1
|
Patrick EM, Yadav R, Senanayake K, Cotter K, Putnam AA, Jankowsky E, Comstock MJ. High-resolution fleezers reveal duplex opening and stepwise assembly by an oligomer of the DEAD-box helicase Ded1p. Nat Commun 2025; 16:1015. [PMID: 39863580 PMCID: PMC11762735 DOI: 10.1038/s41467-024-54955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/22/2024] [Indexed: 01/27/2025] Open
Abstract
DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Eric M Patrick
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Rajeev Yadav
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Kasun Senanayake
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Kyle Cotter
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Andrea A Putnam
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western University, Cleveland, OH, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Eckhard Jankowsky
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western University, Cleveland, OH, USA
- Moderna, Cambridge, MA, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Patrick EM, Yadav R, Senanayake K, Cotter K, Putnam AA, Jankowsky E, Comstock MJ. High-resolution fleezers reveal duplex opening and stepwise assembly by an oligomer of the DEAD-box helicase Ded1p. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582829. [PMID: 38496418 PMCID: PMC10942383 DOI: 10.1101/2024.02.29.582829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
DEAD-box RNA helicases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box helicases unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.
Collapse
|
3
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Venus S, Jankowsky E. Measuring the impact of cofactors on RNA helicase activities. Methods 2022; 204:376-385. [PMID: 35429628 PMCID: PMC9306305 DOI: 10.1016/j.ymeth.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
RNA helicases are the largest class of enzymes in eukaryotic RNA metabolism. In cells, protein cofactors regulate RNA helicase functions and impact biochemical helicase activities. Understanding how cofactors affect enzymatic activities of RNA helicases is thus critical for delineating physical roles and regulation of RNA helicases in cells. Here, we discuss approaches and conceptual considerations for the design of experiments to interrogate cofactor effects on RNA helicase activities in vitro. We outline the mechanistic frame for helicase reactions, discuss optimization of experimental setup and reaction parameters for measuring cofactor effects on RNA helicase activities, and provide basic guides to data analysis and interpretation. The described approaches are also instructive for determining the impact of small molecule inhibitors of RNA helicases.
Collapse
|
5
|
Lin M, Cui W, Tian H, Zhang Y, Chen C, Yang X, Chi H, Mu Z, Chen C, Wang Z, Ji X, Yang H, Lin Z. Structural Basis of Zika Virus Helicase in RNA Unwinding and ATP Hydrolysis. ACS Infect Dis 2022; 8:150-158. [PMID: 34904824 DOI: 10.1021/acsinfecdis.1c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The flavivirus nonstructural protein 3 helicase (NS3hel) is a multifunctional domain protein that is associated with DNA/RNA helicase, nucleoside triphosphatase (NTPase), and RNA 5'-triphosphatase (RTPase) activities. As an NTPase-dependent superfamily 2 (SF2) member, NS3hel employs an NTP-driven motor force to unwind double-stranded RNA while translocating along single-stranded RNA and is extensively involved in the viral replication process. Although the structures of SF2 helicases are widely investigated as promising drug targets, the mechanism of energy transduction between NTP hydrolysis and the RNA binding sites in ZIKV NS3hel remains elusive. Here, we report the crystal structure of ZIKV NS3hel in complex with its natural substrates ATP-Mn2+ and ssRNA. Distinct from other members of the Flavivirus genus, ssRNA binding to ZIKV NS3hel induces relocation of the active water molecules and ATP-associated metal ions in the NTP hydrolysis active site, which promotes the hydrolysis of ATP and the production of AMP. Our findings highlight the importance of the allosteric role of ssRNA on the modulation of ATP hydrolysis and energy utilization.
Collapse
Affiliation(s)
- Mengmeng Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Wen Cui
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongliang Tian
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xiaoyun Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Heng Chi
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhongyu Mu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Abstract
RNA viruses cause many routine illnesses, such as the common cold and the flu. Recently, more deadly diseases have emerged from this family of viruses. The hepatitis C virus has had a devastating impact worldwide. Despite the cures developed in the U.S. and Europe, economically disadvantaged countries remain afflicted by HCV infection due to the high cost of these medications. More recently, COVID-19 has swept across the world, killing millions and disrupting economies and lifestyles; the virus responsible for this pandemic is a coronavirus. Our understanding of HCV and SARS CoV-2 replication is still in its infancy. Helicases play a critical role in the replication, transcription and translation of viruses. These key enzymes need extensive study not only as an essential player in the viral lifecycle, but also as targets for antiviral therapeutics. In this review, we highlight the current knowledge for RNA helicases of high importance to human health.
Collapse
Affiliation(s)
- John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Binyam Belachew
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
7
|
Ali MAM. DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res 2021; 296:198352. [PMID: 33640359 DOI: 10.1016/j.virusres.2021.198352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
DEAD-box RNA helicases, the largest family of superfamily 2 helicases, are a profoundly conserved family of RNA-binding proteins, containing a distinctive Asp-Glu-Ala-Asp (D-E-A-D) sequence motif, which is the origin of their name. Aside from the ATP-dependent unwinding of RNA duplexes, which set up these proteins as RNA helicases, DEAD-box proteins have been found to additionally stimulate RNA duplex fashioning and to uproot proteins from RNA, aiding the reformation of RNA and RNA-protein complexes. There is accumulating evidence that DEAD-box helicases play functions in the recognition of foreign nucleic acids and the modification of viral infection. As intracellular parasites, viruses must avoid identification by innate immune sensing mechanisms and disintegration by cellular machinery, whilst additionally exploiting host cell activities to assist replication. The capability of DEAD-box helicases to sense RNA in a sequence-independent way, as well as the broadness of cellular roles performed by members of this family, drive them to affect innate sensing and viral infections in numerous manners. Undoubtedly, DEAD-box helicases have been demonstrated to contribute to intracellular immune recognition, function as antiviral effectors, and even to be exploited by viruses to support their replication. Relying on the virus or the viral cycle phase, a DEAD-box helicase can function either in a proviral manner or as an antiviral factor. This review gives a comprehensive perspective on the various biochemical characteristics of DEAD-box helicases and their links to structural data. It additionally outlines the multiple functions that members of the DEAD-box helicase family play during viral infections.
Collapse
Affiliation(s)
- Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
8
|
Donsbach P, Klostermeier D. Regulation of RNA helicase activity: principles and examples. Biol Chem 2021; 402:529-559. [PMID: 33583161 DOI: 10.1515/hsz-2020-0362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
RNA helicases are a ubiquitous class of enzymes involved in virtually all processes of RNA metabolism, from transcription, mRNA splicing and export, mRNA translation and RNA transport to RNA degradation. Although ATP-dependent unwinding of RNA duplexes is their hallmark reaction, not all helicases catalyze unwinding in vitro, and some in vivo functions do not depend on duplex unwinding. RNA helicases are divided into different families that share a common helicase core with a set of helicase signature motives. The core provides the active site for ATP hydrolysis, a binding site for non-sequence-specific interaction with RNA, and in many cases a basal unwinding activity. Its activity is often regulated by flanking domains, by interaction partners, or by self-association. In this review, we summarize the regulatory mechanisms that modulate the activities of the helicase core. Case studies on selected helicases with functions in translation, splicing, and RNA sensing illustrate the various modes and layers of regulation in time and space that harness the helicase core for a wide spectrum of cellular tasks.
Collapse
Affiliation(s)
- Pascal Donsbach
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| | - Dagmar Klostermeier
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| |
Collapse
|
9
|
Abstract
RNA helicases are ubiquitous, highly conserved RNA-binding enzymes that use the energy derived from the hydrolysis of nucleoside triphosphate to modify the structure of RNA molecules and/or the functionality of ribonucleoprotein complexes. Ultimately, the action of RNA helicases results in changes in gene expression that allow the cell to perform crucial functions. In this chapter, we review established and emerging concepts for DEAD-box and DExH-box RNA helicases. We mention examples from both eukaryotic and prokaryotic systems, in order to highlight common themes and specific actions.
Collapse
Affiliation(s)
- Martina Valentini
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Patrick Linder
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland.
| |
Collapse
|
10
|
Srinivasan S, Liu Z, Chuenchor W, Xiao TS, Jankowsky E. Function of Auxiliary Domains of the DEAH/RHA Helicase DHX36 in RNA Remodeling. J Mol Biol 2020; 432:2217-2231. [PMID: 32087197 DOI: 10.1016/j.jmb.2020.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 01/06/2023]
Abstract
The DEAH/RHA helicase DHX36 has been linked to cellular RNA and DNA quadruplex structures and to AU-rich RNA elements. In vitro, DHX36 remodels DNA and RNA quadruplex structures and unwinds DNA duplexes in an ATP-dependent manner. DHX36 contains the superfamily 2 helicase core and several auxiliary domains that are conserved in orthologs of the enzyme. The role of these auxiliary domains for the enzymatic function of DHX36 is not well understood. Here, we combine structural and biochemical studies to define the function of three auxiliary domains that contact nucleic acid. We first report the crystal structure of mouse DHX36 bound to ADP. The structure reveals an overall architecture of mouse DHX36 that is similar to previously reported architectures of fly and bovine DHX36. In addition, our structure shows conformational changes that accompany stages of the ATP-binding and hydrolysis cycle. We then examine the roles of the DHX36-specific motif (DSM), the OB-fold, and a conserved β-hairpin (β-HP) in mouse DHX36 in the remodeling of RNA structures. We demonstrate and characterize RNA duplex unwinding for DHX36 and examine the remodeling of inter- and intramolecular RNA quadruplex structures. We find that the DSM not only functions as a quadruplex binding adaptor but also promotes the remodeling of RNA duplex and quadruplex structures. The OB-fold and the β-HP contribute to RNA binding. Both domains are also essential for remodeling RNA quadruplex and duplex structures. Our data reveal roles of auxiliary domains for multiple steps of the nucleic acid remodeling reactions.
Collapse
Affiliation(s)
| | - Zhonghua Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Tsan Sam Xiao
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, USA; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Venkata Subbaiah KC, Hedaya O, Wu J, Jiang F, Yao P. Mammalian RNA switches: Molecular rheostats in gene regulation, disease, and medicine. Comput Struct Biotechnol J 2019; 17:1326-1338. [PMID: 31741723 PMCID: PMC6849081 DOI: 10.1016/j.csbj.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023] Open
Abstract
Alteration of RNA structure by environmental signals is a fundamental mechanism of gene regulation. For example, the riboswitch is a noncoding RNA regulatory element that binds a small molecule and causes a structural change in the RNA, thereby regulating transcription, splicing, or translation of an mRNA. The role of riboswitches in metabolite sensing and gene regulation in bacteria and other lower species was reported almost two decades ago, but riboswitches have not yet been discovered in mammals. An analog of the riboswitch, the protein-directed RNA switch (PDRS), has been identified as an important regulatory mechanism of gene expression in mammalian cells. RNA-binding proteins and microRNAs are two major executors of PDRS via their interaction with target transcripts in mammals. These protein-RNA interactions influence cellular functions by integrating environmental signals and intracellular pathways from disparate stimuli to modulate stability or translation of specific mRNAs. The discovery of a riboswitch in eukaryotes that is composed of a single class of thiamine pyrophosphate (TPP) suggests that additional ligand-sensing RNAs may be present to control eukaryotic or mammalian gene expression. In this review, we focus on protein-directed RNA switch mechanisms in mammals. We offer perspectives on the potential discovery of mammalian protein-directed and compound-dependent RNA switches that are related to human disease and medicine.
Collapse
Affiliation(s)
- Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Omar Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| |
Collapse
|
12
|
de Bisschop G, Ameur M, Ulryck N, Benattia F, Ponchon L, Sargueil B, Chamond N. HIV-1 gRNA, a biological substrate, uncovers the potency of DDX3X biochemical activity. Biochimie 2019; 164:83-94. [PMID: 30910425 DOI: 10.1016/j.biochi.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 11/30/2022]
Abstract
DEAD-box helicases play central roles in the metabolism of many RNAs and ribonucleoproteins by assisting their synthesis, folding, function and even their degradation or disassembly. They have been implicated in various phenomena, and it is often difficult to rationalize their molecular roles from in vivo studies. Once purified in vitro, most of them only exhibit a marginal activity and poor specificity. The current model is that they gain specificity and activity through interaction of their intrinsically disordered domains with specific RNA or proteins. DDX3 is a DEAD-box cellular helicase that has been involved in several steps of the HIV viral cycle, including transcription, RNA export to the cytoplasm and translation. In this study, we investigated DDX3 biochemical properties in the context of a biological substrate. DDX3 was overexpressed, purified and its enzymatic activities as well as its RNA binding properties were characterized using both model substrates and a biological substrate, HIV-1 gRNA. Biochemical characterization of DDX3 in the context of a biological substrate identifies HIV-1 gRNA as a rare example of specific substrate and unravels the extent of DDX3 ATPase activity. Analysis of DDX3 binding capacity indicates an unexpected dissociation between its binding capacity and its biochemical activity. We further demonstrate that interaction of DDX3 with HIV-1 gRNA relies both on specific RNA determinants and on the disordered N- and C-terminal regions of the protein. These findings shed a new light regarding the potentiality of DDX3 biochemical activity supporting its multiple cellular functions.
Collapse
Affiliation(s)
| | - Mélissa Ameur
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France
| | - Nathalie Ulryck
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France
| | - Fatima Benattia
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France
| | - Luc Ponchon
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France
| | - Bruno Sargueil
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France.
| | - Nathalie Chamond
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France.
| |
Collapse
|
13
|
Jankowsky E, Guenther UP. A helicase links upstream ORFs and RNA structure. Curr Genet 2018; 65:453-456. [PMID: 30483885 DOI: 10.1007/s00294-018-0911-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
Abstract
Upstream open reading frames (uORFs) in 5' UTRs of eukaryotic mRNAs are increasingly recognized as important elements that regulate cellular protein synthesis. Since uORFs can start from non-AUG codons, an enormous number of potential uORF initiation sites exists in 5'UTRs. However, only a subset of these sites is used and it has been unclear how actual start sites are selected. Studies of the DEAD-box helicase Ded1p from S. cerevisiae show that translation of uORFs with non-AUG initiation codons occurs upstream of mRNA structures that emerge with defective Ded1p. The data designate mRNA structure as important determinant for non-AUG initiation sites of uORFs. Ded1p can control this RNA structure and thereby regulate uORF translation.
Collapse
Affiliation(s)
- Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ulf-Peter Guenther
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,EMBL, Heidelberg, Germany
| |
Collapse
|
14
|
Barkovich KJ, Moore MK, Hu Q, Shokat KM. Chemical genetic inhibition of DEAD-box proteins using covalent complementarity. Nucleic Acids Res 2018; 46:8689-8699. [PMID: 30102385 PMCID: PMC6158709 DOI: 10.1093/nar/gky706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/07/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
DEAD-box proteins are an essential class of enzymes involved in all stages of RNA metabolism. The study of DEAD-box proteins is challenging in a native setting since they are structurally similar, often essential and display dosage sensitivity. Pharmacological inhibition would be an ideal tool to probe the function of these enzymes. In this work, we describe a chemical genetic strategy for the specific inactivation of individual DEAD-box proteins with small molecule inhibitors using covalent complementarity. We identify a residue of low conservation within the P-loop of the nucleotide-binding site of DEAD-box proteins and show that it can be mutated to cysteine without a substantial loss of enzyme function to generate electrophile-sensitive mutants. We then present a series of small molecules that rapidly and specifically bind and inhibit electrophile-sensitive DEAD-box proteins with high selectivity over the wild-type enzyme. Thus, this approach can be used to systematically generate small molecule-sensitive alleles of DEAD-box proteins, allowing for pharmacological inhibition and functional characterization of members of this enzyme family.
Collapse
Affiliation(s)
- Krister J Barkovich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Megan K Moore
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Qi Hu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs. Nature 2018; 559:130-134. [PMID: 29950728 PMCID: PMC6226265 DOI: 10.1038/s41586-018-0258-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation1. Mutations in DDX3 are linked to tumorigenesis2-4 and intellectual disability5, and the enzyme is targeted by a range of viruses6. How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions.
Collapse
|
16
|
Wong EV, Gray S, Cao W, Montpetit R, Montpetit B, De La Cruz EM. Nup159 Weakens Gle1 Binding to Dbp5 But Does Not Accelerate ADP Release. J Mol Biol 2018; 430:2080-2095. [PMID: 29782832 DOI: 10.1016/j.jmb.2018.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
Abstract
Dbp5, DDX19 in humans, is an essential DEAD-box protein involved in mRNA export, which has also been linked to other cellular processes, including rRNA export and translation. Dbp5 ATPase activity is regulated by several factors, including RNA, the nucleoporin proteins Nup159 and Gle1, and the endogenous small-molecule inositol hexakisphosphate (InsP6). To better understand how these factors modulate Dbp5 activity and how this modulation relates to in vivo RNA metabolism, a detailed characterization of the Dbp5 mechanochemical cycle in the presence of those regulators individually or together is necessary. In this study, we test the hypothesis that Nup159 controls the ADP-bound state of Dbp5. In addition, the contributions of Mg2+ to the kinetics and thermodynamics of ADP binding to Dbp5 were assessed. Using a solution based in vitro approach, Mg2+ was found to slow ADP and ATP release from Dbp5 and increased the overall ADP and ATP affinities, as observed with other NTPases. Furthermore, Nup159 did not accelerate ADP release, while Gle1 actually slowed ADP release independent of Mg2+. These findings are not consistent with Nup159 acting as a nucleotide exchange factor to promote ADP release and Dbp5 ATPase cycling. Instead, in the presence of Nup159, the interaction between Gle1 and ADP-bound Dbp5 was found to be reduced by ~18-fold, suggesting that Nup159 alters the Dbp5-Gle1 interaction to aid Gle1 release from Dbp5.
Collapse
Affiliation(s)
- Emily V Wong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shawn Gray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Biochemical Differences and Similarities between the DEAD-Box Helicase Orthologs DDX3X and Ded1p. J Mol Biol 2017; 429:3730-3742. [PMID: 29037760 DOI: 10.1016/j.jmb.2017.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 12/14/2022]
Abstract
DDX3X is a conserved DEAD-box RNA helicase involved in translation initiation and other processes of RNA metabolism. Mutations in human DDX3X and deregulation of its expression are linked to tumorigenesis and intellectual disability. The protein is also targeted by diverse viruses. Previous studies demonstrated helicase and NTPase activities for DDX3X, but important biochemical features of the enzyme remain unclear. Here, we systematically characterize enzymatic activities of human DDX3X and compare these to its closely related Saccharomyces cerevisiae ortholog Ded1p. We show that DDX3X, like Ded1p, utilizes exclusively adenosine triphosphates to unwind helices, oligomerizes to function as efficient RNA helicase, and does not unwind DNA duplexes. The ATPase activity of DDX3X is markedly stimulated by RNA and weaker by DNA, although DNA binds to the enzyme. For RNA unwinding, DDX3X shows a greater preference than Ded1p for substrates with unpaired regions 3' to the duplex over those with 5' unpaired regions. DDX3X separates longer RNA duplexes faster than Ded1p and is less potent than Ded1p in facilitating strand annealing. Our results reveal that the biochemical activities of human DDX3X are typical for DEAD-box RNA helicases, but diverge quantitatively from its highly similar S. cerevisiae ortholog Ded1p.
Collapse
|
18
|
Gao Z, Putnam AA, Bowers HA, Guenther UP, Ye X, Kindsfather A, Hilliker AK, Jankowsky E. Coupling between the DEAD-box RNA helicases Ded1p and eIF4A. eLife 2016; 5. [PMID: 27494274 PMCID: PMC4990422 DOI: 10.7554/elife.16408] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/04/2016] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic translation initiation involves two conserved DEAD-box RNA helicases, eIF4A and Ded1p. Here we show that S. cerevisiae eIF4A and Ded1p directly interact with each other and simultaneously with the scaffolding protein eIF4G. We delineate a comprehensive thermodynamic framework for the interactions between Ded1p, eIF4A, eIF4G, RNA and ATP, which indicates that eIF4A, with and without eIF4G, acts as a modulator for activity and substrate preferences of Ded1p, which is the RNA remodeling unit in all complexes. Our results reveal and characterize an unexpected interdependence between the two RNA helicases and eIF4G, and suggest that Ded1p is an integral part of eIF4F, the complex comprising eIF4G, eIF4A, and eIF4E.
Collapse
Affiliation(s)
- Zhaofeng Gao
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Andrea A Putnam
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Heath A Bowers
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Ulf-Peter Guenther
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Xuan Ye
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | | | - Angela K Hilliker
- Department of Biology, University of Richmond, Richmond, United States
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
19
|
Sahoo J, Arunachalam R, Subramanian PS, Suresh E, Valkonen A, Rissanen K, Albrecht M. Coordinatively Unsaturated Lanthanide(III) Helicates: Luminescence Sensors for Adenosine Monophosphate in Aqueous Media. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jashobanta Sahoo
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Rajendran Arunachalam
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Palani S. Subramanian
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Eringathodi Suresh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Arto Valkonen
- University of Jyvaskyla; Department of Chemistry, Nanoscience Center; P.O. Box. 35 40014 University of Jyvaskyla Finland
| | - Kari Rissanen
- University of Jyvaskyla; Department of Chemistry, Nanoscience Center; P.O. Box. 35 40014 University of Jyvaskyla Finland
| | - Markus Albrecht
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
20
|
Sahoo J, Arunachalam R, Subramanian PS, Suresh E, Valkonen A, Rissanen K, Albrecht M. Coordinatively Unsaturated Lanthanide(III) Helicates: Luminescence Sensors for Adenosine Monophosphate in Aqueous Media. Angew Chem Int Ed Engl 2016; 55:9625-9. [DOI: 10.1002/anie.201604093] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jashobanta Sahoo
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Rajendran Arunachalam
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Palani S. Subramanian
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Eringathodi Suresh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Arto Valkonen
- University of Jyvaskyla; Department of Chemistry, Nanoscience Center; P.O. Box. 35 40014 University of Jyvaskyla Finland
| | - Kari Rissanen
- University of Jyvaskyla; Department of Chemistry, Nanoscience Center; P.O. Box. 35 40014 University of Jyvaskyla Finland
| | - Markus Albrecht
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
21
|
Wong EV, Cao W, Vörös J, Merchant M, Modis Y, Hackney DD, Montpetit B, De La Cruz EM. P(I) Release Limits the Intrinsic and RNA-Stimulated ATPase Cycles of DEAD-Box Protein 5 (Dbp5). J Mol Biol 2015; 428:492-508. [PMID: 26730886 PMCID: PMC4744555 DOI: 10.1016/j.jmb.2015.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Abstract
mRNA export from the nucleus depends on the ATPase activity of the DEAD-box protein Dbp5/DDX19. Although Dbp5 has measurable ATPase activity alone, several regulatory factors (e.g., RNA, nucleoporin proteins, and the endogenous small molecule InsP6) modulate catalytic activity in vitro and in vivo to facilitate mRNA export. An analysis of the intrinsic and regulator-activated Dbp5 ATPase cycle is necessary to define how these factors control Dbp5 and mRNA export. Here, we report a kinetic and equilibrium analysis of the Saccharomyces cerevisiae Dbp5 ATPase cycle, including the influence of RNA on Dbp5 activity. These data show that ATP binds Dbp5 weakly in rapid equilibrium with a binding affinity (KT ~ 4 mM) comparable to the KM for steady-state cycling, while ADP binds an order of magnitude more tightly (KD ~ 0.4 mM). The overall intrinsic steady-state cycling rate constant (kcat) is limited by slow, near-irreversible ATP hydrolysis and even slower subsequent phosphate release. RNA increases kcat and rate-limiting Pi release 20-fold, although Pi release continues to limit steady-state cycling in the presence of RNA, in conjunction with RNA binding. Together, this work identifies RNA binding and Pi release as important biochemical transitions within the Dbp5 ATPase cycle and provides a framework for investigating the means by which Dbp5 and mRNA export is modulated by regulatory factors. mRNA export from the nucleus requires DEAD-box protein Dbp5/DDX19 ATPase activity. Kinetics and thermodynamics of intrinsic Dbp5 ATPase reveal RNA's effect on Dbp5. Intrinsic Dbp5 ATPase is limited by slow ATP hydrolysis and slower Pi release. RNA activates Pi release, but it and RNA binding still limit RNA-stimulated ATPase. RNA binding and Pi release define RNA-stimulated Dbp5 ATPase for further regulation.
Collapse
Affiliation(s)
- Emily V Wong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Judit Vörös
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Monique Merchant
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - David D Hackney
- Department of Biological Sciences and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
22
|
Floor SN, Barkovich KJ, Condon KJ, Shokat KM, Doudna JA. Analog sensitive chemical inhibition of the DEAD-box protein DDX3. Protein Sci 2015; 25:638-49. [PMID: 26650549 DOI: 10.1002/pro.2857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 01/09/2023]
Abstract
Proper maintenance of RNA structure and dynamics is essential to maintain cellular health. Multiple families of RNA chaperones exist in cells to modulate RNA structure, RNA-protein complexes, and RNA granules. The largest of these families is the DEAD-box proteins, named after their catalytic Asp-Glu-Ala-Asp motif. The human DEAD-box protein DDX3 is implicated in diverse biological processes including translation initiation and is mutated in numerous cancers. Like many DEAD-box proteins, DDX3 is essential to cellular health and exhibits dosage sensitivity, such that both decreases and increases in protein levels can be lethal. Therefore, chemical inhibition would be an ideal tool to probe the function of DDX3. However, most DEAD-box protein active sites are extremely similar, complicating the design of specific inhibitors. Here, we show that a chemical genetic approach best characterized in protein kinases, known as analog-sensitive chemical inhibition, is viable for DDX3 and possibly other DEAD-box proteins. We present an expanded active-site mutant that is tolerated in vitro and in vivo, and is sensitive to chemical inhibition by a novel bulky inhibitor. Our results highlight a course towards analog sensitive chemical inhibition of DDX3 and potentially the entire DEAD-box protein family.
Collapse
Affiliation(s)
- Stephen N Floor
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California
| | - Krister J Barkovich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Kendall J Condon
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,Howard Hughes Medical Institute, University of California, San Francisco, California.,Department of Chemistry, University of California, Berkeley, California
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California.,Department of Chemistry, University of California, Berkeley, California.,Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California.,Lawrence Berkeley National Laboratory, Physical Biosciences Division, Berkeley, California
| |
Collapse
|
23
|
Putnam AA, Gao Z, Liu F, Jia H, Yang Q, Jankowsky E. Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p. Mol Cell 2015. [PMID: 26212457 DOI: 10.1016/j.molcel.2015.06.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most aspects of RNA metabolism involve DEAD-box RNA helicases, enzymes that bind and remodel RNA and RNA-protein complexes in an ATP-dependent manner. Here we show that the DEAD-box helicase Ded1p oligomerizes in the cell and in vitro, and unwinds RNA as a trimer. Two protomers bind the single-stranded region of RNA substrates and load a third protomer to the duplex, which then separates the strands. ATP utilization differs between the strand-separating protomer and those bound to the single-stranded region. Binding of the eukaryotic initiation factor 4G to Ded1p interferes with oligomerization and thereby modulates unwinding activity and RNA affinity of the helicase. Our data reveal a strict division of labor between the Ded1p protomers in the oligomer. This mode of oligomerization fundamentally differs from other helicases. Oligomerization represents a previously unappreciated level of regulation for DEAD-box helicase activities.
Collapse
Affiliation(s)
- Andrea A Putnam
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaofeng Gao
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Fei Liu
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; College of Veterinary Medicine, Nanjing Agricultural University, Number 1 Weigang, Nanjing 210095, P.R. China
| | - Huijue Jia
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; BGI Shenzen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, P.R. China
| | - Quansheng Yang
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; McArdle Laboratory of Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Abstract
In eukaryotic organisms, the orthologs of the DEAD-box RNA helicase Ded1p from yeast and DDX3 from human form a well-defined subfamily that is characterized by high sequence conservation in their helicase core and their N- and C- termini. Individual members of this Ded1/DDX3 subfamily perform multiple functions in RNA metabolism in both nucleus and cytoplasm. Ded1/DDX3 subfamily members have also been implicated in cellular signaling pathways and are targeted by diverse viruses. In this review, we discuss the considerable body of work on the biochemistry and biology of these proteins, including the recently discovered link of human DDX3 to tumorigenesis.
Collapse
Affiliation(s)
- Deepak Sharma
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | | |
Collapse
|
25
|
Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicases. Int J Mol Sci 2015; 16:2269-93. [PMID: 25622248 PMCID: PMC4346836 DOI: 10.3390/ijms16022269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/28/2022] Open
Abstract
The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes.
Collapse
|
26
|
Regulation of glucose-dependent gene expression by the RNA helicase Dbp2 in Saccharomyces cerevisiae. Genetics 2014; 198:1001-14. [PMID: 25164881 DOI: 10.1534/genetics.114.170019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cellular homeostasis requires a fine balance between energy uptake, utilization, and growth. Dbp2 is a member of the DEAD-box protein family in Saccharomyces cerevisiae with characterized ATPase and helicase activity in vitro. DEAD-box RNA helicases are a class of enzymes that utilize ATP hydrolysis to remodel RNA and/or RNA-protein (RNP) composition. Dbp2 has been proposed to utilize its helicase activity in vivo to promote RNA-protein complex assembly of both messenger (m)RNAs and long noncoding (lnc)RNAs. Previous work from our laboratory demonstrated that loss of DBP2 enhances the lncRNA-dependent transcriptional induction of the GAL genes by abolishing glucose-dependent repression. Herein, we report that either a carbon source switch or glucose deprivation results in rapid export of Dbp2 to the cytoplasm. Genome-wide RNA sequencing identified a new class of antisense hexose transporter transcripts that are specifically upregulated upon loss of DBP2. Further investigation revealed that both sense and antisense hexose transporter (HXT) transcripts are aberrantly expressed in DBP2-deficient cells and that this expression pathway can be partially mimicked in wild-type cells by glucose depletion. We also find that Dbp2 promotes ribosome biogenesis and represses alternative ATP-producing pathways, as loss of DBP2 alters the transcript levels of ribosome biosynthesis (snoRNAs and associated proteins) and respiration gene products. This suggests that Dbp2 is a key integrator of nutritional status and gene expression programs required for energy homeostasis.
Collapse
|
27
|
Liu F, Putnam AA, Jankowsky E. DEAD-box helicases form nucleotide-dependent, long-lived complexes with RNA. Biochemistry 2014; 53:423-33. [PMID: 24367975 DOI: 10.1021/bi401540q] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DEAD-box RNA helicases bind and remodel RNA and RNA-protein complexes in an ATP-dependent fashion. Several lines of evidence suggest that DEAD-box RNA helicases can also form stable, persistent complexes with RNA in a process referred to as RNA clamping. The molecular basis of RNA clamping is not well understood. Here we show that the yeast DEAD-box helicase Ded1p forms exceptionally long-lived complexes with RNA and the nonhydrolyzable ATP ground-state analogue ADP-BeFx or the nonhydrolyzable ATP transition state analogue ADP-AlFx. The complexes have lifetimes of several hours, and neither nucleotide nor Mg(2+) is released during this period. Mutation of arginine 489, which stabilizes the transition state, prevents formation of long-lived complexes with the ATP transition state analogue, but not with the ground state analogue. We also show that two other yeast DEAD-box helicases, Mss116p and Sub2p, form comparably long-lived complexes with RNA and ADP-BeFx. Like Ded1p, Mss116p forms long-lived complexes with ADP-AlFx, but Sub2p does not. These data suggest that the ATP transition state might vary for distinct DEAD-box helicases, or that the transition state triggers differing RNA binding properties in these proteins. In the ATP ground state, however, all tested DEAD-box helicases establish a persistent grip on RNA, revealing an inherent capacity of the enzymes to function as potent, ATP-dependent RNA clamps.
Collapse
Affiliation(s)
- Fei Liu
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu, 210095, China
| | | | | |
Collapse
|
28
|
Ostankovitch M. Dynamic Mechanisms in the Life Cycle of an RNA Molecule. J Mol Biol 2013; 425:3747-9. [DOI: 10.1016/j.jmb.2013.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 11/26/2022]
|