1
|
Xiong H, Zhang Y, Zhao Z. Investigation of single nucleotide polymorphisms in differentially expressed genes and proteins reveals the genetic basis of skeletal muscle growth differences between Tibetan and Large White pigs. Anim Biosci 2024; 37:2021-2032. [PMID: 38938033 PMCID: PMC11541014 DOI: 10.5713/ab.24.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Skeletal muscle growth is an important economic trait for meat production, with notable differences between Tibetan pigs (TIBPs, a slow-growing breed) and Large White pigs (LWPs, a fast-growing breed). However, the genetic underpinnings of this disparity remain unclear. METHODS In the current study, we integrated differentially expressed genes (DEGs) and proteins (DEPs) from 60-day-old embryonic muscle tissue, along with whole-genome single nucleotide polymorphisms (SNPs) displaying absolute allele frequency differences (ΔAF) of 0.5 or more between the TIBP and LWP breeds, to unravel the genetic factors influencing skeletal muscle growth. RESULTS Our analysis revealed 3,499 DEGs and 628 DEPs with SNPs having a ΔAF equal to or greater than 0.5. Further functional analysis identified 145 DEGs and 23 DEPs involved in biological processes related to skeletal muscle development, and 22 DEGs and 3 DEPs implicated in the mechanistic target of rapamycin kinase signaling pathway, which is known for positively regulating protein synthesis. Among these genes, several DEGs and DEPs, enriched with TIPB-specific SNPs in regulatory or/and coding regions, showed marked ΔAF between the TIBP and LWP breeds, including MYF5, MYOF, ASB2, PDE9A, SDC1, PDGFRA, MYOM2, ACVR1, ZIC3, COL11A1, TGFBR1, EDNRA, TGFB2, PDE4D, PGAM2, GRK2, SCN4B, CACNA1S, MYL4, IGF1, and FOXO1. Additionally, genes such as CAPN3, MYOM2, and PGAM2, identified as both DEPs and DEGs related to skeletal muscle development, contained multiple TIBP-specific and LWP-predominant SNPs in regulatory and/or coding regions, underscoring significant ΔAF differences between the two breeds. CONCLUSION This comprehensive investigation of SNPs in DEGs and DEPs identified a significant number of SNPs and genes related to skeletal muscle development during the prenatal stage. These findings not only shed light on potential causal genes for muscle divergence between the TIBP and LWP breeds but also offer valuable insights for pig breeding strategies aimed at enhancing meat production.
Collapse
Affiliation(s)
- Heli Xiong
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| | - Yan Zhang
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| | - Zhiyong Zhao
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| |
Collapse
|
2
|
Rajendran D, Goyal S, Chaurasiya DK, Naganathan AN. Determinants of Unfolding Cooperativity and Binding Are Decoupled in a DNA Binding Domain. J Phys Chem B 2024; 128:9341-9352. [PMID: 39310971 DOI: 10.1021/acs.jpcb.4c03895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The relative magnitudes of noncovalent stabilization energies or the coupling free energies in folded proteins are anisotropically distributed, uniquely influencing folding and functional behaviors. In this regard, the fructose repressor (FruR) DBD belonging to the LacR repressor family harbors a three-residue insertion─KQY─between the canonical second and third helices. This sequence insertion promotes a strong Tyr-Tyr stacking interaction that is not observed in related homologues. Combining experiments with simulations, we show that the Tyr-Tyr stacking contributes to a decoupled unfolding due to the localization of a large part of the stabilization energy in this specific structural region. This leads to melting temperatures from different probes spanning nearly 10 K, while concomitantly stabilizing a partially structured intermediate state. Disruption of the aromatic stacking interaction via an alanine mutation promotes a molten-globular state whose native ensemble is replete with non-native interactions while displaying enhanced thermodynamic fluctuations and minimal calorimetric cooperativity. Surprisingly, the molten-globular variant of FruR DBD binds to the operator site on DNA with an affinity similar to that of the wild-type but with altered secondary-structure characteristics in the bound state, underscoring the chaperone-like role of DNA through its large negative electrostatic potential. FruR DBD thus appears to be at the verge of disorder as expected of an entropically destabilizing three-residue insertion but is rescued by the aromatic stacking interaction that distinctly dictates the finer details of stability, cooperativity, and binding.
Collapse
Affiliation(s)
- Divya Rajendran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Saloni Goyal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dhruv Kumar Chaurasiya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
3
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: trends from three decades of genetic variant impact predictors. Hum Genomics 2024; 18:90. [PMID: 39198917 PMCID: PMC11360829 DOI: 10.1186/s40246-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). RESULTS The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past three decades, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 190 VIPs, resulting in a total of 407 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. CONCLUSIONS VIPdb version 2 summarizes 407 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. VIPdb is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA
| | - Arul S Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA
- Illumina, Foster City, CA, 94404, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA.
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|
4
|
Shankar SS, Banarjee R, Jathar SM, Rajesh S, Ramasamy S, Kulkarni MJ. De novo structure prediction of meteorin and meteorin-like protein for identification of domains, functional receptor binding regions, and their high-risk missense variants. J Biomol Struct Dyn 2024; 42:4522-4536. [PMID: 37288801 DOI: 10.1080/07391102.2023.2220804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Meteorin (Metrn) and Meteorin-like (Metrnl) are homologous secreted proteins involved in neural development and metabolic regulation. In this study, we have performed de novo structure prediction and analysis of both Metrn and Metrnl using Alphafold2 (AF2) and RoseTTAfold (RF). Based on the domain and structural homology analysis of the predicted structures, we have identified that these proteins are composed of two functional domains, a CUB domain and an NTR domain, connected by a hinge/loop region. We have identified the receptor binding regions of Metrn and Metrnl using the machine-learning tools ScanNet and Masif. These were further validated by docking Metrnl with its reported KIT receptor, thus establishing the role of each domain in the receptor interaction. Also, we have studied the effect of non-synonymous SNPs on the structure and function of these proteins using an array of bioinformatics tools and selected 16 missense variants in Metrn and 10 in Metrnl that can affect the protein stability. This is the first study to comprehensively characterize the functional domains of Metrn and Metrnl at their structural level and identify the functional domains, and protein binding regions. This study also highlights the interaction mechanism of the KIT receptor and Metrnl. The predicted deleterious SNPs will allow further understanding of the role of these variants in modulating the plasma levels of these proteins in disease conditions such as diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Shiva Shankar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Swaraj M Jathar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S Rajesh
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Sureshkumar Ramasamy
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Weissenow K, Rost B. Rendering protein mutation movies with MutAmore. BMC Bioinformatics 2023; 24:469. [PMID: 38087198 PMCID: PMC10714560 DOI: 10.1186/s12859-023-05610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The success of AlphaFold2 in reliable protein three-dimensional (3D) structure prediction, assists the move of structural biology toward studies of protein dynamics and mutational impact on structure and function. This transition needs tools that qualitatively assess alternative 3D conformations. RESULTS We introduce MutAmore, a bioinformatics tool that renders individual images of protein 3D structures for, e.g., sequence mutations into a visually intuitive movie format. MutAmore streamlines a pipeline casting single amino-acid variations (SAVs) into a dynamic 3D mutation movie providing a qualitative perspective on the mutational landscape of a protein. By default, the tool first generates all possible variants of the sequence reachable through SAVs (L*19 for proteins with L residues). Next, it predicts the structural conformation for all L*19 variants using state-of-the-art models. Finally, it visualizes the mutation matrix and produces a color-coded 3D animation. Alternatively, users can input other types of variants, e.g., from experimental structures. CONCLUSION MutAmore samples alternative protein configurations to study the dynamical space accessible from SAVs in the post-AlphaFold2 era of structural biology. As the field shifts towards the exploration of alternative conformations of proteins, MutAmore aids in the understanding of the structural impact of mutations by providing a flexible pipeline for the generation of protein mutation movies using current and future structure prediction models.
Collapse
Affiliation(s)
- Konstantin Weissenow
- Department of Informatics, Bioinformatics and Computational Biology i12, TUM (Technical University of Munich), Boltzmannstr. 3, 85748, Garching, Munich, Germany.
- TUM Graduate School, Center of Doctoral Studies in Informatics and Its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany.
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology i12, TUM (Technical University of Munich), Boltzmannstr. 3, 85748, Garching, Munich, Germany
- Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748, Garching, Munich, Germany
- TUM School of Life Sciences Weihenstephan (WZW), Alte Akademie 8, Freising, Germany
| |
Collapse
|
6
|
Yu H, Zhang X, Acevedo-Rocha CG, Li A, Reetz MT. Protein engineering using mutability landscapes: Controlling site-selectivity of P450-catalyzed steroid hydroxylation. Methods Enzymol 2023; 693:191-229. [PMID: 37977731 DOI: 10.1016/bs.mie.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Directed evolution and rational design have been used widely in engineering enzymes for their application in synthetic organic chemistry and biotechnology. With stereoselectivity playing a crucial role in catalysis for the synthesis of valuable chemical and pharmaceutical compounds, rational design has not achieved such wide success in this specific area compared to directed evolution. Nevertheless, one bottleneck of directed evolution is the laborious screening efforts and the observed trade-offs in catalytic profiles. This has motivated researchers to develop more efficient protein engineering methods. As a prime approach, mutability landscaping avoids such trade-offs by providing more information of sequence-function relationships. Here, we describe an application of this efficient protein engineering method to improve the regio-/stereoselectivity and activity of P450BM3 for steroid hydroxylation, while keeping the mutagenesis libraries small so that they will require only minimal screening.
Collapse
Affiliation(s)
- Huili Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Carlos G Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China.
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Muelheim, Germany; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, P. R. China.
| |
Collapse
|
7
|
In Silico Examination of Single Nucleotide Missense Mutations in NHLH2, a Gene Linked to Infertility and Obesity. Int J Mol Sci 2023; 24:ijms24043193. [PMID: 36834605 PMCID: PMC9968165 DOI: 10.3390/ijms24043193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Continual advances in our understanding of the human genome have led to exponential increases in known single nucleotide variants. The characterization of each of the variants lags behind. For researchers needing to study a single gene, or multiple genes in a pathway, there must be ways to narrow down pathogenic variants from those that are silent or pose less pathogenicity. In this study, we use the NHLH2 gene which encodes the nescient helix-loop-helix 2 (Nhlh2) transcription factor in a systematic analysis of all missense mutations to date in the gene. The NHLH2 gene was first described in 1992. Knockout mice created in 1997 indicated a role for this protein in body weight control, puberty, and fertility, as well as the motivation for sex and exercise. Only recently have human carriers of NHLH2 missense variants been characterized. Over 300 missense variants for the NHLH2 gene are listed in the NCBI single nucleotide polymorphism database (dbSNP). Using in silico tools, predicted pathogenicity of the variants narrowed the missense variants to 37 which were predicted to affect NHLH2 function. These 37 variants cluster around the basic-helix-loop-helix and DNA binding domains of the transcription factor, and further analysis using in silico tools provided 21 SNV resulting in 22 amino acid changes for future wet lab analysis. The tools used, findings, and predictions for the variants are discussed considering the known function of the NHLH2 transcription factor. Overall use of these in silico tools and analysis of these data contribute to our knowledge of a protein which is both involved in the human genetic syndrome, Prader-Willi syndrome, and in controlling genes involved in body weight control, fertility, puberty, and behavior in the general population, and may provide a systematic methodology for others to characterize variants for their gene of interest.
Collapse
|
8
|
Marquet C, Heinzinger M, Olenyi T, Dallago C, Erckert K, Bernhofer M, Nechaev D, Rost B. Embeddings from protein language models predict conservation and variant effects. Hum Genet 2022; 141:1629-1647. [PMID: 34967936 PMCID: PMC8716573 DOI: 10.1007/s00439-021-02411-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding of the mutational landscape of single proteins, the results continue to challenge analyses. Protein Language Models (pLMs) use the latest deep learning (DL) algorithms to leverage growing databases of protein sequences. These methods learn to predict missing or masked amino acids from the context of entire sequence regions. Here, we used pLM representations (embeddings) to predict sequence conservation and SAV effects without multiple sequence alignments (MSAs). Embeddings alone predicted residue conservation almost as accurately from single sequences as ConSeq using MSAs (two-state Matthews Correlation Coefficient-MCC-for ProtT5 embeddings of 0.596 ± 0.006 vs. 0.608 ± 0.006 for ConSeq). Inputting the conservation prediction along with BLOSUM62 substitution scores and pLM mask reconstruction probabilities into a simplistic logistic regression (LR) ensemble for Variant Effect Score Prediction without Alignments (VESPA) predicted SAV effect magnitude without any optimization on DMS data. Comparing predictions for a standard set of 39 DMS experiments to other methods (incl. ESM-1v, DeepSequence, and GEMME) revealed our approach as competitive with the state-of-the-art (SOTA) methods using MSA input. No method outperformed all others, neither consistently nor statistically significantly, independently of the performance measure applied (Spearman and Pearson correlation). Finally, we investigated binary effect predictions on DMS experiments for four human proteins. Overall, embedding-based methods have become competitive with methods relying on MSAs for SAV effect prediction at a fraction of the costs in computing/energy. Our method predicted SAV effects for the entire human proteome (~ 20 k proteins) within 40 min on one Nvidia Quadro RTX 8000. All methods and data sets are freely available for local and online execution through bioembeddings.com, https://github.com/Rostlab/VESPA , and PredictProtein.
Collapse
Affiliation(s)
- Céline Marquet
- Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany.
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany.
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany
| | - Tobias Olenyi
- Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany
| | - Christian Dallago
- Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany
| | - Kyra Erckert
- Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany
| | - Michael Bernhofer
- Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany
| | - Dmitrii Nechaev
- Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
- Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, Garching, 85748, Munich, Germany
- TUM School of Life Sciences Weihenstephan (TUM-WZW), Alte Akademie 8, Freising, Germany
| |
Collapse
|
9
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
10
|
Understanding the mutational frequency in SARS-CoV-2 proteome using structural features. Comput Biol Med 2022; 147:105708. [PMID: 35714506 PMCID: PMC9173821 DOI: 10.1016/j.compbiomed.2022.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/26/2022] [Accepted: 06/04/2022] [Indexed: 01/18/2023]
Abstract
The prolonged transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in the human population has led to demographic divergence and the emergence of several location-specific clusters of viral strains. Although the effect of mutation(s) on severity and survival of the virus is still unclear, it is evident that certain sites in the viral proteome are more/less prone to mutations. In fact, millions of SARS-CoV-2 sequences collected all over the world have provided us a unique opportunity to understand viral protein mutations and develop novel computational approaches to predict mutational patterns. In this study, we have classified the mutation sites into low and high mutability classes based on viral isolates count containing mutations. The physicochemical features and structural analysis of the SARS-CoV-2 proteins showed that features including residue type, surface accessibility, residue bulkiness, stability and sequence conservation at the mutation site were able to classify the low and high mutability sites. We further developed machine learning models using above-mentioned features, to predict low and high mutability sites at different selection thresholds (ranging 5-30% of topmost and bottommost mutated sites) and observed the improvement in performance as the selection threshold is reduced (prediction accuracy ranging from 65 to 77%). The analysis will be useful for early detection of variants of concern for the SARS-CoV-2, which can also be applied to other existing and emerging viruses for another pandemic prevention.
Collapse
|
11
|
Tarek MM, Yahia A, El-Nakib MM, Elhefnawi M. Integrative assessment of CIP2A overexpression and mutational effects in human malignancies identifies possible deleterious variants. Comput Biol Med 2021; 139:104986. [PMID: 34739970 DOI: 10.1016/j.compbiomed.2021.104986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
KIAA1524 is the gene encoding the human cancerous inhibitor of PP2A (CIP2A) protein which is regarded as a novel target for cancer therapy. It is overexpressed in 65%-90% of tissues in almost all studied human cancers. CIP2A expression correlates with cancer progression, disease aggressivity in lung cancer besides poor survival and resistance to chemotherapy in breast cancer. Herein, a pan-cancer analysis of public gene expression datasets was conducted showing significant upregulation of CIP2A in cancerous and metastatic tissues. CIP2A overexpression also correlated with poor survival of cancer patients. To determine the non-coding variants associated with CIP2A overexpression, 5'UTR and 3'UTR variants were annotated and scored using RegulomeDB and Enformer deep learning model. The 5'UTR variants rs1239349555, rs1576326380, and rs1231839144 were predicted to be potential regulators of CIP2A overexpression scoring best on RegulomeDB annotations with a high "2a" rank of supporting experimental data. These variants also scored the highest on Enformer predictions. Analysis of the 3'UTR variants of CIP2A predicted rs56255137 and rs58758610 to alter binding sites of hsa-miR-500a-5 and (hsa-miR-3671, hsa-miR-5692a) respectively. Both variants were also found in linkage disequilibrium with rs11709183 and rs147863209 respectively at r2 ≥ 0.8. The aforementioned variants were found to be eQTL hits significantly associated with CIP2A overexpression. Further, analysis of rs11709183 and rs147863209 revealed a high "2b" rank on RegulomeDB annotations indicating a probable effect on DNAse transcription factors binding. The MuTarget analysis indicated that somatic mutations in TP53 are significantly associated with upregulated CIP2A in human cancers. Analysis of missense SNPs on CIP2A solved structure predicted seven deleterious effects. Four of these variants were also predicted as structurally and functionally destabilizing to CIP2A including; rs375108755, rs147942716, rs368722879, and rs367941403. Variant rs1193091427 was predicted as a potential intronic splicing mutation that might be responsible for the novel CIP2A variant (NOCIVA) in multiple myeloma. Finally, Enrichment of the Wnt/β-catenin pathway within the CIP2A regulatory gene network suggested potential of therapeutic combinations between FTY720 with Wnt/β-catenin, Plk1 and/or HDAC inhibitors to downregulate CIP2A which has been shown to be essential for the survival of different cancer cell lines.
Collapse
Affiliation(s)
- Mohammad M Tarek
- Bioinformatics Department, Armed Forces College of Medicine (AFCM) Cairo, Egypt.
| | - Ahmed Yahia
- Otolaryngology Department, Armed Forces College of Medicine (AFCM) Cairo, Egypt
| | | | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Medical Research, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
12
|
Calzini MA, Malico AA, Mitchler MM, Williams GJ. Protein engineering for natural product biosynthesis and synthetic biology applications. Protein Eng Des Sel 2021; 34:gzab015. [PMID: 34137436 PMCID: PMC8209613 DOI: 10.1093/protein/gzab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
As protein engineering grows more salient, many strategies have emerged to alter protein structure and function, with the goal of redesigning and optimizing natural product biosynthesis. Computational tools, including machine learning and molecular dynamics simulations, have enabled the rational mutagenesis of key catalytic residues for enhanced or altered biocatalysis. Semi-rational, directed evolution and microenvironment engineering strategies have optimized catalysis for native substrates and increased enzyme promiscuity beyond the scope of traditional rational approaches. These advances are made possible using novel high-throughput screens, including designer protein-based biosensors with engineered ligand specificity. Herein, we detail the most recent of these advances, focusing on polyketides, non-ribosomal peptides and isoprenoids, including their native biosynthetic logic to provide clarity for future applications of these technologies for natural product synthetic biology.
Collapse
Affiliation(s)
- Miles A Calzini
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Melissa M Mitchler
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
- Comparative Medicine Institute, NC State University Raleigh, Raleigh, NC 27695-8204, USA
| |
Collapse
|
13
|
Tanaka SI, Tsutaki M, Yamamoto S, Mizutani H, Kurahashi R, Hirata A, Takano K. Exploring mutable conserved sites and fatal non-conserved sites by random mutation of esterase from Sulfolobus tokodaii and subtilisin from Thermococcus kodakarensis. Int J Biol Macromol 2020; 170:343-353. [PMID: 33383075 DOI: 10.1016/j.ijbiomac.2020.12.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Homologous proteins differ in their amino acid sequences at several positions. Generally, conserved sites are recognized as not suitable for amino acid substitution, and thus in evolutionary protein engineering, non-conserved sites are often selected as mutation sites. However, there have also been reports of possible mutations in conserved sites. In this study, we explored mutable conserved sites and immutable non-conserved sites by testing random mutations of two thermostable proteins, an esterase from Sulfolobus tokodaii (Sto-Est) and a subtilisin from Thermococcus kodakarensis (Tko-Sub). The subtilisin domain of Tko-Sub needs Ca2+ ions and the propeptide domain for stability, folding and maturation. The results from the two proteins showed that about one-third of the mutable sites were detected in conserved sites and some non-conserved sites lost enzymatic activity at high temperatures due to mutation. Of the conserved sites in Sto-Est, the sites on the loop, on the surface, and far from the active site are more resistant to mutation. In Tko-Sub, the sites flanking Ca2+-binding sites and propeptide were undesirable for mutation. The results presented here serve as an index for selecting mutation sites and contribute to the expansion of available sequence range by introducing mutations at conserved sites.
Collapse
Affiliation(s)
- Shun-Ichi Tanaka
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Minami Tsutaki
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Seira Yamamoto
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hayate Mizutani
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ryo Kurahashi
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Azumi Hirata
- Department of Anatomy and Cell Biology, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
14
|
Li Y, Mohanty S, Nilsson D, Hansson B, Mao K, Irbäck A. When a foreign gene meets its native counterpart: computational biophysics analysis of two PgiC loci in the grass Festuca ovina. Sci Rep 2020; 10:18752. [PMID: 33127989 PMCID: PMC7599235 DOI: 10.1038/s41598-020-75650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/16/2020] [Indexed: 11/14/2022] Open
Abstract
Duplicative horizontal gene transfer may bring two previously separated homologous genes together, which may raise questions about the interplay between the gene products. One such gene pair is the “native” PgiC1 and “foreign” PgiC2 in the perennial grass Festuca ovina. Both PgiC1 and PgiC2 encode cytosolic phosphoglucose isomerase, a dimeric enzyme whose proper binding is functionally essential. Here, we use biophysical simulations to explore the inter-monomer binding of the two homodimers and the heterodimer that can be produced by PgiC1 and PgiC2 in F. ovina. Using simulated native-state ensembles, we examine the structural properties and binding tightness of the dimers. In addition, we investigate their ability to withstand dissociation when pulled by a force. Our results suggest that the inter-monomer binding is tighter in the PgiC2 than the PgiC1 homodimer, which could explain the more frequent occurrence of the foreign PgiC2 homodimer in dry habitats. We further find that the PgiC1 and PgiC2 monomers are compatible with heterodimer formation; the computed binding tightness is comparable to that of the PgiC1 homodimer. Enhanced homodimer stability and capability of heterodimer formation with PgiC1 are properties of PgiC2 that may contribute to the retaining of the otherwise redundant PgiC2 gene.
Collapse
Affiliation(s)
- Yuan Li
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62, Lund, Sweden
| | - Sandipan Mohanty
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Daniel Nilsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62, Lund, Sweden.
| |
Collapse
|
15
|
Reeb J, Wirth T, Rost B. Variant effect predictions capture some aspects of deep mutational scanning experiments. BMC Bioinformatics 2020; 21:107. [PMID: 32183714 PMCID: PMC7077003 DOI: 10.1186/s12859-020-3439-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deep mutational scanning (DMS) studies exploit the mutational landscape of sequence variation by systematically and comprehensively assaying the effect of single amino acid variants (SAVs; also referred to as missense mutations, or non-synonymous Single Nucleotide Variants - missense SNVs or nsSNVs) for particular proteins. We assembled SAV annotations from 22 different DMS experiments and normalized the effect scores to evaluate variant effect prediction methods. Three trained on traditional variant effect data (PolyPhen-2, SIFT, SNAP2), a regression method optimized on DMS data (Envision), and a naïve prediction using conservation information from homologs. RESULTS On a set of 32,981 SAVs, all methods captured some aspects of the experimental effect scores, albeit not the same. Traditional methods such as SNAP2 correlated slightly more with measurements and better classified binary states (effect or neutral). Envision appeared to better estimate the precise degree of effect. Most surprising was that the simple naïve conservation approach using PSI-BLAST in many cases outperformed other methods. All methods captured beneficial effects (gain-of-function) significantly worse than deleterious (loss-of-function). For the few proteins with multiple independent experimental measurements, experiments differed substantially, but agreed more with each other than with predictions. CONCLUSIONS DMS provides a new powerful experimental means of understanding the dynamics of the protein sequence space. As always, promising new beginnings have to overcome challenges. While our results demonstrated that DMS will be crucial to improve variant effect prediction methods, data diversity hindered simplification and generalization.
Collapse
Affiliation(s)
- Jonas Reeb
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr 3, 85748, Garching/Munich, Germany.
| | - Theresa Wirth
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr 3, 85748, Garching/Munich, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr 3, 85748, Garching/Munich, Germany
- Institute for Advanced Study (TUM-IAS), Lichtenbergstr 2a, 85748, Garching/Munich, Germany
- TUM School of Life Sciences Weihenstephan (WZW), Alte Akademie 8, Freising, Germany
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West, 168th Street, New York, NY, 10032, USA
| |
Collapse
|
16
|
In silico analysis of the functional and structural consequences of SNPs in human ARX gene associated with EIEE1. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Szymczyk P, Szymańska G, Lipert A, Weremczuk-Jeżyna I, Kochan E. Computer-Aided Saturation Mutagenesis of Arabidopsis thaliana Ent-Copalyl Diphosphate Synthase. Interdiscip Sci 2019; 12:32-43. [PMID: 31309397 PMCID: PMC7007437 DOI: 10.1007/s12539-019-00342-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
Ent-copalyl diphosphate synthase controls the biosynthesis of gibberellin plant hormones, which in turn coordinate the expression of numerous enzymes. Some gibberellin-dependent genes encode enzymes coordinating the biosynthesis of tanshinones: diterpene derivatives with broad medical applications. New biotechnological approaches, such as metabolic engineering using naturally occurring or mutated enzymes, have been proposed to meet the growing demand for tanshinones which is currently met by the Chinese medicinal plant Salvia miltiorrhiza Bunge. These mutants may be prepared by directed evolution, saturation mutagenesis or rational enzyme design. In the presented paper, 15,257 non-synonymous variants of Arabidopsis thaliana ent-copalyl diphosphate synthase were obtained using the SNAP2 tool. The obtained forms were screened to isolate variants with potentially improved biological functions. A group of 455 mutants with potentially improved stability was isolated and subjected to further screening on the basis of ligand–substrate affinity, and both secondary structure and active site structure stability. Finally, a group of six single mutants was obtained, which were used to construct double mutants with potentially improved stability and ligand affinity. The potential influence of single mutations on protein stability and ligand affinity was evaluated by double mutant cycle analysis. Finally, the procedure was validated by in silico assessment of the experimentally verified enzyme mutants with reduced enzymatic activity.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland.
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Łódź, 92-213, Lodz, Poland
| | - Izabela Weremczuk-Jeżyna
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| | - Ewa Kochan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| |
Collapse
|
18
|
Naveed M, Tehreem S, Mehboob MZ. In-Silico analysis of missense SNPs in Human HPPD gene associated with Tyrosinemia type III and Hawkinsinuria. Comput Biol Chem 2019; 80:284-291. [DOI: 10.1016/j.compbiolchem.2019.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 11/24/2022]
|
19
|
Sandri TL, Andrade FA, Lidani KCF, Einig E, Boldt ABW, Mordmüller B, Esen M, Messias-Reason IJ. Human collectin-11 (COLEC11) and its synergic genetic interaction with MASP2 are associated with the pathophysiology of Chagas Disease. PLoS Negl Trop Dis 2019; 13:e0007324. [PMID: 30995222 PMCID: PMC6488100 DOI: 10.1371/journal.pntd.0007324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chagas Disease (CD) is an anthropozoonosis caused by Trypanosoma cruzi. With complex pathophysiology and variable clinical presentation, CD outcome can be influenced by parasite persistence and the host immune response. Complement activation is one of the primary defense mechanisms against pathogens, which can be initiated via pathogen recognition by pattern recognition molecules (PRMs). Collectin-11 is a multifunctional soluble PRM lectin, widely distributed throughout the body, with important participation in host defense, homeostasis, and embryogenesis. In complex with mannose-binding lectin-associated serine proteases (MASPs), collectin-11 may initiate the activation of complement, playing a role against pathogens, including T. cruzi. In this study, collectin-11 plasma levels and COLEC11 variants in exon 7 were assessed in a Brazilian cohort of 251 patients with chronic CD and 108 healthy controls. Gene-gene interactions between COLEC11 and MASP2 variants were analyzed. Collectin-11 levels were significantly decreased in CD patients compared to controls (p<0.0001). The allele rs7567833G, the genotypes rs7567833AG and rs7567833GG, and the COLEC11*GGC haplotype were related to T. cruzi infection and clinical progression towards symptomatic CD. COLEC11 and MASP2*CD risk genotypes were associated with cardiomyopathy (p = 0.014; OR 9.3, 95% CI 1.2–74) and with the cardiodigestive form of CD (p = 0.005; OR 15.2, 95% CI 1.7–137), suggesting that both loci act synergistically in immune modulation of the disease. The decreased levels of collectin-11 in CD patients may be associated with the disease process. The COLEC11 variant rs7567833G and also the COLEC11 and MASP2*CD risk genotype interaction were associated with the pathophysiology of CD. The heterogeneity of clinical progression during chronic Trypanosoma cruzi infection and the mechanisms determining why some individuals develop symptoms whereas others remain asymptomatic are still poorly understood. The pathogenesis of chronic Chagas Disease (CD) has been attributed mainly to the persistence of the causing parasite and the character of individual host immune responses. Collectin-11 is a host immune response molecule with affinity for sugars found on the T. cruzi’s surface. Together with mannose-binding lectin-associated serine proteases (MASPs), it triggers the host defense response against pathogens. Genetic variants and protein levels of MASP-2 and the mannose-binding lectin (MBL), a molecule structurally similar to collectin-11, have been found to be associated with susceptibility to T. cruzi infection and clinical progression to cardiomyopathy. This prompted us to investigate collectin-11 genetic variants and protein levels in 251 patients with chronic CD and 108 healthy individuals, and to examine the effect of gene interaction between COLEC11 and MASP2 risk mutations. We found an association to CD infection with COLEC11 gene variants and reduced collectin-11 levels. The concomitant presence of these genetic variants and MASP2 risk mutations greatly increased the odds for cardiomyopathy. This is the first study to reveal a role for collectin-11 and COLEC11-MASP2 gene interaction in the pathogenesis of CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Elias Einig
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Angelica Beate Winter Boldt
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J. Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
20
|
Raimondi D, Orlando G, Tabaro F, Lenaerts T, Rooman M, Moreau Y, Vranken WF. Large-scale in-silico statistical mutagenesis analysis sheds light on the deleteriousness landscape of the human proteome. Sci Rep 2018; 8:16980. [PMID: 30451933 PMCID: PMC6242909 DOI: 10.1038/s41598-018-34959-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
Next generation sequencing technologies are providing increasing amounts of sequencing data, paving the way for improvements in clinical genetics and precision medicine. The interpretation of the observed genomic variants in the light of their phenotypic effects is thus emerging as a crucial task to solve in order to advance our understanding of how exomic variants affect proteins and how the proteins' functional changes affect human health. Since the experimental evaluation of the effects of every observed variant is unfeasible, Bioinformatics methods are being developed to address this challenge in-silico, by predicting the impact of millions of variants, thus providing insight into the deleteriousness landscape of entire proteomes. Here we show the feasibility of this approach by using the recently developed DEOGEN2 variant-effect predictor to perform the largest in-silico mutagenesis scan to date. We computed the deleteriousness score of 170 million variants over 15000 human proteins and we analysed the results, investigating how the predicted deleteriousness landscape of the proteins relates to known functionally and structurally relevant protein regions and biophysical properties. Moreover, we qualitatively validated our results by comparing them with two mutagenesis studies targeting two specific proteins, showing the consistency of DEOGEN2 predictions with respect to experimental data.
Collapse
Affiliation(s)
- Daniele Raimondi
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium
- ESAT-STADIUS, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Gabriele Orlando
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Francesco Tabaro
- Institute of Biosciences and Medical Technology, Arvo Ylpőn katu 34, 33520, Tampere, Finland
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium
- Machine Learning Group, ULB, La Plaine Campus, 1050, Brussels, Belgium
| | - Marianne Rooman
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium
- Department of BioModeling, BioInformatics & BioProcesses, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Yves Moreau
- ESAT-STADIUS, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
- Imec, 3001, Leuven, Belgium
| | - Wim F Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
21
|
In Silico Analysis of Missense Mutations as a First Step in Functional Studies: Examples from Two Sphingolipidoses. Int J Mol Sci 2018; 19:ijms19113409. [PMID: 30384423 PMCID: PMC6275066 DOI: 10.3390/ijms19113409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
In order to delineate a better approach to functional studies, we have selected 23 missense mutations distributed in different domains of two lysosomal enzymes, to be studied by in silico analysis. In silico analysis of mutations relies on computational modeling to predict their effects. Various computational platforms are currently available to check the probable causality of mutations encountered in patients at the protein and at the RNA levels. In this work we used four different platforms freely available online (Protein Variation Effect Analyzer- PROVEAN, PolyPhen-2, Swiss-model Expert Protein Analysis System—ExPASy, and SNAP2) to check amino acid substitutions and their effect at the protein level. The existence of functional studies, regarding the amino acid substitutions, led to the selection of the distinct protein mutants. Functional data were used to compare the results obtained with different bioinformatics tools. With the advent of next-generation sequencing, it is not feasible to carry out functional tests in all the variants detected. In silico analysis seems to be useful for the delineation of which mutants are worth studying through functional studies. Therefore, prediction of the mutation impact at the protein level, applying computational analysis, confers the means to rapidly provide a prognosis value to genotyping results, making it potentially valuable for patient care as well as research purposes. The present work points to the need to carry out functional studies in mutations that might look neutral. Moreover, it should be noted that single nucleotide polymorphisms (SNPs), occurring in coding and non-coding regions, may lead to RNA alterations and should be systematically verified. Functional studies can gain from a preliminary multi-step approach, such as the one proposed here.
Collapse
|
22
|
Bittrich S, Schroeder M, Labudde D. Characterizing the relation of functional and Early Folding Residues in protein structures using the example of aminoacyl-tRNA synthetases. PLoS One 2018; 13:e0206369. [PMID: 30376559 PMCID: PMC6207335 DOI: 10.1371/journal.pone.0206369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
Proteins are chains of amino acids which adopt a three-dimensional structure and are then able to catalyze chemical reactions or propagate signals in organisms. Without external influence, many proteins fold into their native structure, and a small number of Early Folding Residues (EFR) have previously been shown to initiate the formation of secondary structure elements and guide their respective assembly. Using the two diverse superfamilies of aminoacyl-tRNA synthetases (aaRS), it is shown that the position of EFR is preserved over the course of evolution even when the corresponding sequence conservation is small. Folding initiation sites are positioned in the center of secondary structure elements, independent of aaRS class. In class I, the predicted position of EFR resembles an ancient structural packing motif present in many seemingly unrelated proteins. Furthermore, it is shown that EFR and functionally relevant residues in aaRS are almost entirely disjoint sets of residues. The Start2Fold database is used to investigate whether this separation of EFR and functional residues can be observed for other proteins. EFR are found to constitute crucial connectors of protein regions which are distant at sequence level. Especially, these residues exhibit a high number of non-covalent residue-residue contacts such as hydrogen bonds and hydrophobic interactions. This tendency also manifests as energetically stable local regions, as substantiated by a knowledge-based potential. Despite profound differences regarding how EFR and functional residues are embedded in protein structures, a strict separation of structurally and functionally relevant residues cannot be observed for a more general collection of proteins.
Collapse
Affiliation(s)
- Sebastian Bittrich
- Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, Mittweida, Saxony, Germany
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Saxony, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Saxony, Germany
| | - Dirk Labudde
- Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, Mittweida, Saxony, Germany
| |
Collapse
|
23
|
Tessier L, Côté O, Bienzle D. Sequence variant analysis of RNA sequences in severe equine asthma. PeerJ 2018; 6:e5759. [PMID: 30324028 PMCID: PMC6186407 DOI: 10.7717/peerj.5759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background Severe equine asthma is a chronic inflammatory disease of the lung in horses similar to low-Th2 late-onset asthma in humans. This study aimed to determine the utility of RNA-Seq to call gene sequence variants, and to identify sequence variants of potential relevance to the pathogenesis of asthma. Methods RNA-Seq data were generated from endobronchial biopsies collected from six asthmatic and seven non-asthmatic horses before and after challenge (26 samples total). Sequences were aligned to the equine genome with Spliced Transcripts Alignment to Reference software. Read preparation for sequence variant calling was performed with Picard tools and Genome Analysis Toolkit (GATK). Sequence variants were called and filtered using GATK and Ensembl Variant Effect Predictor (VEP) tools, and two RNA-Seq predicted sequence variants were investigated with both PCR and Sanger sequencing. Supplementary analysis of novel sequence variant selection with VEP was based on a score of <0.01 predicted with Sorting Intolerant from Tolerant software, missense nature, location within the protein coding sequence and presence in all asthmatic individuals. For select variants, effect on protein function was assessed with Polymorphism Phenotyping 2 and screening for non-acceptable polymorphism 2 software. Sequences were aligned and 3D protein structures predicted with Geneious software. Difference in allele frequency between the groups was assessed using a Pearson’s Chi-squared test with Yates’ continuity correction, and difference in genotype frequency was calculated using the Fisher’s exact test for count data. Results RNA-Seq variant calling and filtering correctly identified substitution variants in PACRG and RTTN. Sanger sequencing confirmed that the PACRG substitution was appropriately identified in all 26 samples while the RTTN substitution was identified correctly in 24 of 26 samples. These variants of uncertain significance had substitutions that were predicted to result in loss of function and to be non-neutral. Amino acid substitutions projected no change of hydrophobicity and isoelectric point in PACRG, and a change in both for RTTN. For PACRG, no difference in allele frequency between the two groups was detected but a higher proportion of asthmatic horses had the altered RTTN allele compared to non-asthmatic animals. Discussion RNA-Seq was sensitive and specific for calling gene sequence variants in this disease model. Even moderate coverage (<10–20 counts per million) yielded correct identification in 92% of samples, suggesting RNA-Seq may be suitable to detect sequence variants in low coverage samples. The impact of amino acid alterations in PACRG and RTTN proteins, and possible association of the sequence variants with asthma, is of uncertain significance, but their role in ciliary function may be of future interest.
Collapse
Affiliation(s)
- Laurence Tessier
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.,BenchSci, Toronto, ON, Canada
| | - Olivier Côté
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.,BioAssay Works, Ijamsville, MD, USA
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
24
|
She W, Ni J, Shui K, Wang F, He R, Xue J, Reetz MT, Li A, Ma L. Rapid and Error-Free Site-Directed Mutagenesis by a PCR-Free In Vitro CRISPR/Cas9-Mediated Mutagenic System. ACS Synth Biol 2018; 7:2236-2244. [PMID: 30075075 DOI: 10.1021/acssynbio.8b00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The quality and efficiency of any PCR-based mutagenesis technique may not be optimal due to, among other things, amino acid bias, which means that the development of efficient PCR-free methods is desirable. Here, we present a highly efficient in vitro CRISPR/Cas9-mediated mutagenic (ICM) system that allows rapid construction of designed mutants in a PCR-free manner. First, it involves plasmid digestion by utilizing a complex of Cas9 with specific single guide RNA (sgRNA) followed by degradation with T5 exonuclease to generate a 15 nt homologous region. Second, primers containing the desired mutations are annealed to form the double-stranded DNA fragments, which are then ligated into the linearized plasmid. In theory, neither the size of the target plasmid nor the unavailable restriction enzyme site poses any problems that may arise in traditional techniques. In this study, single and multiple site-directed mutagenesis were successfully performed even for a large size plasmid (up to 9.0 kb). Moreover, a PCR-free site-saturation mutagenesis library on single site and two adjacent sites of a green fluorescent protein was also generated with promising results. This demonstrates the great potential of the ICM system for creating high-quality mutant libraries in directed evolution as an alternative to PCR-based saturation mutagenesis, thus facilitating research on synthetic biology.
Collapse
Affiliation(s)
- Wenwen She
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Jing Ni
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Ruyi He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Jinhui Xue
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| |
Collapse
|
25
|
Li A, Acevedo-Rocha CG, Reetz MT. Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. Appl Microbiol Biotechnol 2018; 102:6095-6103. [PMID: 29785500 PMCID: PMC6013526 DOI: 10.1007/s00253-018-9041-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
Site-saturation mutagenesis (SSM) has been used in directed evolution of proteins for a long time. As a special form of saturation mutagenesis, it involves individual randomization at a given residue with formation of all 19 amino acids. To date, the most efficient embodiment of SSM is a one-step PCR-based approach using NNK codon degeneracy. However, in the case of difficult-to-randomize genes, SSM may not deliver all of the expected 19 mutants, which compels the user to invest further efforts by applying site-directed mutagenesis for the construction of the missing mutants. To solve this problem, we developed a two-step PCR-based technique in which a mutagenic primer and a non-mutagenic (silent) primer are used to generate a short DNA fragment, which is recovered and then employed as a megaprimer to amplify the whole plasmid. The present two-step and older one-step (partially overlapped primer approach) procedures were compared by utilizing cytochrome P450-BM3, which is a "difficult-to-randomize" gene. The results document the distinct superiority of the new method by checking the library quality on DNA level based on massive sequence data, but also at amino acid level. Various future applications in biotechnology can be expected, including the utilization when constructing mutability landscapes, which provide semi-rational information for identifying hot spots for protein engineering and directed evolution.
Collapse
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany.,Department of Chemistry, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | | | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany. .,Department of Chemistry, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany.
| |
Collapse
|
26
|
Patrick R, Kobe B, Lê Cao KA, Bodén M. PhosphoPICK-SNP: quantifying the effect of amino acid variants on protein phosphorylation. Bioinformatics 2018; 33:1773-1781. [PMID: 28186228 DOI: 10.1093/bioinformatics/btx072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Abstract
Motivation Genome-wide association studies are identifying single nucleotide variants (SNVs) linked to various diseases, however the functional effect caused by these variants is often unknown. One potential functional effect, the loss or gain of protein phosphorylation sites, can be induced through variations in key amino acids that disrupt or introduce valid kinase binding patterns. Current methods for predicting the effect of SNVs on phosphorylation operate on the sequence content of reference and variant proteins. However, consideration of the amino acid sequence alone is insufficient for predicting phosphorylation change, as context factors determine kinase-substrate selection. Results We present here a method for quantifying the effect of SNVs on protein phosphorylation through an integrated system of motif analysis and context-based assessment of kinase targets. By predicting the effect that known variants across the proteome have on phosphorylation, we are able to use this background of proteome-wide variant effects to quantify the significance of novel variants for modifying phosphorylation. We validate our method on a manually curated set of phosphorylation change-causing variants from the primary literature, showing that the method predicts known examples of phosphorylation change at high levels of specificity. We apply our approach to data-sets of variants in phosphorylation site regions, showing that variants causing predicted phosphorylation loss are over-represented among disease-associated variants. Availability and Implementation The method is freely available as a web-service at the website http://bioinf.scmb.uq.edu.au/phosphopick/snp. Contact m.boden@uq.edu.au. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ralph Patrick
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Australia
| | - Kim-Anh Lê Cao
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| |
Collapse
|
27
|
Nailwal M, Chauhan JB. Computational Analysis of High-Risk SNPs in Human DBY Gene Responsible for Male Infertility: A Functional and Structural Impact. Interdiscip Sci 2018. [PMID: 29520635 DOI: 10.1007/s12539-018-0290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND DEAD-box helicase 3, Y-linked (DBY) is a candidate gene of the AZF region which is involved in spermatogenesis process. Mutations in the DBY gene may disrupt the spermatogenesis and lead to infertility in men. Identification of functionally neutral mutation from the disease-causing mutation is the biggest challenge in human genetic variation analysis. Owing to the importance of DBY in male infertility, functional analysis was carried out to reveal the association between genetic mutation and phenotypic variation through various in silico approaches. METHODS The present study analyzed the functional consequences of the nsSNPs in human DBY gene using SIFT, PolyPhen 2, PROVEAN, SNAP2, PMut, nsSNPAnalyzer, PhD-SNP and SNPs&GO along with stability analysis through I-Mutant2.0, MuPro and iPTREE-STAB. The conservational analysis of amino acid residues, biophysical properties and conserved domains of the DBY protein was analyzed using various computational tools. The 3D structure of the protein was generated using SPARKS-X and validated using RAMPAGE. RESULTS Out of 1130 SNPs reported in dbSNP, only one nsSNP (G300D) was found to have a functional effect on stability as well as the function of the DBY protein. The results showed the presence of G300 in the putative structure of DBY domain. CONCLUSION To the best of our knowledge, this is the first study to detect pathologically significant nsSNPs (G300D) through a computational approach in the DBY which can be useful for development in potent drug discovery studies.
Collapse
Affiliation(s)
- Mili Nailwal
- P.G. Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Dist-Anand, Gujarat, 388121, India
| | - Jenabhai B Chauhan
- P.G. Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Dist-Anand, Gujarat, 388121, India.
| |
Collapse
|
28
|
Acevedo-Rocha CG, Gamble CG, Lonsdale R, Li A, Nett N, Hoebenreich S, Lingnau JB, Wirtz C, Fares C, Hinrichs H, Deege A, Mulholland AJ, Nov Y, Leys D, McLean KJ, Munro AW, Reetz MT. P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00389] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Charles G. Gamble
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Aitao Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University 368 Youyi Road, Wuchang Wuhan 430062, China
| | - Nathalie Nett
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Sabrina Hoebenreich
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Julia B. Lingnau
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Cornelia Wirtz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Christophe Fares
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Alfred Deege
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Yuval Nov
- Department of Statistics, University of Haifa, Haifa 31905, Israel
| | - David Leys
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Kirsty J. McLean
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
29
|
Kim HR, Duc NM, Chung KY. Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors. Biomol Ther (Seoul) 2018; 26:101-108. [PMID: 28934823 PMCID: PMC5839487 DOI: 10.4062/biomolther.2017.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane receptors and have vital signaling functions in various organs. Because of their critical roles in physiology and pathology, GPCRs are the most commonly used therapeutic target. It has been suggested that GPCRs undergo massive genetic variations such as genetic polymorphisms and DNA insertions or deletions. Among these genetic variations, non-synonymous natural variations change the amino acid sequence and could thus alter GPCR functions such as expression, localization, signaling, and ligand binding, which may be involved in disease development and altered responses to GPCR-targeting drugs. Despite the clinical importance of GPCRs, studies on the genotype-phenotype relationship of GPCR natural variants have been limited to a few GPCRs such as β-adrenergic receptors and opioid receptors. Comprehensive understanding of non-synonymous natural variations within GPCRs would help to predict the unknown genotype-phenotype relationship and yet-to-be-discovered natural variants. Here, we analyzed the non-synonymous natural variants of all non-olfactory GPCRs available from a public database, UniProt. The results suggest that non-synonymous natural variations occur extensively within the GPCR superfamily especially in the N-terminus and transmembrane domains. Within the transmembrane domains, natural variations observed more frequently in the conserved residues, which leads to disruption of the receptor function. Our analysis also suggests that only few non-synonymous natural variations have been studied in efforts to link the variations with functional consequences.
Collapse
Affiliation(s)
- Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
Patel JB, Chauhan JB. Computational analysis of non-synonymous single nucleotide polymorphism in the bovine cattle kappa-casein (CSN3) gene. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Abstract
Directed evolution has emerged as one of the most effective protein engineering methods in basic research as well as in applications in synthetic organic chemistry and biotechnology. The successful engineering of protein activity, allostery, binding affinity, expression, folding, fluorescence, solubility, substrate scope, selectivity (enantio-, stereo-, and regioselectivity), and/or stability (temperature, organic solvents, pH) is just limited by the throughput of the genetic selection, display, or screening system that is available for a given protein. Sometimes it is possible to analyze millions of protein variants from combinatorial libraries per day. In other cases, however, only a few hundred variants can be screened in a single day, and thus the creation of smaller yet smarter libraries is needed. Different strategies have been developed to create these libraries. One approach is to perform mutational scanning or to construct "mutability landscapes" in order to understand sequence-function relationships that can guide the actual directed evolution process. Herein we provide a protocol for economically constructing scanning mutagenesis libraries using a cytochrome P450 enzyme in a high-throughput manner. The goal is to engineer activity, regioselectivity, and stereoselectivity in the oxidative hydroxylation of a steroid, a challenging reaction in synthetic organic chemistry. Libraries based on mutability landscapes can be used to engineer any fitness trait of interest. The protocol is also useful for constructing gene libraries for deep mutational scanning experiments.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- Department of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
- Department of Chemistry, Philipps-Universität Marburg, Marburg, 35032, Germany.
- Biosyntia ApS, 2100, Copenhagen, Denmark.
| | - Matteo Ferla
- Department of Biochemistry, Oxford University, Oxford, OX1 3QU, UK
| | - Manfred T Reetz
- Department of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, 35032, Germany
| |
Collapse
|
32
|
Järviaho T, Hurme-Niiranen A, Soini HK, Niinimäki R, Möttönen M, Savolainen ER, Hinttala R, Harila-Saari A, Uusimaa J. Novel non-neutral mitochondrial DNA mutations found in childhood acute lymphoblastic leukemia. Clin Genet 2017; 93:275-285. [PMID: 28708239 DOI: 10.1111/cge.13100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/29/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
Mitochondria produce adenosine triphosphate (ATP) for energy requirements via the mitochondrial oxidative phosphorylation (OXPHOS) system. One of the hallmarks of cancer is the energy shift toward glycolysis. Low OXPHOS activity and increased glycolysis are associated with aggressive types of cancer. Mitochondria have their own genome (mitochondrial DNA [mtDNA]) encoding for 13 essential subunits of the OXPHOS enzyme complexes. We studied mtDNA in childhood acute lymphoblastic leukemia (ALL) to detect potential pathogenic mutations in OXPHOS complexes. The whole mtDNA from blood and bone marrow samples at diagnosis and follow-up from 36 ALL patients were analyzed. Novel or previously described pathogenic mtDNA mutations were identified in 8 out of 36 patients. Six out of these 8 patients had died from ALL. Five out of 36 patients had an identified poor prognosis genetic marker, and 4 of these patients had mtDNA mutations. Missense or nonsense mtDNA mutations were detected in the genes encoding subunits of OXPHOS complexes, as follows: MT-ND1, MT-ND2, MT-ND4L and MT-ND6 of complex I; MT-CO3 of complex IV; and MT-ATP6 and MT-ATP8 of complex V. We discovered mtDNA mutations in childhood ALL supporting the hypothesis that non-neutral variants in mtDNA affecting the OXPHOS function may be related to leukemic clones.
Collapse
Affiliation(s)
- T Järviaho
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - A Hurme-Niiranen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - H K Soini
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - R Niinimäki
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - M Möttönen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - E-R Savolainen
- Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,NordLab Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Clinical Chemistry, University of Oulu, Oulu, Finland
| | - R Hinttala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - A Harila-Saari
- Department of Women's and Children's Health, Karolinska University Hospital Solna, Stockholm, Sweden
| | - J Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
33
|
Abu Jhaisha S, Widowati EW, Kii I, Sonamoto R, Knapp S, Papadopoulos C, Becker W. DYRK1B mutations associated with metabolic syndrome impair the chaperone-dependent maturation of the kinase domain. Sci Rep 2017; 7:6420. [PMID: 28743892 PMCID: PMC5526990 DOI: 10.1038/s41598-017-06874-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/20/2017] [Indexed: 01/12/2023] Open
Abstract
Two missense mutations of the DYRK1B gene have recently been found to co-segregate with a rare autosomal-dominant form of metabolic syndrome. This gene encodes a member of the DYRK family of protein kinases, which depend on tyrosine autophosphorylation to acquire the catalytically active conformation. The mutations (H90P and R102C) affect a structural element named DYRK homology (DH) box and did not directly interfere with the conformation of the catalytic domain in a structural model of DYRK1B. Cellular assays showed that the mutations did not alter the specific activity of mature kinase molecules. However, a significant part of the mutant DYRK1B protein accumulated in detergent-insoluble cytoplasmic aggregates and was underphosphorylated on tyrosine. The mutant DYRK1B variants were more vulnerable to the HSP90 inhibitor ganetespib and showed enhanced binding to the co-chaperone CDC37 as compared to wild type DYRK1B. These results support the hypothesis that the mutations in the DH box interfere with the maturation of DYRK1B by tyrosine autophosphorylation and compromise the conformational stability of the catalytic domain, which renders the kinase susceptible to misfolding.
Collapse
Affiliation(s)
- Samira Abu Jhaisha
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Esti W Widowati
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
- Chemistry Study Program, Faculty of Science and Technology, State Islamic University, (UIN), Sunan Kalijaga, Yogyakarta, Indonesia
| | - Isao Kii
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Rie Sonamoto
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe University, Frankfurt am, Main, 60438, Germany
| | - Chrisovalantis Papadopoulos
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
- Molecular Biology I, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
34
|
Desai M, Chauhan JB. Computational analysis for the determination of deleterious nsSNPs in human MTHFD1 gene. Comput Biol Chem 2017; 70:7-14. [PMID: 28734179 DOI: 10.1016/j.compbiolchem.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 11/24/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are the most common genetic polymorphisms and play a major role in many inherited diseases. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) is one of the enzymes involved in folate metabolism. In the present study, the functional and structural consequences of nsSNPs of human MTHFD1 gene was analyzed using various computational tools like SIFT, PolyPhen2, PANTHER, PROVEAN, SNAP2, nsSNPAnalyzer, PhD-SNP, SNPs&GO, I-Mutant, MuPro, ConSurf, InterPro, NCBI Conserved Domain Search tool, ModPred, SPARKS-X, RAMPAGE, FT Site and PyMol. Out of 327 nsSNPs form human MTHFD1 gene, total 45 SNPs were predicted as functionally most significant SNPs, among which 17 were highly conserved and functional, 17 were highly conserved and structural residues. Among 45 most significant SNPs, 15 were predicted to be involved in post translational modifications. The p.Gly165Arg may interfere in homodimer interface formation. The p.Asn439Lys and p.Asp445Asn may interfere in binding interactions of MTHFD1 protein with cesium cation and potassium. The two SNPs (p.Asp562Gly and p.Gly637Cys) might interfere in interactions of MTHFD1 with ligand.
Collapse
Affiliation(s)
- Mansi Desai
- Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS), Affiliated to Sardar Patel University, New Vallabh Vidyanagar 388121, Gujarat, India.
| | - J B Chauhan
- Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS), Affiliated to Sardar Patel University, New Vallabh Vidyanagar 388121, Gujarat, India.
| |
Collapse
|
35
|
Porto WF, Marques FA, Pogue HB, de Oliveira Cardoso MT, do Vale MGR, da Silva Pires Á, Franco OL, de Alencar SA, Pogue R. Computational Investigation of Growth Hormone Receptor Trp169Arg Heterozygous Mutation in a Child With Short Stature. J Cell Biochem 2017; 118:4762-4771. [DOI: 10.1002/jcb.26144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/17/2017] [Indexed: 11/07/2022]
Affiliation(s)
- William Farias Porto
- Programa de Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
- Centro de Análises Proteômicas e Bioquímicas, Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
- Porto ReportsBrasília – DFBrazil
| | - Felipe Albuquerque Marques
- Programa de Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
- Departamento de FarmáciaUniversidade CEUMASão‐Luis – MABrazil
- Departamento de BiomedicinaUniversidade CEUMASão‐Luis – MABrazil
| | - Huri Brito Pogue
- Programa de Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
| | - Maria Teresinha de Oliveira Cardoso
- Curso de MedicinaUniversidade Católica de BrasíliaBrasília – DFBrazil
- Núcleo de Genética da Secretaria de Saúde do Distrito FederalBrasília – DFBrazil
| | | | - Állan da Silva Pires
- Programa de Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
- Centro de Análises Proteômicas e Bioquímicas, Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
| | - Octavio Luiz Franco
- Programa de Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
- Centro de Análises Proteômicas e Bioquímicas, Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
- S‐Inova Biotech, Pós‐graduação em BiotecnologiaUniversidade Católica Dom BoscoCampo GrandeMSBrazil
| | - Sérgio Amorim de Alencar
- Programa de Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
| | - Robert Pogue
- Programa de Pós‐Graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasília – DFBrazil
| |
Collapse
|
36
|
Nailwal M, Chauhan JB. Analysis of consequences of non-synonymous SNPs of USP9Y gene in human using bioinformatics tools. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
37
|
|
38
|
van der Meer JY, Biewenga L, Poelarends GJ. The Generation and Exploitation of Protein Mutability Landscapes for Enzyme Engineering. Chembiochem 2016; 17:1792-1799. [PMID: 27441919 PMCID: PMC5095810 DOI: 10.1002/cbic.201600382] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 11/08/2022]
Abstract
The increasing number of enzyme applications in chemical synthesis calls for new engineering methods to develop the biocatalysts of the future. An interesting concept in enzyme engineering is the generation of large-scale mutational data in order to chart protein mutability landscapes. These landscapes allow the important discrimination between beneficial mutations and those that are neutral or detrimental, thus providing detailed insight into sequence-function relationships. As such, mutability landscapes are a powerful tool with which to identify functional hotspots at any place in the amino acid sequence of an enzyme. These hotspots can be used as targets for combinatorial mutagenesis to yield superior enzymes with improved catalytic properties, stability, or even new enzymatic activities. The generation of mutability landscapes for multiple properties of one enzyme provides the exciting opportunity to select mutations that are beneficial either for one or for several of these properties. This review presents an overview of the recent advances in the construction of mutability landscapes and discusses their importance for enzyme engineering.
Collapse
Affiliation(s)
- Jan-Ytzen van der Meer
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lieuwe Biewenga
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
39
|
Reeb J, Hecht M, Mahlich Y, Bromberg Y, Rost B. Predicted Molecular Effects of Sequence Variants Link to System Level of Disease. PLoS Comput Biol 2016; 12:e1005047. [PMID: 27536940 PMCID: PMC4990455 DOI: 10.1371/journal.pcbi.1005047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
Developments in experimental and computational biology are advancing our understanding of how protein sequence variation impacts molecular protein function. However, the leap from the micro level of molecular function to the macro level of the whole organism, e.g. disease, remains barred. Here, we present new results emphasizing earlier work that suggested some links from molecular function to disease. We focused on non-synonymous single nucleotide variants, also referred to as single amino acid variants (SAVs). Building upon OMIA (Online Mendelian Inheritance in Animals), we introduced a curated set of 117 disease-causing SAVs in animals. Methods optimized to capture effects upon molecular function often correctly predict human (OMIM) and animal (OMIA) Mendelian disease-causing variants. We also predicted effects of human disease-causing variants in the mouse model, i.e. we put OMIM SAVs into mouse orthologs. Overall, fewer variants were predicted with effect in the model organism than in the original organism. Our results, along with other recent studies, demonstrate that predictions of molecular effects capture some important aspects of disease. Thus, in silico methods focusing on the micro level of molecular function can help to understand the macro system level of disease. The variations in the genetic sequence between individuals affect the gene-product, i.e. the protein differently. Some variants have no measurable effect (are neutral), while others affect protein function. Some of those effects are so severe they cause so called monogenic Mendelian diseases, i.e. diseases triggered by a single letter change. Some in silico methods predict the molecular impact of sequence variation. However, both experimental and computational analyses struggle to generalize from the effect upon molecular protein function to the effect upon the organism such as a disease. Here, we confirmed that methods predicting molecular effects correctly capture the type of effects causing Mendelian diseases in human and introduced a data set for animal diseases that was also captured by predictions methods. Predicted effects were less when in silico testing human variants in an animal model (here mouse). This is important to know because “mouse models” are common to study human diseases. Overall, we provided some evidence for a link between the molecular level and some type of disease.
Collapse
Affiliation(s)
- Jonas Reeb
- Department of Informatics, Bioinformatics & Computational Biology—i12, Technische Universität München, Garching/Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Technische Universität München, Garching, Germany
- * E-mail:
| | - Maximilian Hecht
- Department of Informatics, Bioinformatics & Computational Biology—i12, Technische Universität München, Garching/Munich, Germany
| | - Yannick Mahlich
- Department of Informatics, Bioinformatics & Computational Biology—i12, Technische Universität München, Garching/Munich, Germany
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
- Institute for Advanced Study (TUM-IAS), Garching/Munich, Germany
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
- Institute for Advanced Study (TUM-IAS), Garching/Munich, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology—i12, Technische Universität München, Garching/Munich, Germany
- Institute for Advanced Study (TUM-IAS), Garching/Munich, Germany
- Institute for Food and Plant Sciences WZW, Technische Universität München, Weihenstephan, Freising, Germany
| |
Collapse
|
40
|
Riera C, Padilla N, de la Cruz X. The Complementarity Between Protein-Specific and General Pathogenicity Predictors for Amino Acid Substitutions. Hum Mutat 2016; 37:1013-24. [DOI: 10.1002/humu.23048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Casandra Riera
- Research Unit in Translational Bioinformatics; Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona; Barcelona Spain
| | - Natàlia Padilla
- Research Unit in Translational Bioinformatics; Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona; Barcelona Spain
| | - Xavier de la Cruz
- Research Unit in Translational Bioinformatics; Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona; Barcelona Spain
- ICREA; Barcelona Spain
| |
Collapse
|
41
|
Bioinformatics Approach for Prediction of Functional Coding/Noncoding Simple Polymorphisms (SNPs/Indels) in Human BRAF Gene. Adv Bioinformatics 2016; 2016:2632917. [PMID: 27478437 PMCID: PMC4958420 DOI: 10.1155/2016/2632917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022] Open
Abstract
This study was carried out for Homo sapiens single variation (SNPs/Indels) in BRAF gene through coding/non-coding regions. Variants data was obtained from database of SNP even last update of November, 2015. Many bioinformatics tools were used to identify functional SNPs and indels in proteins functions, structures and expressions. Results shown, for coding polymorphisms, 111 SNPs predicted as highly damaging and six other were less. For UTRs, showed five SNPs and one indel were altered in micro RNAs binding sites (3' UTR), furthermore nil SNP or indel have functional altered in transcription factor binding sites (5' UTR). In addition for 5'/3' splice sites, analysis showed that one SNP within 5' splice site and one Indel in 3' splice site showed potential alteration of splicing. In conclude these previous functional identified SNPs and indels could lead to gene alteration, which may be directly or indirectly contribute to the occurrence of many diseases.
Collapse
|
42
|
Abriata LA, Bovigny C, Dal Peraro M. Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server. BMC Bioinformatics 2016; 17:242. [PMID: 27315797 PMCID: PMC4912743 DOI: 10.1186/s12859-016-1124-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/07/2016] [Indexed: 11/21/2022] Open
Abstract
Background Protein variability can now be studied by measuring high-resolution tolerance-to-substitution maps and fitness landscapes in saturated mutational libraries. But these rich and expensive datasets are typically interpreted coarsely, restricting detailed analyses to positions of extremely high or low variability or dubbed important beforehand based on existing knowledge about active sites, interaction surfaces, (de)stabilizing mutations, etc. Results Our new webserver PsychoProt (freely available without registration at http://psychoprot.epfl.ch or at http://lucianoabriata.altervista.org/psychoprot/index.html) helps to detect, quantify, and sequence/structure map the biophysical and biochemical traits that shape amino acid preferences throughout a protein as determined by deep-sequencing of saturated mutational libraries or from large alignments of naturally occurring variants. Discussion We exemplify how PsychoProt helps to (i) unveil protein structure-function relationships from experiments and from alignments that are consistent with structures according to coevolution analysis, (ii) recall global information about structural and functional features and identify hitherto unknown constraints to variation in alignments, and (iii) point at different sources of variation among related experimental datasets or between experimental and alignment-based data. Remarkably, metabolic costs of the amino acids pose strong constraints to variability at protein surfaces in nature but not in the laboratory. This and other differences call for caution when extrapolating results from in vitro experiments to natural scenarios in, for example, studies of protein evolution. Conclusion We show through examples how PsychoProt can be a useful tool for the broad communities of structural biology and molecular evolution, particularly for studies about protein modeling, evolution and design. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1124-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luciano A Abriata
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, and Swiss Institute of Bioinformatics, AAB014 Station 19, Lausanne, 1015, Switzerland.
| | - Christophe Bovigny
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, and Swiss Institute of Bioinformatics, AAB014 Station 19, Lausanne, 1015, Switzerland.,Present address: Molecular Modeling Group, Swiss Institute of Bioinformatics, UNIL, Bâtiment Génopode, Lausanne, 1015, Switzerland
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, and Swiss Institute of Bioinformatics, AAB014 Station 19, Lausanne, 1015, Switzerland
| |
Collapse
|
43
|
Mangrolia P, Yang DT, Murphy RM. Transthyretin variants with improved inhibition of β-amyloid aggregation. Protein Eng Des Sel 2016; 29:209-218. [PMID: 27099354 DOI: 10.1093/protein/gzw008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023] Open
Abstract
Aggregation of β-amyloid (Aβ) is widely believed to cause neuronal dysfunction in Alzheimer's disease. Transthyretin (TTR) binds to Aβ and inhibits its aggregation and neurotoxicity. TTR is a homotetrameric protein, with each monomer containing a short α-helix and two anti-parallel β-sheets. Dimers pack into tetramers to form a hydrophobic cavity. Here we report the discovery of a TTR mutant, N98A, that was more effective at inhibiting Aβ aggregation than wild-type (WT) TTR, although N98A and WT bound Aβ equally. The N98A mutation is located on a flexible loop distant from the putative Aβ-binding sites and does not alter secondary and tertiary structures nor prevent correct assembly into tetramers. Under non-physiological conditions, N98A tetramers were kinetically and thermodynamically less stable than WT, suggesting a difference in the tetramer folded structure. In vivo, the lone cysteine in TTR is frequently modified by S-cysteinylation or S-sulfonation. Like the N98A mutation, S-cysteinylation of TTR modestly decreased tetramer stability and increased TTR's effectiveness at inhibiting Aβ aggregation. Collectively, these data indicate that a subtle change in TTR tetramer structure measurably increases TTR's ability to inhibit Aβ aggregation.
Collapse
Affiliation(s)
- Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Dennis T Yang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| |
Collapse
|
44
|
Dowd PF, Johnson ET. Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi which enhances fungal and insect resistance. JOURNAL OF PLANT RESEARCH 2016; 129:13-20. [PMID: 26659597 DOI: 10.1007/s10265-015-0770-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 05/07/2023]
Abstract
Mycotoxin presence in maize causes health and economic issues for humans and animals. Although many studies have investigated expression differences of genes putatively governing resistance to producing fungi, few have confirmed a resistance role, or examined putative resistance gene structure in more than a couple of inbreds. The pericarp expression of maize Px5 has previously been associated with resistance to Aspergillus flavus growth and insects in a set of inbreds. Genes from 14 different inbreds that included ones with resistance and susceptibility to A. flavus, Fusarium proliferatum, F. verticillioides and F. graminearum and/or mycotoxin production were cloned using high fidelity enzymes, and sequenced. The sequence of Px5 from all resistant inbreds was identical, except for a single base change in two inbreds, only one of which affected the amino acid sequence. Conversely, the Px5 sequence from several susceptible inbreds had several base variations, some of which affected amino acid sequence that would potentially alter secondary structure, and thus enzyme function. The sequence of the maize peroxidase Px5 common to inbreds resistant to mycotoxigenic fungi was overexpressed in maize callus. Callus transformants overexpressing the gene caused significant reductions in growth for fall armyworms, corn earworms, and F. graminearum compared to transformant callus with a β-glucuronidase gene. This study demonstrates rarer transcripts of potential resistance genes overlooked by expression screens can be identified by sequence comparisons. A role in pest resistance can be verified by callus expression of the candidate genes, which can thereby justify larger scale transformation and regeneration of transgenic plants expressing the resistance gene for further evaluation.
Collapse
Affiliation(s)
- Patrick F Dowd
- Crop Bioprotection Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 University St., Peoria, IL, 61604, USA.
| | - Eric T Johnson
- Crop Bioprotection Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 University St., Peoria, IL, 61604, USA
| |
Collapse
|
45
|
Antibody Binding Selectivity: Alternative Sets of Antigen Residues Entail High-Affinity Recognition. PLoS One 2015; 10:e0143374. [PMID: 26629896 PMCID: PMC4667898 DOI: 10.1371/journal.pone.0143374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding the relationship between protein sequence and molecular recognition selectivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM affinity a decapeptide (sequence 6TAMFQDPQER15) derived from the N-terminal end of human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previously shown that only the wild type amino-acid or conservative replacements were allowed at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Nevertheless phenylalanine (F) was equally well tolerated as the wild type glutamine (Q) at position 13, while all other amino acids led to weaker scFv binding. The interfaces of complexes involving either Q or F are expected to diverge, due to the different physico-chemistry of these residues. This would imply that high-affinity binding can be achieved through distinct interfacial geometries. In order to investigate this point, we disrupted the scFv-peptide interface by modifying one or several peptide positions. We then analyzed the effect on binding of amino acid changes at the remaining positions, an altered susceptibility being indicative of an altered role in complex formation. The 23 starting variants analyzed contained replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permutation analysis (effect of replacing each peptide position by all other amino acids except cysteine) was carried out on the 23 variants using the PEPperCHIP® Platform technology. A comparison of their permutation patterns with that of the wild type peptide indicated that starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes at the other two positions. The interdependence between the three positions was confirmed by SPR (Biacore® technology). Our data demonstrate that binding selectivity does not preclude the existence of alternative high-affinity recognition modes.
Collapse
|
46
|
Rockah-Shmuel L, Tóth-Petróczy Á, Tawfik DS. Systematic Mapping of Protein Mutational Space by Prolonged Drift Reveals the Deleterious Effects of Seemingly Neutral Mutations. PLoS Comput Biol 2015; 11:e1004421. [PMID: 26274323 PMCID: PMC4537296 DOI: 10.1371/journal.pcbi.1004421] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022] Open
Abstract
Systematic mappings of the effects of protein mutations are becoming increasingly popular. Unexpectedly, these experiments often find that proteins are tolerant to most amino acid substitutions, including substitutions in positions that are highly conserved in nature. To obtain a more realistic distribution of the effects of protein mutations, we applied a laboratory drift comprising 17 rounds of random mutagenesis and selection of M.HaeIII, a DNA methyltransferase. During this drift, multiple mutations gradually accumulated. Deep sequencing of the drifted gene ensembles allowed determination of the relative effects of all possible single nucleotide mutations. Despite being averaged across many different genetic backgrounds, about 67% of all nonsynonymous, missense mutations were evidently deleterious, and an additional 16% were likely to be deleterious. In the early generations, the frequency of most deleterious mutations remained high. However, by the 17th generation, their frequency was consistently reduced, and those remaining were accepted alongside compensatory mutations. The tolerance to mutations measured in this laboratory drift correlated with sequence exchanges seen in M.HaeIII’s natural orthologs. The biophysical constraints dictating purging in nature and in this laboratory drift also seemed to overlap. Our experiment therefore provides an improved method for measuring the effects of protein mutations that more closely replicates the natural evolutionary forces, and thereby a more realistic view of the mutational space of proteins. Understanding and predicting the effects of single nucleotide polymorphisms (SNPs) is of fundamental importance in many fields. Systematic experimental mappings of the effects of such mutations within a given gene/protein comprise an essential experimental tool for determining protein function and for refining models of protein evolution, as well as an important resource for improving prediction algorithms. Here, we present the results of a laboratory system that mimics the manner by which protein sequences diverge in nature: a prolonged process of gradually accumulating random mutations that retain the protein’s structure and function. The change in frequencies of mutations over generations, as obtained by deep sequencing, enabled us to assess the relative effects of all possible SNPs at the background of an accumulating number of mutations. Compared to previous reports, we found that > 80% of all possible amino acid exchanges have potential deleterious effects, with 67% being clearly deleterious. Tolerance vs. purging of mutations in our prolonged drift also showed better correlation with natural diversity. Overall, our experimental setup provides a better understanding of how protein sequences diverge in nature, plus a new basis for improving the prediction accuracy of the effects of protein mutations, and specifically of SNPs.
Collapse
Affiliation(s)
- Liat Rockah-Shmuel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ágnes Tóth-Petróczy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S. Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
47
|
Abstract
Elucidating the effects of naturally occurring genetic variation is one of the major challenges for personalized health and personalized medicine. Here, we introduce SNAP2, a novel neural network based classifier that improves over the state-of-the-art in distinguishing between effect and neutral variants. Our method's improved performance results from screening many potentially relevant protein features and from refining our development data sets. Cross-validated on >100k experimentally annotated variants, SNAP2 significantly outperformed other methods, attaining a two-state accuracy (effect/neutral) of 83%. SNAP2 also outperformed combinations of other methods. Performance increased for human variants but much more so for other organisms. Our method's carefully calibrated reliability index informs selection of variants for experimental follow up, with the most strongly predicted half of all effect variants predicted at over 96% accuracy. As expected, the evolutionary information from automatically generated multiple sequence alignments gave the strongest signal for the prediction. However, we also optimized our new method to perform surprisingly well even without alignments. This feature reduces prediction runtime by over two orders of magnitude, enables cross-genome comparisons, and renders our new method as the best solution for the 10-20% of sequence orphans. SNAP2 is available at: https://rostlab.org/services/snap2web
Collapse
|
48
|
Vázquez M, Valencia A, Pons T. Structure-PPi: a module for the annotation of cancer-related single-nucleotide variants at protein-protein interfaces. Bioinformatics 2015; 31:2397-9. [PMID: 25765346 PMCID: PMC4495296 DOI: 10.1093/bioinformatics/btv142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/08/2015] [Indexed: 02/06/2023] Open
Abstract
Motivation: The interpretation of cancer-related single-nucleotide variants (SNVs) considering the protein features they affect, such as known functional sites, protein–protein interfaces, or relation with already annotated mutations, might complement the annotation of genetic variants in the analysis of NGS data. Current tools that annotate mutations fall short on several aspects, including the ability to use protein structure information or the interpretation of mutations in protein complexes. Results: We present the Structure–PPi system for the comprehensive analysis of coding SNVs based on 3D protein structures of protein complexes. The 3D repository used, Interactome3D, includes experimental and modeled structures for proteins and protein–protein complexes. Structure–PPi annotates SNVs with features extracted from UniProt, InterPro, APPRIS, dbNSFP and COSMIC databases. We illustrate the usefulness of Structure–PPi with the interpretation of 1 027 122 non-synonymous SNVs from COSMIC and the 1000G Project that provides a collection of ∼172 700 SNVs mapped onto the protein 3D structure of 8726 human proteins (43.2% of the 20 214 SwissProt-curated proteins in UniProtKB release 2014_06) and protein–protein interfaces with potential functional implications. Availability and implementation: Structure–PPi, along with a user manual and examples, isavailable at http://structureppi.bioinfo.cnio.es/Structure, the code for local installations at https://github.com/Rbbt-Workflows Contact:tpons@cnio.es Supplementary Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Miguel Vázquez
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Alfonso Valencia
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Tirso Pons
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| |
Collapse
|
49
|
How structural and physicochemical determinants shape sequence constraints in a functional enzyme. PLoS One 2015; 10:e0118684. [PMID: 25706742 PMCID: PMC4338278 DOI: 10.1371/journal.pone.0118684] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/21/2015] [Indexed: 01/14/2023] Open
Abstract
The need for interfacing structural biology and biophysics to molecular evolution is being increasingly recognized. One part of the big problem is to understand how physics and chemistry shape the sequence space available to functional proteins, while satisfying the needs of biology. Here we present a quantitative, structure-based analysis of a high-resolution map describing the tolerance to all substitutions in all positions of a functional enzyme, namely a TEM lactamase previously studied through deep sequencing of mutants growing in competition experiments with selection against ampicillin. Substitutions are rarely observed within 7 Å of the active site, a stringency that is relaxed slowly and extends up to 15–20 Å, with buried residues being especially sensitive. Substitution patterns in over one third of the residues can be quantitatively modeled by monotonic dependencies on amino acid descriptors and predictions of changes in folding stability. Amino acid volume and steric hindrance shape constraints on the protein core; hydrophobicity and solubility shape constraints on hydrophobic clusters underneath the surface, and on salt bridges and polar networks at the protein surface together with charge and hydrogen bonding capacity. Amino acid solubility, flexibility and conformational descriptors also provide additional constraints at many locations. These findings provide fundamental insights into the chemistry underlying protein evolution and design, by quantitating links between sequence and different protein traits, illuminating subtle and unexpected sequence-trait relationships and pinpointing what traits are sacrificed upon gain-of-function mutation.
Collapse
|
50
|
Ragnarsson L, Andersson Å, Thomas WG, Lewis RJ. Extracellular Surface Residues of the α1B-Adrenoceptor Critical for G Protein–Coupled Receptor Function. Mol Pharmacol 2014; 87:121-9. [DOI: 10.1124/mol.114.094557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|