domain of H3, close to the C-terminus. Through functional analysis of sNASP homologues we identified point mutations in surface residues within the TPR domain of sNASP that disrupt H3 peptide interaction, but do not completely disrupt binding to full length H3 in cells, suggesting that sNASP interacts with H3 through additional contacts. Furthermore, chemical shift perturbations from(1)H-(15)N HSQC experiments show that H3 peptide binding maps to the helical groove formed by the stacked TPR motifs of sNASP. Our findings reveal a new mode of interaction between a TPR repeat domain and an evolutionarily conserved peptide motif found in canonical H3 and in all histone H3 variants, including CenpA and have implications for the mechanism of histone chaperoning within the cell.
Collapse
Affiliation(s)
- Andrew Bowman
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Lukas Lercher
- Leibniz University Hannover, BMWZ-Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
| | - Hari R Singh
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Daria Zinne
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Gyula Timinszky
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, BMWZ-Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany Helmholtz Centre for Infection Research, Group of Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany European Molecular Biology Laboratory, SCB Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Butenandt Strasse 5-13, 81377 Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Feodor Lynen Strasse 17, 81377 Munich, Germany
| |
Collapse
|
23
|
Pellegrini M. Tandem Repeats in Proteins: Prediction Algorithms and Biological Role. Front Bioeng Biotechnol 2015; 3:143. [PMID: 26442257 PMCID: PMC4585158 DOI: 10.3389/fbioe.2015.00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/07/2015] [Indexed: 12/30/2022] Open
Abstract
Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR.
Collapse
Affiliation(s)
- Marco Pellegrini
- Laboratory for Integrative Systems Medicine (LISM), Istituto di Informatica e Telematica, and Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche , Pisa , Italy
| |
Collapse
|
24
|
Kurochkina NA, Iadarola MJ. Helical assemblies: structure determinants. J Theor Biol 2015; 369:80-84. [PMID: 25613414 DOI: 10.1016/j.jtbi.2015.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 11/30/2022]
Abstract
Protein structural motifs such as helical assemblies and α/β barrels combine secondary structure elements with various types of interactions. Helix-helix interfaces of assemblies - Ankyrin, ARM/HEAT, PUM, LRR, and TPR repeats - exhibit unique amino acid composition and patterns of interactions that correlate with curvature of solenoids, surface geometry and mutual orientation of the helical edges. Inner rows of ankyrin, ARM/HEAT, and PUM-HD repeats utilize edges (i-1, i) and (i+1, i+2) for the interaction of the given α-helix with preceding and following helices correspondingly, whereas outer rows of these proteins and LRR repeats invert this pattern and utilize edges (i-1, i) and (i-3, i-2). Arrangement of contacts observed in protein ligands that bind helical assemblies has to mimic the assembly pattern to provide the same curvature as a determinant of binding specificity. These characteristics are important for understanding fold recognition, specificity of protein-protein interactions, and design of new drugs and materials.
Collapse
Affiliation(s)
- Natalya A Kurochkina
- The School of Theoretical Modeling, 1629 K St NW s 300, Washington, DC 20006, United States.
| | - Michael J Iadarola
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, NIH, Building 10, Room 2C401, 10 Center Drive, MSC 1510, Bethesda, MD 20892, United States.
| |
Collapse
|
25
|
Abstract
Protein engineering is at an exciting stage because designed protein-protein interactions are being used in many applications. For instance, three designed proteins are now in clinical trials. Although there have been many successes over the last decade, protein engineering still faces numerous challenges. Often, designs do not work as anticipated and they still require substantial redesign. The present review focuses on the successes, the challenges and the limitations of rational protein design today.
Collapse
|
26
|
Hingorani KS, Gierasch LM. Comparing protein folding in vitro and in vivo: foldability meets the fitness challenge. Curr Opin Struct Biol 2014; 24:81-90. [PMID: 24434632 DOI: 10.1016/j.sbi.2013.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/21/2013] [Accepted: 11/21/2013] [Indexed: 01/09/2023]
Abstract
In this review, we compare and contrast current knowledge about in vitro and in vivo protein folding. Major advances in understanding fundamental principles underlying protein folding in optimized in vitro conditions have yielded detailed physicochemical principles of folding landscapes for small, single domain proteins. In addition, there has been increased research focusing on the key features of protein folding in the cell that differentiate it from in vitro folding, such as co-translational folding, chaperone-facilitated folding, and folding in crowded conditions with many weak interactions. Yet these two research areas have not been bridged effectively in research carried out to date. This review points to gaps between the two that are ripe for future research. Moreover, we emphasize the biological selection pressures that impact protein folding in vivo and how fitness drives the evolution of protein sequences in ways that may place foldability in tension with other requirements on a given protein. We suggest that viewing the physicochemical process of protein folding through the lens of evolution will unveil new insights and pose novel challenges about in-cell folding landscapes.
Collapse
Affiliation(s)
- Karan S Hingorani
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States; Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States
| | - Lila M Gierasch
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States; Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States; Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, United States.
| |
Collapse
|