1
|
Tarasca MV, Naser D, Schaefer A, Soule TG, Meiering EM. Quenched hydrogen-deuterium amide exchange optimization for high-resolution structural analysis of cellular protein aggregates. Anal Biochem 2022; 652:114675. [PMID: 35390328 DOI: 10.1016/j.ab.2022.114675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Inclusion bodies (IBs) are large, insoluble aggregates that often form during the overexpression of proteins in bacteria. These aggregates are of broad fundamental and practical significance, for recombinant protein preparation and due to their relevance to aggregation-related medical conditions and their recent emergence as promising functional nanomaterials. Despite their significance, high resolution knowledge of IB structure remains very limited. Such knowledge will advance understanding and control of IB formation and properties in myriad practical applications. Here, we report a detailed quenched hydrogen-deuterium amide exchange (qHDX) method with NMR readout to define the structure of IBs at the level of individual residues throughout the protein. Applying proper control of experimental conditions, such as sample pH, water content, temperature, and intrinsic rate of amide exchange, yields in depth results for these cellular protein aggregates. qHDX results illustrated for Cu, Zn superoxide dismutase 1 (SOD1) and Adnectins show their IBs include native-like structure and some but not all mutations alter IB structure.
Collapse
Affiliation(s)
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Tyler Gb Soule
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | | |
Collapse
|
2
|
Kuwajima K, Yagi-Utsumi M, Yanaka S, Kato K. DMSO-Quenched H/D-Exchange 2D NMR Spectroscopy and Its Applications in Protein Science. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123748. [PMID: 35744871 PMCID: PMC9230524 DOI: 10.3390/molecules27123748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Hydrogen/deuterium (H/D) exchange combined with two-dimensional (2D) NMR spectroscopy has been widely used for studying the structure, stability, and dynamics of proteins. When we apply the H/D-exchange method to investigate non-native states of proteins such as equilibrium and kinetic folding intermediates, H/D-exchange quenching techniques are indispensable, because the exchange reaction is usually too fast to follow by 2D NMR. In this article, we will describe the dimethylsulfoxide (DMSO)-quenched H/D-exchange method and its applications in protein science. In this method, the H/D-exchange buffer is replaced by an aprotic DMSO solution, which quenches the exchange reaction. We have improved the DMSO-quenched method by using spin desalting columns, which are used for medium exchange from the H/D-exchange buffer to the DMSO solution. This improvement has allowed us to monitor the H/D exchange of proteins at a high concentration of salts or denaturants. We describe methodological details of the improved DMSO-quenched method and present a case study using the improved method on the H/D-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride.
Collapse
Affiliation(s)
- Kunihiro Kuwajima
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence: (K.K.); (K.K.)
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
- Correspondence: (K.K.); (K.K.)
| |
Collapse
|
3
|
LeBlanc RM, Mesleh MF. A drug discovery toolbox for Nuclear Magnetic Resonance (NMR) characterization of ligands and their targets. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 37:51-60. [PMID: 34895655 DOI: 10.1016/j.ddtec.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Information about the structure, dynamics, and ligand-binding properties of biomolecules can be derived from Nuclear Magnetic Resonance (NMR) spectroscopy and provides valuable information for drug discovery. A multitude of experimental approaches provides a wealth of information that can be tailored to the system of interest. Methods to study the behavior of ligands upon target binding enable the identification of weak binders in a robust manner that is critical for the identification of truly novel binding interactions. This is particularly important for challenging targets. Observing the solution behavior of biomolecules yields information about their structure, dynamics, and interactions. This review describes the breadth of approaches that are available, many of which are under-utilized in a drug-discovery environment, and focuses on recent advances that continue to emerge.
Collapse
Affiliation(s)
- Regan M LeBlanc
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States
| | - Michael F Mesleh
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States.
| |
Collapse
|
4
|
Byun JA, Melacini G. NMR methods to dissect the molecular mechanisms of disease-related mutations (DRMs): Understanding how DRMs remodel functional free energy landscapes. Methods 2018; 148:19-27. [DOI: 10.1016/j.ymeth.2018.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
|
5
|
Takenaka T, Nakamura T, Yanaka S, Yagi-Utsumi M, Chandak MS, Takahashi K, Paul S, Makabe K, Arai M, Kato K, Kuwajima K. Formation of the chaperonin complex studied by 2D NMR spectroscopy. PLoS One 2017; 12:e0187022. [PMID: 29059240 PMCID: PMC5653362 DOI: 10.1371/journal.pone.0187022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
We studied the interaction between GroES and a single-ring mutant (SR1) of GroEL by the NMR titration of 15N-labeled GroES with SR1 at three different temperatures (20, 25 and 30°C) in the presence of 3 mM ADP in 100 mM KCl and 10 mM MgCl2 at pH 7.5. We used SR1 instead of wild-type double-ring GroEL to precisely control the stoichiometry of the GroES binding to be 1:1 ([SR1]:[GroES]). Native heptameric GroES was very flexible, showing well resolved cross peaks of the residues in a mobile loop segment (residue 17–34) and at the top of a roof hairpin (Asn51) in the heteronuclear single quantum coherence spectra. The binding of SR1 to GroES caused the cross peaks to disappear simultaneously, and hence it occurred in a single-step cooperative manner with significant immobilization of the whole GroES structure. The binding was thus entropic with a positive entropy change (219 J/mol/K) and a positive enthalpy change (35 kJ/mol), and the binding constant was estimated at 1.9×105 M−1 at 25°C. The NMR titration in 3 mM ATP also indicated that the binding constant between GroES and SR1 increased more than tenfold as compared with the binding constant in 3 mM ADP. These results will be discussed in relation to the structure and mechanisms of the chaperonin GroEL/GroES complex.
Collapse
Affiliation(s)
- Toshio Takenaka
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Takashi Nakamura
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Saeko Yanaka
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Mahesh S. Chandak
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Kazunobu Takahashi
- Department of Physics, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Subhankar Paul
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Koki Makabe
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
- Department of Physics, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Dongdaemun-gu, Seoul, Korea
- * E-mail: ,
| |
Collapse
|
6
|
Niu X, Luo J, Xu D, Zou H, Kong L. Hydrogen/deuterium exchange, a unique and effective method for MS fragmentation behavior elucidation of ginkgolides and its application to systematic research in Ginkgo biloba. J Pharm Biomed Anal 2017; 134:181-186. [DOI: 10.1016/j.jpba.2016.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 11/27/2022]
|
7
|
NISHIMURA C. Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:10-27. [PMID: 28077807 PMCID: PMC5406622 DOI: 10.2183/pjab.93.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
The structures of apomyoglobin folding intermediates have been widely analyzed using physical chemistry methods including fluorescence, circular dichroism, small angle X-ray scattering, NMR, mass spectrometry, and rapid mixing. So far, at least two intermediates (on sub-millisecond- and millisecond-scales) have been demonstrated for apomyoglobin folding. The combination of pH-pulse labeling and NMR is a useful tool for analyzing the kinetic intermediates at the atomic level. Its use has revealed that the latter-phase kinetic intermediate of apomyoglobin (6 ms) was composed of helices A, B, G and H, whereas the equilibrium intermediate, called the pH 4 molten-globule intermediate, was composed mainly of helices A, G and H. The improved strategy for the analysis of the kinetic intermediate was developed to include (1) the dimethyl sulfoxide method, (2) data processing with the various labeling times, and (3) a new in-house mixer. Particularly, the rapid mixing revealed that helices A and G were significantly more protected at the earlier stage (400 µs) of the intermediate (former-phase intermediate) than the other helices. Mutation studies, where each hydrophobic residue was replaced with an alanine in helices A, B, E, F, G and H, indicated that both non-native and native-like structures exist in the latter-phase folding intermediate. The N-terminal part of helix B is a weak point in the intermediate, and the docking of helix E residues to the core of the A, B, G and H helices was interrupted by a premature helix B, resulting in the accumulation of the intermediate composed of helices A, B, G and H. The prediction-based protein engineering produced important mutants: Helix F in a P88K/A90L/S92K/A94L mutant folded in the latter-phase intermediate, although helix F in the wild type does not fold even at the native state. Furthermore, in the L11G/W14G/A70L/G73W mutant, helix A did not fold but helix E did, which is similar to what was observed in the kinetic intermediate of apoleghemoglobin. Thus, this protein engineering resulted in a changed structure for the apomyoglobin folding intermediate.
Collapse
Affiliation(s)
- Chiaki NISHIMURA
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, Japan
| |
Collapse
|
8
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
9
|
Abstract
Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.
Collapse
Affiliation(s)
- Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Unit 3125, BSP 209, 91 N. Eagleville Rd., Storrs, CT, 06269-3125, USA.
| |
Collapse
|
10
|
Reddy KD, DeForte S, Uversky VN. Digested disorder: Quarterly intrinsic disorder digest (July-August-September, 2013). INTRINSICALLY DISORDERED PROTEINS 2014; 2:e27833. [PMID: 28232877 PMCID: PMC5314876 DOI: 10.4161/idp.27833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
Abstract
The current literature on intrinsically disordered proteins grows fast. To keep interested readers up to speed with this literature, we continue a "Digested Disorder" project and represent a new issue of reader's digest of the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the third quarter of 2013; i.e., during the period of June, July, and September of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.
Collapse
Affiliation(s)
- Krishna D Reddy
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Shelly DeForte
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Vladimir N Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA; USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Department of Biological Sciences; Faculty of Science; King Abdulaziz University; Jeddah, Saudi Arabia; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Moscow Region, Russia
| |
Collapse
|