1
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
2
|
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C, Wu J. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2024; 230:116633. [PMID: 39551273 DOI: 10.1016/j.bcp.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Collapse
Affiliation(s)
- Xiang Li
- The Zigong Affiliated Hospital, Southwest Medical University, Zigong Mental Health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province 643020, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shi Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xueqin Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Jianming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Liu CS, Park C, Ngo T, Saikumar J, Palmer CR, Shahnaee A, Romanow WJ, Chun J. RNA Isoform Diversity in Human Neurodegenerative Diseases. eNeuro 2024; 11:ENEURO.0296-24.2024. [PMID: 39658200 PMCID: PMC11693435 DOI: 10.1523/eneuro.0296-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Single-nucleus RNA-sequencing (snRNA-seq) has revealed new levels of cellular organization and diversity within the human brain. However, full-length mRNA isoforms are not resolved in typical snRNA-seq analyses using short-read sequencing that cannot capture full-length transcripts. Here we combine standard 10x Genomics short-read snRNA-seq with targeted PacBio long-read snRNA-seq to examine isoforms of genes associated with neurological diseases at the single-cell level from prefrontal cortex samples of diseased and nondiseased human brain, assessing over 165,000 cells. Samples from 25 postmortem donors with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), or Parkinson's disease (PD), along with age-matched controls, were compared. Analysis of the short-read libraries identified shared and distinct gene expression changes across the diseases. The same libraries were then assayed using enrichment probes to target 50 disease-related genes followed by long-read PacBio sequencing, enabling linkage between cell type and isoform expression. Vast mRNA isoform diversity was observed in all 50 targeted genes, even those that were not differentially expressed in the short-read data. We also developed an informatics method for detection of isoform structural differences in novel isoforms versus the reference annotation. These data expand available single-cell datasets of the human prefrontal cortical transcriptome with combined short- and long-read sequencing across AD, DLB, and PD, revealing increased mRNA isoform diversity that may contribute to disease features and could potentially represent therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Christine S Liu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Chris Park
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tony Ngo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Janani Saikumar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Carter R Palmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Anis Shahnaee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - William J Romanow
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| |
Collapse
|
4
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
5
|
Zhu B, Park JM, Coffey SR, Russo A, Hsu IU, Wang J, Su C, Chang R, Lam TT, Gopal PP, Ginsberg SD, Zhao H, Hafler DA, Chandra SS, Zhang L. Single-cell transcriptomic and proteomic analysis of Parkinson's disease brains. Sci Transl Med 2024; 16:eabo1997. [PMID: 39475571 DOI: 10.1126/scitranslmed.abo1997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/19/2024] [Accepted: 10/04/2024] [Indexed: 02/13/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and recent evidence suggests that pathogenesis may be in part mediated by inflammatory processes, the molecular and cellular architectures of which are largely unknown. To identify and characterize selectively vulnerable brain cell populations in PD, we performed single-nucleus transcriptomics and unbiased proteomics to profile the prefrontal cortex from postmortem human brains of six individuals with late-stage PD and six age-matched controls. Analysis of nearly 80,000 nuclei led to the identification of eight major brain cell types, including elevated brain-resident T cells in PD, each with distinct transcriptional changes in agreement with the known genetics of PD. By analyzing Lewy body pathology in the same postmortem brain tissues, we found that α-synuclein pathology was inversely correlated with chaperone expression in excitatory neurons. Examining cell-cell interactions, we found a selective abatement of neuron-astrocyte interactions and enhanced neuroinflammation. Proteomic analyses of the same brains identified synaptic proteins in the prefrontal cortex that were preferentially down-regulated in PD. By comparing this single-cell PD dataset with a published analysis of similar brain regions in Alzheimer's disease (AD), we found no common differentially expressed genes in neurons but identified many shared differentially expressed genes in glial cells, suggesting that the disease etiologies, especially in the context of neuronal vulnerability, in PD and AD are likely distinct.
Collapse
Affiliation(s)
- Biqing Zhu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
| | - Jae-Min Park
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sarah R Coffey
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anthony Russo
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - I-Uen Hsu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jiawei Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
| | - Chang Su
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Rui Chang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry and Keck MS & Proteomics Resource, Yale University, New Haven, CT 06510, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - David A Hafler
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
6
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
7
|
Visser BS, Lipiński WP, Spruijt E. The role of biomolecular condensates in protein aggregation. Nat Rev Chem 2024; 8:686-700. [PMID: 39134696 DOI: 10.1038/s41570-024-00635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 09/11/2024]
Abstract
There is an increasing amount of evidence that biomolecular condensates are linked to neurodegenerative diseases associated with protein aggregation, such as Alzheimer's disease and amyotrophic lateral sclerosis, although the mechanisms underlying this link remain elusive. In this Review, we summarize the possible connections between condensates and protein aggregation. We consider both liquid-to-solid transitions of phase-separated proteins and the partitioning of proteins into host condensates. We distinguish five key factors by which the physical and chemical environment of a condensate can influence protein aggregation, and we discuss their relevance in studies of protein aggregation in the presence of biomolecular condensates: increasing the local concentration of proteins, providing a distinct chemical microenvironment, introducing an interface wherein proteins can localize, changing the energy landscape of aggregation pathways, and the presence of chaperones in condensates. Analysing the role of biomolecular condensates in protein aggregation may be essential for a full understanding of amyloid formation and offers a new perspective that can help in developing new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brent S Visser
- Institute of Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Wojciech P Lipiński
- Institute of Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute of Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Babu N, Freeman BC. Establishing Order Through Disorder by the Hsp90 Molecular Chaperone. J Mol Biol 2024; 436:168460. [PMID: 38301804 PMCID: PMC11211062 DOI: 10.1016/j.jmb.2024.168460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The Heat Shock Protein 90 (Hsp90) molecular chaperone is a key driver of protein homeostasis (proteostasis) under physiologically normal and stress conditions. In eukaryotes, Hsp90 is essential and is one of the most abundant proteins in a cell where the chaperone shuttles between the cytoplasm and nucleus to fold, stabilize, and regulate client proteins and protein complexes. Numerous high-throughput screens have mapped the Hsp90 interactome, building a vast network comprising ∼25% of the proteome in budding yeast. How Hsp90 is able to associate with this diverse and large cadre of targets is critical to comprehending how the proteostatic process works. Here, we review recent progress on our understanding of the molecular underpinnings driving Hsp90-client interactions from both the perspective of the targets and Hsp90. In addition to considering the available Hsp90-client structures, we also assessed recently identified Hsp90-client peptide complexes to build a model that justifies how Hsp90 might recognize a wide spectrum of target proteins. In brief, Hsp90 either directly recognizes a site within an intrinsically disordered region (IDR) of a client protein to transiently regulate that client or it associates with an unstructured polypeptide section created by the concerted efforts of multiple chaperones and cochaperones to stably associate with a client. Overall, Hsp90 exploits a common recognition property (i.e., IDR) within diverse clients to support chaperone-actionthereby enabling its central role in proteostasis.
Collapse
Affiliation(s)
- Neethu Babu
- University of Illinois, Urbana-Champaign Department of Cell and Developmental Biology, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Brian C Freeman
- University of Illinois, Urbana-Champaign Department of Cell and Developmental Biology, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Sharma A, Shah OP, Sharma L, Gulati M, Behl T, Khalid A, Mohan S, Najmi A, Zoghebi K. Molecular Chaperones as Therapeutic Target: Hallmark of Neurodegenerative Disorders. Mol Neurobiol 2024; 61:4750-4767. [PMID: 38127187 DOI: 10.1007/s12035-023-03846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Misfolded and aggregated proteins build up in neurodegenerative illnesses, which causes neuronal dysfunction and ultimately neuronal death. In the last few years, there has been a significant upsurge in the level of interest towards the function of molecular chaperones in the control of misfolding and aggregation. The crucial molecular chaperones implicated in neurodegenerative illnesses are covered in this review article, along with a variety of their different methods of action. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones serve critical roles in preserving protein homeostasis. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones have integral roles in preserving regulation of protein balance. It has been demonstrated that aging, a significant risk factor for neurological disorders, affects how molecular chaperones function. The aggregation of misfolded proteins and the development of neurodegeneration may be facilitated by the aging-related reduction in chaperone activity. Molecular chaperones have also been linked to the pathophysiology of several instances of neuron withering illnesses, enumerating as Parkinson's disease, Huntington's disease, and Alzheimer's disease. Molecular chaperones have become potential therapy targets concerning with the prevention and therapeutic approach for brain disorders due to their crucial function in protein homeostasis and their connection to neurodegenerative illnesses. Protein homeostasis can be restored, and illness progression can be slowed down by methods that increase chaperone function or modify their expression. This review emphasizes the importance of molecular chaperones in the context of neuron withering disorders and their potential as therapeutic targets for brain disorders.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India, Amity University, Mohali, India.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box 2424, 11111, Khartoum, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia.
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| |
Collapse
|
11
|
Wickramaratne AC, Wickner S, Kravats AN. Hsp90, a team player in protein quality control and the stress response in bacteria. Microbiol Mol Biol Rev 2024; 88:e0017622. [PMID: 38534118 PMCID: PMC11332350 DOI: 10.1128/mmbr.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
12
|
Liu P, Li Z, Zhang H, Wang Y, Liao Y, Guo Y, Wang C, Zou Y, Zou R, Niu L. Mild heat stress promotes the differentiation of odontoblast-like MDPC-23 cells via yes-associated protein. Int J Hyperthermia 2024; 41:2369749. [PMID: 38925872 DOI: 10.1080/02656736.2024.2369749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE Dentin hypersensitivity (DH) is a prevalent condition, but long-term effective treatments are scarce. Differentiation of odontoblast-like cells is promising for inducing tertiary dentinogenesis and ensuring sustained therapeutic efficacy against DH. This study examined the effects and mechanism of action of mild heat stress (MHS) on the differentiation of odontoblast-like MDPC-23 cells. METHODS We used a heating device to accurately control the temperature and duration, mimicking the thermal microenvironment of odontoblast-like cells. Using this device, the effects of MHS on cell viability and differentiation were examined. Cell viability was assessed using the MTT assay. The expression and nucleoplasmic ratio of the yes-associated protein (YAP) were examined by western blotting and immunofluorescence. The gene expression levels of heat shock proteins (HSPs) and dentin matrix protein-1 (DMP1) were measured using qPCR. Dentin sialophosphoprotein (DSPP) expression was evaluated using immunofluorescence and immunoblotting. Verteporfin was used to inhibit YAP activity. RESULTS Mild heat stress (MHS) enhanced the odontoblast differentiation of MDPC-23 cells while maintaining cell viability. MHS also increased YAP activity, as well as the levels of HSP25 mRNA, HSP70 mRNA, HSP90α mRNA, DMP1 mRNA, and DSPP protein. However, after YAP inhibition, both cell viability and the levels of HSP90α mRNA, DMP1 mRNA, and DSPP protein were reduced. CONCLUSION YAP plays a crucial role in maintaining cell viability and promoting odontoblast differentiation of MDPC-23 cells under MHS. Consequently, MHS is a potential therapeutic strategy for DH, and boosting YAP activity could be beneficial for maintaining cell viability and promoting odontoblast differentiation.
Collapse
Affiliation(s)
- Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chenxu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuanwu Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Chaari A, Saikia N, Paul P, Yousef M, Ding F, Ladjimi M. Experimental and computational investigation of the effect of Hsc70 structural variants on inhibiting amylin aggregation. Biophys Chem 2024; 309:107235. [PMID: 38608617 DOI: 10.1016/j.bpc.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (hIAPP), also known as amylin, have been implicated in the pathogenesis of type 2 diabetes (T2D). Heat shock proteins, specifically, heat shock cognate 70 (Hsc70), are molecular chaperones that protect against hIAPP misfolding and inhibits its aggregation. Nevertheless, there is an incomplete understanding of the mechanistic interactions between Hsc70 domains and hIAPP, thus limiting their potential therapeutic role in diabetes. This study investigates the inhibitory capacities of different Hsc70 variants, aiming to identify the structural determinants that strike a balance between efficacy and cytotoxicity. Our experimental findings demonstrate that the ATPase activity of Hsc70 is not a pivotal factor for inhibiting hIAPP misfolding. We underscore the significance of the C-terminal substrate-binding domain of Hsc70 in inhibiting hIAPP aggregation, emphasizing that the removal of the lid subdomain diminishes the inhibitory effect of Hsc70. Additionally, we employed atomistic discrete molecular dynamics simulations to gain deeper insights into the interaction between Hsc70 variants and hIAPP. Integrating both experimental and computational findings, we propose a mechanism by which Hsc70's interaction with hIAPP monomers disrupts protein-protein connections, primarily by shielding the β-sheet edges of the Hsc70-β-sandwich. The distinctive conformational dynamics of the alpha helices of Hsc70 potentially enhance hIAPP binding by obstructing the exposed edges of the β-sandwich, particularly at the β5-β8 region along the alpha helix interface. This, in turn, inhibits fibril growth, and similar results were observed following hIAPP dimerization. Overall, this study elucidates the structural intricacies of Hsc70 crucial for impeding hIAPP aggregation, improving our understanding of the potential anti-aggregative properties of molecular chaperones in diabetes treatment.
Collapse
Affiliation(s)
- Ali Chaari
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar.
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Mohammad Yousef
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Moncef Ladjimi
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| |
Collapse
|
14
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
15
|
Gollapalli P, Rudrappa S, Kumar V, Santosh Kumar HS. Domain Architecture Based Methods for Comparative Functional Genomics Toward Therapeutic Drug Target Discovery. J Mol Evol 2023; 91:598-615. [PMID: 37626222 DOI: 10.1007/s00239-023-10129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Genes duplicate, mutate, recombine, fuse or fission to produce new genes, or when genes are formed from de novo, novel functions arise during evolution. Researchers have tried to quantify the causes of these molecular diversification processes to know how these genes increase molecular complexity over a period of time, for instance protein domain organization. In contrast to global sequence similarity, protein domain architectures can capture key structural and functional characteristics, making them better proxies for describing functional equivalence. In Prokaryotes and eukaryotes it has proven that, domain designs are retained over significant evolutionary distances. Protein domain architectures are now being utilized to categorize and distinguish evolutionarily related proteins and find homologs among species that are evolutionarily distant from one another. Additionally, structural information stored in domain structures has accelerated homology identification and sequence search methods. Tools for functional protein annotation have been developed to discover, protein domain content, domain order, domain recurrence, and domain position as all these contribute to the prediction of protein functional accuracy. In this review, an attempt is made to summarise facts and speculations regarding the use of protein domain architecture and modularity to identify possible therapeutic targets among cellular activities based on the understanding their linked biological processes.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sushmitha Rudrappa
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - Vadlapudi Kumar
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka, 577007, India
| | - Hulikal Shivashankara Santosh Kumar
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451, India.
| |
Collapse
|
16
|
Mansour HM, F Mohamed A, Khattab MM, El-Khatib AS. Lapatinib ditosylate rescues motor deficits in rotenone-intoxicated rats: Potential repurposing of anti-cancer drug as a disease-modifying agent in Parkinson's disease. Eur J Pharmacol 2023; 954:175875. [PMID: 37385578 DOI: 10.1016/j.ejphar.2023.175875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits induced by dopaminergic neuronal death in the substantia nigra (SN). Finding a successful neuroprotective therapy is still challenging despite improved knowledge of the etiology of PD and a variety of medications intended to reduce symptoms. Lapatinib (LAP), an FDA-approved anti-cancer medication, has been stated to exert its effect through the modulation of oxidative stress. Furthermore, recent studies display the neuroprotective effects of LAP in epilepsy, encephalomyelitis, and Alzheimer's disease in rodent models through the modulation of oxidative stress and ferroptosis. Nevertheless, it is questionable whether LAP exerts neuroprotective effects in PD. In the current study, administration of 100 mg/kg LAP in rotenone-treated rats for 21 days ameliorates motor impairment, debilitated histopathological alterations, and revived dopaminergic neurons by increasing tyrosine hydroxylase (TH) expression in SN, along with increased dopamine level. LAP remarkably restored the antioxidant defense mechanism system, GPX4/GSH/NRF2 axis, inhibiting oxidative markers, including iron, TfR1, PTGS2, and 4-HNE, along with suppression of p-EGFR/c-SRC/PKCβII/PLC-γ/ACSL-4 pathway. Moreover, LAP modulates HSP90/CDC37 chaperone complex, regulating many key pathological markers of PD, including LRRK2, c-ABL, and α-syn. It is concluded that LAP has neuroprotective effects in PD via modulation of many key parameters implicated in PD pathogenesis. Taken together, the current study offers insights into the potential repositioning of LAP as a disease-modifying drug in PD.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies, Egyptian Drug Authority, EDA, Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Anantha J, Wilson FE, McCarthy E, Morales-Prieto N, Mazzocchi M, Collins LM, Sullivan AM, O'Keeffe GW. A combined proteomics and bioinformatics analysis of ZNHIT1-interacting proteins reveals a significant enrichment in proteins associated with mitochondrial function. J Chem Neuroanat 2023; 131:102288. [PMID: 37178741 DOI: 10.1016/j.jchemneu.2023.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is the principal source of cellular energy, which is essential for neuronal health and maintenance. Parkinson's disease (PD) and other neurodegenerative disorders are characterised by impairments in mitochondrial function and reductions in cellular ATP levels. Thus there is a need to better understand the biology of intracellular regulators of ATP production, in order to inform the development of new neuroprotective therapies for diseases such as PD. One such regulator is Zinc finger HIT-domain containing protein 1 (ZNHIT1). ZNHIT1 is an evolutionarily-conserved component of a chromatin-remodelling complex, which has been recently shown to increase cellular ATP production in SH-SY5Y cells and to protect against impairments in mitochondrial function caused by alpha-synuclein, a protein which is integral to PD pathophysiology. This effect of ZNHIT1 on cellular ATP production is thought to be due to increased expression of genes associated with mitochondrial function, but it is also possible that ZNHIT1 regulates mitochondrial function by binding to mitochondrial proteins. To examine this question, we performed a combined proteomics and bioinformatics analysis to identify ZNHIT1-interacting proteins in SH-SY5Y cells. We report that ZNHIT1-interacting proteins are significantly enriched in multiple functional categories, including mitochondrial transport, ATP synthesis and ATP-dependent activity. Furthermore we also report that the correlation between ZNHIT1 and dopaminergic markers is reduced in the PD brain. These data suggest that the reported beneficial effects of ZNHIT1 on ATP production may be mediated, at least in part, by its direct interaction with mitochondrial proteins and suggest that potential alterations in ZNHIT1 in PD may contribute to the known impairments in ATP generation in midbrain dopaminergic neurons in PD.
Collapse
Affiliation(s)
- Jayanth Anantha
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Fionnuala E Wilson
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Erin McCarthy
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | | | - Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
18
|
Peng J, Xie F, Qin P, Liu Y, Niu H, Sun J, Xue H, Zhao Q, Liu J, Wu J. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg Chem 2023; 138:106622. [PMID: 37244230 DOI: 10.1016/j.bioorg.2023.106622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
HDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy. In this review, we will summarize the relationship between HDAC6 and cancer, and discuss the design strategies of HDAC6 inhibitors for cancer treatment in recent years.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
19
|
Rodríguez-Ramos A, González JA, Fanarraga ML. Enhanced Inhibition of Amyloid Formation by Heat Shock Protein 90 Immobilized on Nanoparticles. ACS Chem Neurosci 2023; 14:2811-2817. [PMID: 37471620 PMCID: PMC10401628 DOI: 10.1021/acschemneuro.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
As the population ages, an epidemic of neurodegenerative diseases with devastating social consequences is looming. To address the pathologies leading to amyloid-related dementia, novel therapeutic strategies must be developed for the treatment or prevention of neural protein-folding disorders. Nanotechnology will be crucial to this scenario, especially in the design of nanoscale systems carrying therapeutic compounds that can navigate the nervous system and identify amyloid to treat it in situ. In this line, we have recently designed a highly simplified and versatile nanorobot consisting of a protein coating based on the heat shock protein 90 (Hsp90) chaperone that not only propels nanoparticles using ATP but also endows them with the extraordinary ability to fold and restore the activity of heat-denatured proteins. Here, we assess the effectiveness of these nanosystems in inhibiting/reducing the aggregation of amyloidogenic proteins. Using Raman spectroscopy, we qualitatively and quantitatively analyze amyloid by identifying and semi-quantifying the Amide I band. Our findings indicate that the coupling of Hsp90 to nanoparticles results in a more potent inhibition of amyloid formation when compared to the soluble protein. We propose that this enhanced performance may be attributed to enhanced release-capture cycles of amyloid precursor oligomers by Hsp90 molecules nearby on the nanosurface. Intelligent biocompatible coatings, like the one described here, that enhance the diffusivity and self-propulsion of nanoparticles while enabling them to carry out critical functions such as environmental scanning, identification, and amyloid prevention, present an exceptional opportunity for the development of advanced nanodevices in biomedical applications. This approach, which combined active biomolecules with synthetic materials, is poised to reveal remarkable prospects in the field of nanomedicine and biotechnology.
Collapse
Affiliation(s)
- Ana Rodríguez-Ramos
- Grupo de Nanomedicina, Universidad
de Cantabria, Instituto Valdecilla - IDIVAL, Avda. Herrera Oria
s/n, Santander 39011, Spain
| | - Jesús A. González
- Grupo de Nanomedicina, Universidad
de Cantabria, Instituto Valdecilla - IDIVAL, Avda. Herrera Oria
s/n, Santander 39011, Spain
| | - Mónica L. Fanarraga
- Grupo de Nanomedicina, Universidad
de Cantabria, Instituto Valdecilla - IDIVAL, Avda. Herrera Oria
s/n, Santander 39011, Spain
| |
Collapse
|
20
|
Stauch KL, Totusek S, Trease AJ, Estrella LD, Emanuel K, Fangmeier A, Fox HS. Longitudinal in vivo metabolic labeling reveals tissue-specific mitochondrial proteome turnover rates and proteins selectively altered by parkin deficiency. Sci Rep 2023; 13:11414. [PMID: 37452120 PMCID: PMC10349111 DOI: 10.1038/s41598-023-38484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Our study utilizes a longitudinal isotopic metabolic labeling approach in vivo in combination with organelle fraction proteomics to address the role of parkin in mitochondrial protein turnover in mice. The use of metabolic labeling provides a method to quantitatively determine the global changes in protein half-lives whilst simultaneously assessing protein expression. Studying two diverse mitochondrial populations, we demonstrated the median half-life of brain striatal synaptic mitochondrial proteins is significantly greater than that of hepatic mitochondrial proteins (25.7 vs. 3.5 days). Furthermore, loss of parkin resulted in an overall, albeit modest, increase in both mitochondrial protein abundance and half-life. Pathway and functional analysis of our proteomics data identified both known and novel pathways affected by loss of parkin that are consistent with its role in both mitochondrial quality control and neurodegeneration. Our study therefore adds to a growing body of evidence suggesting dependence on parkin is low for basal mitophagy in vivo and provides a foundation for the investigation of novel parkin targets.
Collapse
Affiliation(s)
- K L Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - L D Estrella
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Fangmeier
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - H S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
21
|
Somavarapu AK, Kleijwegt G, Nagaraj M, Alam P, Nielsen J, Otzen DE. Drug repurposing screens identify compounds that inhibit α-synuclein oligomers' membrane disruption and block antibody interactions. Chem Sci 2023; 14:3030-3047. [PMID: 36937574 PMCID: PMC10016340 DOI: 10.1039/d2sc05534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Small soluble oligomers of the protein α-synuclein (αSO) have been linked to disruptions in neuronal homeostasis, contributing to the development of Parkinson's Disease (PD). While this makes αSO an obvious drug target, the development of effective therapeutics against αSO is challenged by its low abundance and structural and morphological complexity. Here, we employ two different approaches to neutralize toxic interactions made by αSOs with different cellular components. First, we use available data to identify four neuronal proteins as likely candidates for αSO interactions, namely Cfl1, Uchl1, Sirt2 and SerRS. However, despite promising results when immobilized, all 4 proteins only bind weakly to αSO in solution in microfluidic assays, making them inappropriate for screening. In contrast, the formation of stable contacts formed between αSO and vesicles consisting of anionic lipids not only mimics a likely biological role of αSO but also provided a platform to screen two small molecule libraries for disruptors of these contacts. Of the 7 best leads obtained in this way, 2 significantly impaired αSO contacts with other proteins in a sandwich ELISA assay using αSO-binding monoclonal antibodies and nanobodies. In addition, 5 of these leads suppressed α-synuclein amyloid formation. Thus, a repurposing screening that directly targets a key culprit in PD pathogenesis shows therapeutic potential.
Collapse
Affiliation(s)
- Arun Kumar Somavarapu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Giulia Kleijwegt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Parvez Alam
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| |
Collapse
|
22
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
23
|
Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol Ther 2023; 245:108396. [PMID: 37001734 DOI: 10.1016/j.pharmthera.2023.108396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90β. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90β have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90β isoforms are discussed.
Collapse
Affiliation(s)
- Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Guo H, Yi J, Wang F, Lei T, Du H. Potential application of heat shock proteins as therapeutic targets in Parkinson's disease. Neurochem Int 2023; 162:105453. [PMID: 36402293 DOI: 10.1016/j.neuint.2022.105453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease, and the heat shock proteins (HSPs) are proved to be of great value for PD. In addition, HSPs can maintain protein homeostasis, degrade and inhibit protein aggregation by properly folding and activating intracellular proteins in PD. This study mainly summarizes the important roles of HSPs in PD and explores their feasibility as targets. We introduced the structural and functional characteristics of HSPs and the physiological functions of HSPs in PD. HSPs can protect neurons from damage by degrading aggregates with three mechanisms, including the aggregation and removing α-Synuclein (α-Syn) aggregates, promotion the autophagy of abnormal proteins, and inhibition the apoptosis of degenerated neurons. This study underscores the importance of HSPs as targets in PD and helps to expand new mechanisms in PD treatment strategies.
Collapse
Affiliation(s)
- Haodong Guo
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingsong Yi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
25
|
Yamamoto N, Inoue R, Makino Y, Sekiguchi H, Shibayama N, Naito A, Sugiyama M, Chatani E. Tracking the Structural Development of Amyloid Precursors in the Insulin B Chain and the Inhibition Effect by Fibrinogen. J Phys Chem B 2022; 126:10797-10812. [PMID: 36534755 DOI: 10.1021/acs.jpcb.2c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid fibrils are abnormal protein aggregates associated with several amyloidoses and neurodegenerative diseases. Prefibrillar intermediates, which emerge before amyloid fibril formation, play an important role in structure formation. Therefore, to prevent fibril formation, the mechanisms underpinning the structural development of prefibrillar intermediates must be elucidated. An insulin-derived peptide, the insulin B chain, is known for its stable accumulation of prefibrillar intermediates. In this study, the structural development of B chain prefibrillar intermediates and their inhibition by fibrinogen (Fg) were monitored by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) combined with solid-state nuclear magnetic resonance spectroscopy (NMR) and size exclusion chromatography. TEM images obtained in a time-lapse manner demonstrated that prefibrillar intermediates were wavy rod-like structures emerging from initial non-rod-like aggregates, and their bundling was responsible for protofilament formation. Time-resolved SAXS revealed that the prefibrillar intermediates became thicker and longer as a function of time. Solid-state NMR measurement suggested a β-sheet formation around Ala14 residue was crucial for the structural conversion from prefibrillar intermediates to amyloid fibril. These observations suggested that prefibrillar intermediates serve as reaction fields for amyloid nucleation and its structural propagation. Time-resolved SAXS also demonstrated that Fg prevented elongation of the prefibrillar intermediates by forming specific complexes together, which implied that regulation of the length of prefibrillar intermediates upon Fg binding was the factor suppressing the prefibrillar intermediate elongation. The fibril formation mechanism and the inhibition strategy found in this study will be helpful in seeking appropriate methods against amyloid-related diseases.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Division of Biophysics, Physiology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi329-0498, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka590-0494, Japan
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hotogaya-ku, Yokohama240-8501, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Koto, Sayo-cho, Sayo-gun, Hyogo679-5148, Japan
| | - Naoya Shibayama
- Division of Biophysics, Physiology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi329-0498, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hotogaya-ku, Yokohama240-8501, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka590-0494, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe657-8501, Japan
| |
Collapse
|
26
|
Li J, Luo H, Zheng H, Duan S, Zhao T, Yuan Y, Liu Y, Zhang X, Wang Y, Yang J, Xu Y. Clinical application of prion-like seeding in α-synucleinopathies: Early and non-invasive diagnosis and therapeutic development. Front Mol Neurosci 2022; 15:975619. [PMID: 36299857 PMCID: PMC9588983 DOI: 10.3389/fnmol.2022.975619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The accumulation and deposition of misfolded α-synuclein (α-Syn) aggregates in the brain is the central event in the pathogenesis of α-synucleinopathies, including Parkinson’s disease, dementia with Lewy bodies, and multiple-system atrophy. Currently, the diagnosis of these diseases mainly relies on the recognition of advanced clinical manifestations. Differential diagnosis among the various α-synucleinopathies subtypes remains challenging. Misfolded α-Syn can template its native counterpart into the same misfolded one within or between cells, behaving as a prion-like seeding. Protein-misfolding cyclic amplification and real-time quaking-induced conversion are ultrasensitive protein amplification assays initially used for the detection of prion diseases. Both assays showed high sensitivity and specificity in detection of α-synucleinopathies even in the pre-clinical stage recently. Herein, we collectively reviewed the prion-like properties of α-Syn and critically assessed the detection techniques of α-Syn-seeding activity. The progress of test tissues, which tend to be less invasive, is presented, particularly nasal swab, which is now widely known owing to the global fight against coronavirus disease 2019. We highlight the clinical application of α-Syn seeding in early and non-invasive diagnosis. Moreover, some promising therapeutic perspectives and clinical trials targeting α-Syn-seeding mechanisms are presented.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Honglin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Suying Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Taiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Jing Yang,
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- Yuming Xu,
| |
Collapse
|
27
|
Henot F, Crublet E, Frech M, Boisbouvier J. NMR assignment of human HSP90 N-terminal domain bound to a long residence time resorcinol ligand. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:257-266. [PMID: 35701717 DOI: 10.1007/s12104-022-10089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
HSP90 is a major molecular chaperone that helps both folding and stabilization of various client proteins often implicated in growth control and cell survival such as kinases and transcription factors. However, among HSP90 clients are also found numerous oncoproteins and, through its assistance to them, HSP90 has consequently been reported as a promising anticancer target. Several ligand chemotypes, including resorcinol type ligands, were found to inhibit HSP90, most of them in an ATP competitive manner. Binding of some of these ligands modify significantly the NMR spectrum of the HSP90 ATP binding domain compared to the apo protein spectrum, hampering assignment transfer from the previously assigned human HSP90 apo state. Here we report the assignment of the 1HN, 15N, 13C', 13Cα, 13Cβ, 1Hmethyl, and 13Cmethyl chemical shifts of the 29 kDa HSP90 N-terminal domain bound to a long residence time resorcinol type inhibitor: 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-N-furan-2-ylmethyl-2,4-dihydroxy-N-methyl-benzamide. 92% of the backbone resonances and 100% of the [1H, 13C]-resonances of Aβ, Mε, Tγ, Lδ2, Vγ2 and Iδ1 methyl groups were successfully assigned, including for the first time the assignment of the segment covering the nucleotide/drug binding site. Secondary structure predictions based on the NMR assignment reveal a structural rearrangement of HSP90 N-terminal domain upon ligand binding. The long residence time ligand induces the formation of a continuous helix covering the ligand binding site of HSP90 N-terminal domain accounting for the large differences observed in the NMR spectra between the apo and bound proteins.
Collapse
Affiliation(s)
- Faustine Henot
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CNRS, CEA, 71, avenue des martyrs, 38044, Grenoble, France.
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Jerome Boisbouvier
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CNRS, CEA, 71, avenue des martyrs, 38044, Grenoble, France.
| |
Collapse
|
28
|
Leisi EV, Barinova KV, Kudryavtseva SS, Moiseenko AV, Muronetz VI, Kurochkina LP. Effect of bacteriophage-encoded chaperonins on amyloid transformation of α-synuclein. Biochem Biophys Res Commun 2022; 622:136-142. [PMID: 35849955 DOI: 10.1016/j.bbrc.2022.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
Controversial information about the role of chaperonins in the amyloid transformation of proteins and, in particular, α-synuclein, requires a more detailed study of the observed effects due to the structure and functional state of various chaperonins. In this work, two types of phage chaperonins, the double-ring EL and the single-ring OBP, were shown to stimulate α-synuclein fibrillation in an ATP-dependent manner. Chaperonin morphology does not affect the stimulation of α-synuclein amyloid transformation. However, the ATP-dependent effect of single- and double-ring chaperonins on this process differs, which can lead to different morphology of resulting fibrils. Fibril formation seems to proceed without substrate encapsulation in the internal cavity of chaperonin, because of the structural features of phage chaperonins and their ability to function without co-chaperonins. In the absence of ATP, both chaperonins, on the contrary, completely prevent α-synuclein amyloid transformation, which provides the possibility of their use as anti-amyloid agents, in the form of incomplete molecules or mutants with suppressed ATPase activity.
Collapse
Affiliation(s)
- Evgeniia V Leisi
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, 119991, Moscow, Russia
| | - Kseniya V Barinova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia
| | - Sofia S Kudryavtseva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, 119991, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| | - Andrey V Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, 119991, Moscow, Russia
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia; Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008, Kazan, Russia
| | - Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia.
| |
Collapse
|
29
|
Azari A, Goodarzi A, Jafarkhani B, Eghbali M, Karimi Z, Hosseini Balef SS, Irannejad H. Novel molecular targets and mechanisms for neuroprotective modulation in neurodegenerative disorders. Cent Nerv Syst Agents Med Chem 2022; 22:88-107. [PMID: 35713146 DOI: 10.2174/1871524922666220616092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuronal death underlies the symptoms of several human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis that their precise pathophysiology have not yet been elucidated. According to various studies the prohibition is the best therapy with neuroprotective approaches which are advanced and safe methods. METHODS This review summarizes some of the already-known and newly emerged neuroprotective targets and strategies that their experimental effects have been reported. Accordingly, literature was studied from 2000 to 2021 and appropriate articles were searched in Google Scholar and Scopus with the keywords given in the Keywords section of the current review. RESULTS Lewy bodies are the histopathologic characteristics of neurodegenerative disorders and are protein-rich intracellular deposits in which Alpha-Synuclein is its major protein. Alpha-Synuclein's toxic potential provides a compelling rationale for therapeutic strategies aimed at decreasing its burden in neuronal cells through numerous pathways including ubiquitin-proteasome system and autophagy-lysosome Pathway, proteolytic breakdown via cathepsin D, kallikrein-6 (neurosin), calpain-1 or MMP9, heat shock proteins, and proteolysis targeting chimera which consists of a target protein ligand and an E3 ubiquitin ligase (E3) followed by target protein ubiquitination (PROTACs). Other targets that have been noticed recently are the mutant huntingtin, tau proteins and glycogen synthase kinase 3β that their accumulation proceeds extensive neuronal damage and up to the minute approach such as Proteolysis Targeting Chimera promotes its degradation in cells. As various studies demonstrated that Mendelian gene mutations can result into the neurodegenerative diseases, additional target that has gained much interest is epigenetics such as mutation, phosphodiesterase, RNA binding proteins and Nuclear respiratory factor 1. CONCLUSION The novel molecular targets and new strategies compiled and introduced here can be used by scientists to design and discover more efficient small molecule drugs against the neurodegenerative diseases. And also the genes in which their mutations can lead to the α-synuclein aggregation or accumulation are discussed and considered a valuable information of epigenetics in dementia.
Collapse
Affiliation(s)
- Aala Azari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Goodarzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behrouz Jafarkhani
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Eghbali
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Karimi
- Department of Obstetrics & Gynecology, Imam Khomeini hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Sajad Hosseini Balef
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
30
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
31
|
Parkinson's Disease-Specific Autoantibodies against the Neuroprotective Co-Chaperone STIP1. Cells 2022; 11:cells11101649. [PMID: 35626686 PMCID: PMC9139896 DOI: 10.3390/cells11101649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Parkinson’s disease (PD) is a debilitating movement disorder characterised by the loss of dopaminergic neurons in the substantia nigra. As neuroprotective agents mitigating the rate of neurodegeneration are unavailable, the current therapies largely focus only on symptomatic relief. Here, we identified stress-inducible phosphoprotein 1 (STIP1) as a putative neuroprotective factor targeted by PD-specific autoantibodies. STIP1 is a co-chaperone with reported neuroprotective capacities in mouse Alzheimer’s disease and stroke models. With human dopaminergic neurons derived from induced pluripotent stem cells, STIP1 was found to alleviate staurosporine-induced neurotoxicity. A case-control study involving 50 PD patients (average age = 62.94 ± 8.48, Hoehn and Yahr >2 = 55%) and 50 age-matched healthy controls (HCs) (average age = 63.1 ± 8) further revealed high levels of STIP1 autoantibodies in 20% of PD patients compared to 10% of HCs. Using an overlapping peptide library covering the STIP1 protein, we identified four PD-specific B cell epitopes that were not recognised in HCs. All of these epitopes were located within regions crucial for STIP1’s chaperone function or prion protein association. Our clinical and neuro-immunological studies highlight the potential of the STIP1 co-chaperone as an endogenous neuroprotective agent in PD and suggest the possible involvement of autoimmune mechanisms via the production of autoantibodies in a subset of individuals.
Collapse
|
32
|
Rutledge BS, Choy WY, Duennwald ML. Folding or holding?-Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J Biol Chem 2022; 298:101905. [PMID: 35398094 PMCID: PMC9079180 DOI: 10.1016/j.jbc.2022.101905] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
The toxic accumulation of misfolded proteins as inclusions, fibrils, or aggregates is a hallmark of many neurodegenerative diseases. However, how molecular chaperones, such as heat shock protein 70 kDa (Hsp70) and heat shock protein 90 kDa (Hsp90), defend cells against the accumulation of misfolded proteins remains unclear. The ATP-dependent foldase function of both Hsp70 and Hsp90 actively transitions misfolded proteins back to their native conformation. By contrast, the ATP-independent holdase function of Hsp70 and Hsp90 prevents the accumulation of misfolded proteins. Foldase and holdase functions can protect against the toxicity associated with protein misfolding, yet we are only beginning to understand the mechanisms through which they modulate neurodegeneration. This review compares recent structural findings regarding the binding of Hsp90 to misfolded and intrinsically disordered proteins, such as tau, α-synuclein, and Tar DNA-binding protein 43. We propose that Hsp90 and Hsp70 interact with these proteins through an extended and dynamic interface that spans the surface of multiple domains of the chaperone proteins. This contrasts with many other Hsp90–client protein interactions for which only a single bound conformation of Hsp90 is proposed. The dynamic nature of these multidomain interactions allows for polymorphic binding of multiple conformations to vast regions of Hsp90. The holdase functions of Hsp70 and Hsp90 may thus allow neuronal cells to modulate misfolded proteins more efficiently by reducing the long-term ATP running costs of the chaperone budget. However, it remains unclear whether holdase functions protect cells by preventing aggregate formation or can increase neurotoxicity by inadvertently stabilizing deleterious oligomers.
Collapse
Affiliation(s)
| | - Wing-Yiu Choy
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada.
| |
Collapse
|
33
|
Chambraud B, Byrne C, Meduri G, Baulieu EE, Giustiniani J. FKBP52 in Neuronal Signaling and Neurodegenerative Diseases: A Microtubule Story. Int J Mol Sci 2022; 23:ijms23031738. [PMID: 35163662 PMCID: PMC8836061 DOI: 10.3390/ijms23031738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The FK506-binding protein 52 (FKBP52) belongs to a large family of ubiquitously expressed and highly conserved proteins (FKBPs) that share an FKBP domain and possess Peptidyl-Prolyl Isomerase (PPIase) activity. PPIase activity catalyzes the isomerization of Peptidyl-Prolyl bonds and therefore influences target protein folding and function. FKBP52 is particularly abundant in the nervous system and is partially associated with the microtubule network in different cell types suggesting its implication in microtubule function. Various studies have focused on FKBP52, highlighting its importance in several neuronal microtubule-dependent signaling pathways and its possible implication in neurodegenerative diseases such as tauopathies (i.e., Alzheimer disease) and alpha-synucleinopathies (i.e., Parkinson disease). This review summarizes our current understanding of FKBP52 actions in the microtubule environment, its implication in neuronal signaling and function, its interactions with other members of the FKBPs family and its involvement in neurodegenerative disease.
Collapse
Affiliation(s)
- Béatrice Chambraud
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
| | - Cillian Byrne
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Laboratoire des Biomolécules, LBM7203, CNRS, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France
| | - Geri Meduri
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
| | - Etienne Emile Baulieu
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| | - Julien Giustiniani
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| |
Collapse
|
34
|
Stress-inducible phosphoprotein 1 (HOP/STI1/STIP1) regulates the accumulation and toxicity of α-synuclein in vivo. Acta Neuropathol 2022; 144:881-910. [PMID: 36121476 PMCID: PMC9547791 DOI: 10.1007/s00401-022-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
The predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding. STI1 and Hsp90 also co-localized extensively with filamentous S129 phosphorylated α-synuclein in ubiquitin-positive inclusions. In PD human brains, STI1 transcripts were increased, and in neurologically healthy brains, STI1 and α-synuclein transcripts correlated. Nuclear Magnetic Resonance (NMR) analyses revealed direct interaction of α-synuclein with STI1 and indicated that the STI1 TPR2A, but not TPR1 or TPR2B domains, interacted with the C-terminal domain of α-synuclein. In vitro, the STI1 TPR2A domain facilitated S129 phosphorylation by Polo-like kinase 3. Moreover, mice over-expressing STI1 and Hsp90ß presented elevated α-synuclein S129 phosphorylation accompanied by inclusions when injected with α-synuclein pre-formed fibrils. In contrast, reduced STI1 function decreased protein inclusion formation, S129 α-synuclein phosphorylation, while mitigating motor and cognitive deficits as well as mesoscopic brain atrophy in α-synuclein-over-expressing mice. Our findings reveal a vicious cycle in which STI1 facilitates the generation and accumulation of toxic α-synuclein conformers, while α-synuclein-induced proteostatic stress increased insoluble STI1 and Hsp90.
Collapse
|
35
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
36
|
Lubkowska A, Pluta W, Strońska A, Lalko A. Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection. Int J Mol Sci 2021; 22:ijms22179366. [PMID: 34502274 PMCID: PMC8430838 DOI: 10.3390/ijms22179366] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large group of chaperones found in most eukaryotes and bacteria. They are responsible for the correct protein folding, protection of the cell against stressors, presenting immune and inflammatory cytokines; furthermore, they are important factors in regulating cell differentiation, survival and death. Although the biological function of HSPs is to maintain cell homeostasis, some of them can be used by viruses both to fold their proteins and increase the chances of survival in unfavorable host conditions. Folding viral proteins as well as replicating many different viruses are carried out by, among others, proteins from the HSP70 and HSP90 families. In some cases, the HSP70 family proteins directly interact with viral polymerase to enhance viral replication or they can facilitate the formation of a viral replication complex and/or maintain the stability of complex proteins. It is known that HSP90 is important for the expression of viral genes at both the transcriptional and the translational levels. Both of these HSPs can form a complex with HSP90 and, consequently, facilitate the entry of the virus into the cell. Current studies have shown the biological significance of HSPs in the course of infection SARS-CoV-2. A comprehensive understanding of chaperone use during viral infection will provide new insight into viral replication mechanisms and therapeutic potential. The aim of this study is to describe the molecular basis of HSP70 and HSP90 participation in some viral infections and the potential use of these proteins in antiviral therapy.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
- Correspondence:
| | - Waldemar Pluta
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
| | - Aleksandra Strońska
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Alicja Lalko
- Student Research at the Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland;
| |
Collapse
|
37
|
Dernovšek J, Zajec Ž, Durcik M, Mašič LP, Gobec M, Zidar N, Tomašič T. Structure-Activity Relationships of Benzothiazole-Based Hsp90 C-Terminal-Domain Inhibitors. Pharmaceutics 2021; 13:pharmaceutics13081283. [PMID: 34452244 PMCID: PMC8400049 DOI: 10.3390/pharmaceutics13081283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a chaperone responsible for the maturation of many cancer-related proteins, and is therefore an important target for the design of new anticancer agents. Several Hsp90 N-terminal domain inhibitors have been evaluated in clinical trials, but none have been approved as cancer therapies. This is partly due to induction of the heat shock response, which can be avoided using Hsp90 C-terminal-domain (CTD) inhibition. Several structural features have been shown to be useful in the design of Hsp90 CTD inhibitors, including an aromatic ring, a cationic center and the benzothiazole moiety. This study established a previously unknown link between these structural motifs. Using ligand-based design methodologies and structure-based pharmacophore models, a library of 29 benzothiazole-based Hsp90 CTD inhibitors was prepared, and their antiproliferative activities were evaluated in MCF-7 breast cancer cells. Several showed low-micromolar IC50, with the most potent being compounds 5g and 9i (IC50, 2.8 ± 0.1, 3.9 ± 0.1 μM, respectively). Based on these results, a ligand-based structure-activity relationship model was built, and molecular dynamics simulation was performed to elaborate the binding mode of compound 9i. Moreover, compound 9i showed degradation of Hsp90 client proteins and no induction of the heat shock response.
Collapse
|
38
|
Wickner S, Nguyen TLL, Genest O. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Annu Rev Microbiol 2021; 75:719-739. [PMID: 34375543 DOI: 10.1146/annurev-micro-032421-035644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Thu-Lan Lily Nguyen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Olivier Genest
- Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France;
| |
Collapse
|
39
|
The structure of an Hsp90-immunophilin complex reveals cochaperone recognition of the client maturation state. Mol Cell 2021; 81:3496-3508.e5. [PMID: 34380015 DOI: 10.1016/j.molcel.2021.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/18/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
The Hsp90 chaperone promotes folding and activation of hundreds of client proteins in the cell through an ATP-dependent conformational cycle guided by distinct cochaperone regulators. The FKBP51 immunophilin binds Hsp90 with its tetratricopeptide repeat (TPR) domain and catalyzes peptidyl-prolyl isomerase (PPIase) activity during folding of kinases, nuclear receptors, and tau. Here we determined the cryoelectron microscopy (cryo-EM) structure of the human Hsp90:FKBP51:p23 complex to 3.3 Å, which, together with mutagenesis and crosslinking analyses, reveals the basis for cochaperone binding to Hsp90 during client maturation. A helix extension in the TPR functions as a key recognition element, interacting across the Hsp90 C-terminal dimer interface presented in the closed, ATP conformation. The PPIase domain is positioned along the middle domain, adjacent to Hsp90 client binding sites, whereas a single p23 makes stabilizing interactions with the N-terminal dimer. With this architecture, FKBP51 is positioned to act on specific client residues presented during Hsp90-catalyzed remodeling.
Collapse
|
40
|
Jin Y, Kotler JLM, Wang S, Huang B, Halpin JC, Street TO. The ER Chaperones BiP and Grp94 Regulate the Formation of Insulin-Like Growth Factor 2 (IGF2) Oligomers. J Mol Biol 2021; 433:166963. [PMID: 33811917 DOI: 10.1016/j.jmb.2021.166963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 01/05/2023]
Abstract
While cytosolic Hsp90 chaperones have been extensively studied, less is known about how the ER Hsp90 paralog Grp94 recognizes clients and influences client folding. Here, we examine how Grp94 and the ER Hsp70 paralog, BiP, influence the folding of insulin-like growth factor 2 (IGF2), an established client protein of Grp94. ProIGF2 is composed of a disulfide-bonded insulin-like hormone and a C-terminal E-peptide that has sequence characteristics of an intrinsically disordered region. BiP and Grp94 have a minimal influence on folding whereby both chaperones slow proIGF2 folding and do not substantially alter the disulfide-bonded folding intermediates, suggesting that BiP and Grp94 may have an additional influence unrelated to proIGF2 folding. Indeed, we made the unexpected discovery that the E-peptide region allows proIGF2 to form dynamic oligomers. ProIGF2 oligomers can transition from a dynamic state that is capable of exchanging monomers to an irreversibly aggregated state, providing a plausible role for BiP and Grp94 in regulating proIGF2 oligomerization. In contrast to the modest influence on folding, BiP and Grp94 have a stronger influence on proIGF2 oligomerization and these chaperones exert counteracting effects. BiP suppresses proIGF2 oligomerization while Grp94 can enhance proIGF2 oligomerization in a nucleotide-dependent manner. We propose that BiP and Grp94 regulate the assembly and dynamic behavior of proIGF2 oligomers, although the biological role of proIGF2 oligomerization is not yet known.
Collapse
Affiliation(s)
- Yi Jin
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Shiyu Wang
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Bin Huang
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jackson C Halpin
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
41
|
Kumar S, Abbas MM, Govindappa ST, Muthane UB, Behari M, Pandey S, Juyal RC, Thelma BK. Compound heterozygous variants in Wiskott-Aldrich syndrome like (WASL) gene segregating in a family with early onset Parkinson's disease. Parkinsonism Relat Disord 2021; 84:61-67. [PMID: 33571872 DOI: 10.1016/j.parkreldis.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Knowledge of genetic determinants in Parkinson's disease is still limited. Familial forms of the disease continue to provide a rich resource to capture the genetic spectrum in disease pathogenesis, and this approach is exploited in this study. METHODS Informative members from a three-generation family of Indian ethnicity manifesting a likely autosomal recessive mode of inheritance of Parkinson's disease were used for whole exome sequencing. Variant data analysis and in vitro functional characterisation of variant(s) segregating with the phenotype were carried out in HEK-293 and SH-SY5Y cells using gene constructs of interest. RESULTS Two compound heterozygous variants, a rare missense (c.1139C > T:p.P380L) and a novel splice variant (c.1456 + 2 delTAGA, intron10) in Wiskott-Aldrich syndrome like gene (WASL, 7q31), both predicted to be deleterious were shared among the proband and two affected siblings. WASL, a gene not previously linked to a human Mendelian disorder is known to regulate actin polymerisation via Arp2/3 complex. Based on exon trapping assay using pSPL3 vector in HEK-293 cells, the splice variant showed skipping of exon10. Characterisation of the missense variant in SH-SY5Y cells demonstrated: i) significant alterations in neurite length and number; ii) decreased reactive oxygen species tolerance in mutation carrying cells on Tetrabutylphosphonium hydroxide induction and iii) increase in alpha-synuclein protein. Screening for WASL variants in two independent PD cohorts identified four individuals with heterozygous but none with biallelic variants. CONCLUSION WASL, with demonstrated functional relevance in neurons may be yet another strong candidate gene for autosomal recessive PD encouraging assessment of its contribution across populations.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | - Masoom M Abbas
- Parkinson's and Aging Research Foundation, Bangalore, India
| | | | - Uday B Muthane
- Parkinson's and Aging Research Foundation, Bangalore, India
| | - Madhuri Behari
- All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Pandey
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, India
| | | | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
42
|
Gu SS, Li J, Jiang M, Zhou Y, Yang B, Xie K, Jiang YF, Jiang XR, He F, Wang J. Serum proteomic analysis of novel predictive serum proteins for neurological prognosis following cardiac arrest. J Cell Mol Med 2020; 25:1290-1298. [PMID: 33336526 PMCID: PMC7812277 DOI: 10.1111/jcmm.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022] Open
Abstract
Early prognostication of neurological outcome in comatose patients after cardiac arrest (CA) is vital for clinicians when assessing the survival time of sufferers and formulating appropriate treatment strategies to avoid the withdrawal of life‐sustaining treatment (WLST) from patients. However, there is still a lack of sensitive and specific serum biomarkers for early and accurate identification of these patients. Using an isobaric tag for relative and absolute quantitation (iTRAQ)‐based proteomic approach, we discovered 55 differentially expressed proteins, with 39 up‐regulated secreted serum proteins and 16 down‐regulated secreted serum proteins between three comatose CA survivors with good versus poor neurological recovery. Then, four proteins were selected and were validated via an enzyme‐linked immunosorbent assay (ELISA) approach in a larger‐scale sample containing 32 good neurological outcome patients and 46 poor neurological outcome patients, and it was confirmed that serum angiotensinogen (AGT) and alpha‐1‐antitrypsin (SERPINA1) were associated with neurological function and prognosis in CA survivors. A prognostic risk score was developed and calculated using a linear and logistic regression model based on a combination of AGT, SERPINA1 and neuron‐specific enolase (NSE) with an area under the curve of 0.865 (P < .001), and the prognostic risk score was positively correlated with the CPC value (R = 0.708, P < .001). We propose that the results of the risk score assessment not only reveal changes in biomarkers during neurological recovery but also assist in enhancing current therapeutic strategies for comatose CA survivors.
Collapse
Affiliation(s)
- Shuang-Shuang Gu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jin Li
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Min Jiang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yi Zhou
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Bing Yang
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, Jiangsu, China
| | - Kehui Xie
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, Jiangsu, China
| | - Yun-Fei Jiang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xin-Rui Jiang
- Department of Emergency, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei He
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Wang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Torpey JH, Meade RM, Mistry R, Mason JM, Madine J. Insights Into Peptide Inhibition of Alpha-Synuclein Aggregation. Front Neurosci 2020; 14:561462. [PMID: 33177976 PMCID: PMC7594713 DOI: 10.3389/fnins.2020.561462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein (aSyn) aggregation is an attractive target for therapeutic development for a range of neurodegenerative conditions, collectively termed synucleinopathies. Here, we probe the mechanism of action of a peptide 4554W, (KDGIVNGVKA), previously identified through intracellular library screening, to prevent aSyn aggregation and associated toxicity. We utilize NMR to probe association and identify that 4554W associates with a "partially aggregated" form of aSyn, with enhanced association occurring over time. We also report the ability of 4554W to undergo modification through deamidation of the central asparagine residue, occurring on the same timescale as aSyn aggregation in vitro, with peptide modification enhancing its association with aSyn. Additionally, we report that 4554W can act to reduce fibril formation of five Parkinson's disease associated aSyn mutants. Inhibitory peptide binding to partially aggregated forms of aSyn, as identified here, is particularly attractive from a therapeutic perspective, as it would eliminate the need to administer the therapy at pre-aggregation stages, which are difficult to diagnose. Taken together the data suggest that 4554W could be a suitable candidate for future therapeutic development against wild-type, and most mutant aSyn aggregation.
Collapse
Affiliation(s)
- James H Torpey
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard M Meade
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Ravina Mistry
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
44
|
HSP90 Co-Chaperone, CacyBP/SIP, Protects α-Synuclein from Aggregation. Cells 2020; 9:cells9102254. [PMID: 33049998 PMCID: PMC7600563 DOI: 10.3390/cells9102254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, it has been found that the CacyBP/SIP protein acts as HSP90 co-chaperone and exhibits chaperone properties itself. Namely, CacyBP/SIP has been shown to protect citrate synthase from aggregation and to recover the activity of thermally denatured luciferase in vitro. In the present work, we have analyzed the influence of CacyBP/SIP on aggregation of α-synuclein, a protein present in Lewy bodies of Parkinson’s disease brain. By applying a thioflavin T (ThT) fluorescence assay, we have found that CacyBP/SIP protects α-synuclein from aggregation and that the fragment overlapping the N-terminal part and the CS domain of CacyBP/SIP is crucial for this activity. This protective effect of CacyBP/SIP has been confirmed by results obtained using high-speed ultracentrifugation followed by dot-blot and by transmission electron microscopy (TEM). Interestingly, CacyBP/SIP exhibits the protective effect only at the initial phase of α-synuclein aggregation. In addition, we have found that, in HEK293 cells overexpressing CacyBP/SIP, there are less α-synuclein inclusions than in control ones. Moreover, these cells are more viable when treated with rotenone, an agent that mimics PD pathology. By applying proximity ligation assay (PLA) on HEK293 cells and in vitro assays with the use of purified recombinant proteins, we have found that CacyBP/SIP directly interacts with α-synuclein. Altogether, in this work, we show for the first time that CacyBP/SIP is able to protect α-synuclein from aggregation in in vitro assays. Thus, our results point to an important role of CacyBP/SIP in the pathology of Parkinson’s disease and other synucleinopathies.
Collapse
|
45
|
Tittelmeier J, Nachman E, Nussbaum-Krammer C. Molecular Chaperones: A Double-Edged Sword in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:581374. [PMID: 33132902 PMCID: PMC7572858 DOI: 10.3389/fnagi.2020.581374] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Aberrant accumulation of misfolded proteins into amyloid deposits is a hallmark in many age-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Pathological inclusions and the associated toxicity appear to spread through the nervous system in a characteristic pattern during the disease. This has been attributed to a prion-like behavior of amyloid-type aggregates, which involves self-replication of the pathological conformation, intercellular transfer, and the subsequent seeding of native forms of the same protein in the neighboring cell. Molecular chaperones play a major role in maintaining cellular proteostasis by assisting the (re)-folding of cellular proteins to ensure their function or by promoting the degradation of terminally misfolded proteins to prevent damage. With increasing age, however, the capacity of this proteostasis network tends to decrease, which enables the manifestation of neurodegenerative diseases. Recently, there has been a plethora of studies investigating how and when chaperones interact with disease-related proteins, which have advanced our understanding of the role of chaperones in protein misfolding diseases. This review article focuses on the steps of prion-like propagation from initial misfolding and self-templated replication to intercellular spreading and discusses the influence that chaperones have on these various steps, highlighting both the positive and adverse consequences chaperone action can have. Understanding how chaperones alleviate and aggravate disease progression is vital for the development of therapeutic strategies to combat these debilitating diseases.
Collapse
Affiliation(s)
- Jessica Tittelmeier
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eliana Nachman
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
46
|
Newberry RW, Arhar T, Costello J, Hartoularos GC, Maxwell AM, Naing ZZC, Pittman M, Reddy NR, Schwarz DMC, Wassarman DR, Wu TS, Barrero D, Caggiano C, Catching A, Cavazos TB, Estes LS, Faust B, Fink EA, Goldman MA, Gomez YK, Gordon MG, Gunsalus LM, Hoppe N, Jaime-Garza M, Johnson MC, Jones MG, Kung AF, Lopez KE, Lumpe J, Martyn C, McCarthy EE, Miller-Vedam LE, Navarro EJ, Palar A, Pellegrino J, Saylor W, Stephens CA, Strickland J, Torosyan H, Wankowicz SA, Wong DR, Wong G, Redding S, Chow ED, DeGrado WF, Kampmann M. Robust Sequence Determinants of α-Synuclein Toxicity in Yeast Implicate Membrane Binding. ACS Chem Biol 2020; 15:2137-2153. [PMID: 32786289 DOI: 10.1021/acschembio.0c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.
Collapse
Affiliation(s)
- Robert W. Newberry
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Taylor Arhar
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Jean Costello
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - George C. Hartoularos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Alison M. Maxwell
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Zun Zar Chi Naing
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maureen Pittman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nishith R. Reddy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel M. C. Schwarz
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Douglas R. Wassarman
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Taia S. Wu
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Daniel Barrero
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christa Caggiano
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Adam Catching
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Taylor B. Cavazos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laurel S. Estes
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Bryan Faust
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elissa A. Fink
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Miriam A. Goldman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Yessica K. Gomez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - M. Grace Gordon
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laura M. Gunsalus
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nick Hoppe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maru Jaime-Garza
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew C. Johnson
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew G. Jones
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Andrew F. Kung
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Kyle E. Lopez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jared Lumpe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Calla Martyn
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elizabeth E. McCarthy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Lakshmi E. Miller-Vedam
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Erik J. Navarro
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Aji Palar
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jenna Pellegrino
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Wren Saylor
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christina A. Stephens
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jack Strickland
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Hayarpi Torosyan
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Stephanie A. Wankowicz
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel R. Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Garrett Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - Eric D. Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94143, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
47
|
Savyon M, Engelender S. SUMOylation in α-Synuclein Homeostasis and Pathology. Front Aging Neurosci 2020; 12:167. [PMID: 32670048 PMCID: PMC7330056 DOI: 10.3389/fnagi.2020.00167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The accumulation and aggregation of α-synuclein are central to Parkinson’s disease (PD), yet the molecular mechanisms responsible for these events are not fully understood. Post-translational modifications of α-synuclein regulate several of its properties, including degradation, interaction with proteins and membranes, aggregation and toxicity. SUMOylation is a post-translational modification involved in various nuclear and extranuclear processes, such as subcellular protein targeting, mitochondrial fission and synaptic plasticity. Protein SUMOylation increases in response to several stressful situations, from viral infections to trauma. In this framework, an increasing amount of evidence has implicated SUMOylation in several neurodegenerative diseases, including PD. This review will discuss recent findings in the role of SUMOylation as a regulator of α-synuclein accumulation, aggregation and toxicity, and its possible implication in neurodegeneration that underlies PD.
Collapse
Affiliation(s)
- Mor Savyon
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion - Israel Institute of Technology, Haifa, Israel
| | - Simone Engelender
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
48
|
Bohush A, Niewiadomska G, Weis S, Filipek A. HSP90 and Its Novel Co-Chaperones, SGT1 and CHP-1, in Brain of Patients with Parkinson's Disease and Dementia with Lewy Bodies. JOURNAL OF PARKINSONS DISEASE 2020; 9:97-107. [PMID: 30741686 PMCID: PMC6398563 DOI: 10.3233/jpd-181443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the presence of inclusions known as Lewy bodies in some brain regions. Lewy bodies consist of α-synuclein and many other proteins including chaperones. Objective: To learn more about the role of chaperone complexes in PD and a related disorder, i.e., dementia with Lewy bodies (DLB), in this work we analyzed the expression of HSP90 and its two quite recently identified co-chaperones, SGT1 and CHP-1, in selected brain regions from patients suffering from these diseases. Methods: To fulfill the aim of our study we used human material and applied immunohistochemistry, Western blot analysis and real time/quantitative PCR (RT-qPCR). Results: We have found that HSP90 mRNA level is higher in the temporal cortex of PD and in frontal cortex of DLB brains, even though level of protein does not change significantly. The mRNA level of SGT1 is higher in the frontal and temporal cortex of PD and in substantia nigra of DLB brains while no significant changes in the level of protein were noticed. Similarly, the mRNA level of CHP-1 was found to be higher in the frontal and temporal cortex of PD and in all examined regions i.e. substantia nigra, frontal and temporal cortex of DLB brains. In the case of CHP-1 the protein level was found to be higher in frontal cortex of PD and in all examined areas of DLB patients. Conclusions: Our data indicate that the level of HSP90, SGT1 and CHP-1 is upregulated in the majority of cases of PD and DLB, which suggests that the examined proteins might be involved in these pathologies.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grażyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Serge Weis
- Division of Neuropathology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
49
|
Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:53-68. [PMID: 32297211 DOI: 10.1007/978-3-030-40204-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein homeostasis (Proteostasis) is essential for correct and efficient protein function within the living cell. Among the critical components of the Proteostasis Network (PN) are molecular chaperones that serve widely in protein biogenesis under physiological conditions, and prevent protein misfolding and aggregation enhanced by conditions of cellular stress. For Alzheimer's, Parkinson's, Huntington's diseases and ALS, multiple classes of molecular chaperones interact with the highly aggregation-prone proteins amyloid-β, tau, α-synuclein, huntingtin and SOD1 to influence the course of proteotoxicity associated with these neurodegenerative diseases. Accordingly, overexpression of molecular chaperones and induction of the heat shock response have been shown to be protective in a wide range of animal models of these diseases. In contrast, for cancer cells the upregulation of chaperones has the undesirable effect of promoting cellular survival and tumor growth by stabilizing mutant oncoproteins. In both situations, physiological levels of molecular chaperones eventually become functionally compromised by the persistence of misfolded substrates, leading to a decline in global protein homeostasis and the dysregulation of diverse cellular pathways. The phenomenon of chaperone competition may underlie the broad pathology observed in aging and neurodegenerative diseases, and restoration of physiological protein homeostasis may be a suitable therapeutic avenue for neurodegeneration as well as for cancer.
Collapse
|
50
|
van Diggelen F, Frank SA, Somavarapu AK, Scavenius C, Apetri MM, Nielsen J, Tepper AWJW, Enghild JJ, Otzen DE. The interactome of stabilized α-synuclein oligomers and neuronal proteins. FEBS J 2019; 287:2037-2054. [PMID: 31686426 DOI: 10.1111/febs.15124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
While it is generally accepted that α-synuclein oligomers (αSOs) play an important role in neurodegeneration in Parkinson's disease, the basis for their cytotoxicity remains unclear. We have previously shown that docosahexaenoic acid (DHA) stabilizes αSOs against dissociation without compromising their ability to colocalize with glutamatergic synapses of primary hippocampal neurons, suggesting that they bind to synaptic proteins. Here, we develop a proteomic screen for putative αSO binding partners in rat primary neurons using DHA-stabilized human αSOs as a bait protein. The protocol involved co-immunoprecipitation in combination with a photoactivatable heterobifunctional sulfo-LC-SDA crosslinker which did not compromise neuronal binding and preserved the interaction between the αSOs-binding partners. We identify in total 29 proteins associated with DHA-αSO of which eleven are membrane proteins, including synaptobrevin-2B (VAMP-2B), the sodium-potassium pump (Na+ /K+ ATPase), the V-type ATPase, the voltage-dependent anion channel and calcium-/calmodulin-dependent protein kinase type II subunit gamma; only these five hits were also found in previous studies which used unmodified αSOs as bait. We also identified Rab-3A as a target with likely disease relevance. Three out of four selected hits were subsequently validated with dot-blot binding assays. In addition, likely binding sites on these ligands were identified by computational analysis, highlighting a diversity of possible interactions between αSOs and target proteins. These results constitute an important step in the search for disease-modifying treatments targeting toxic αSOs.
Collapse
Affiliation(s)
- Femke van Diggelen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark.,Crossbeta Biosciences AB, Utrecht, the Netherlands
| | - Signe Andrea Frank
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | | | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| |
Collapse
|