1
|
Geerds C, Bleymüller WM, Meyer T, Widmann C, Niemann HH. A recurring packing contact in crystals of InlB pinpoints functional binding sites in the internalin domain and the B repeat. Acta Crystallogr D Struct Biol 2022; 78:310-320. [PMID: 35234145 PMCID: PMC8900821 DOI: 10.1107/s2059798322000432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
InlB, a bacterial agonist of the human receptor tyrosine kinase MET, consists of an N-terminal internalin domain, a central B repeat and three C-terminal GW domains. In all previous structures of full-length InlB or an InlB construct lacking the GW domains (InlB392), there was no interpretable electron density for the B repeat. Here, three InlB392 crystal structures in which the B repeat is resolved are described. These are the first structures to reveal the relative orientation of the internalin domain and the B repeat. A wild-type structure and two structures of the T332E variant together contain five crystallographically independent molecules. Surprisingly, the threonine-to-glutamate substitution in the B repeat substantially improved the crystallization propensity and crystal quality of the T332E variant. The internalin domain and B repeat are quite rigid internally, but are flexibly linked to each other. The new structures show that inter-domain flexibility is the most likely cause of the missing electron density for the B repeat in previous InlB structures. A potential binding groove between B-repeat strand β2 and an adjacent loop forms an important crystal contact in all five crystallographically independent chains. This region may represent a hydrophobic `sticky patch' that supports protein-protein interactions. This assumption agrees with the previous finding that all known inactivating point mutations in the B repeat lie within strand β2. The groove formed by strand β2 and the adjacent loop may thus represent a functionally important protein-protein interaction site in the B repeat.
Collapse
Affiliation(s)
- Christina Geerds
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Willem M. Bleymüller
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Timo Meyer
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Christiane Widmann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
3
|
Extension of the taxonomic coverage of the family GH126 outside Firmicutes and in silico characterization of its non-catalytic terminal domains. 3 Biotech 2020; 10:420. [PMID: 32953382 PMCID: PMC7479077 DOI: 10.1007/s13205-020-02415-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
The family GH126 is a family of glycoside hydrolases established in 2011. Officially, in the CAZy database, it counts ~ 1000 sequences originating solely from bacterial phylum Firmicutes. Two members, the proteins CPF_2247 from Clostridium perfringens and PssZ from Listeria monocytogenes have been characterized as a probable α-amylase and an exopolysaccharide-specific glycosidase, respectively; their three-dimensional structures being also solved as possessing catalytic (α/α)6-barrel fold. Previously, based on a detailed in silico analysis, the seven conserved sequence regions (CSRs) were identified for the family along with elucidating basic evolutionary relationships within the family members. The present study represents a continuation study focusing on two particular aims: (1) to find out whether the taxonomic coverage of the family GH126 might be extended outside the Firmicutes and, if positive, to deliver those out-of-Firmicutes proteins with putting them into the context of the family; and (2) to identify the family members containing the N- and/or C-terminal extensions of their polypeptide chain, additional to the catalytic (α/α)6-barrel domain, and perform the bioinformatics characterization of the extra domains. The main results could be summarized as follows: (1) 17 bacterial proteins caught by BLAST searches outside Firmicutes (especially from phyla Proteobacteria, Actinobacteria and Bacteroidetes) have been found and convincingly suggested as new family GH126 members; and (2) a thioredoxin-like fold and various leucine-rich repeat motifs identified by Phyre2 structure homology modelling have been recognized as extra domains occurring most frequently in the N-terminal extensions of family GH126 members possessing a modular organization.
Collapse
|
4
|
A detailed in silico analysis of the amylolytic family GH126 and its possible relatedness to family GH76. Carbohydr Res 2020; 494:108082. [PMID: 32634753 DOI: 10.1016/j.carres.2020.108082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 11/21/2022]
Abstract
The glycoside hydrolase (GH) family 126 was established based on the X-ray structure determination of the amylolytic enzyme CPF_2247 from Clostridium perfringens genome. Its original identification as a putative carbohydrate-active enzyme was based on its low, yet significant sequence identity to members of the family GH8, which are inverting endo-β-1,4-glucanases. As the family GH8 forms the clan GH-M with GH48, the CPF_2247 protein also exhibits similarities with members of the family GH48. The original screening of the CPF_2247 on carbohydrate substrates demonstrated its activity on glycogen and amylose, thus classifying this protein as an "α-amylase". It should be pointed out, however, there are apparent inconsistencies concerning the exact enzyme specificity of the "amylase" CPF_2247, since it exhibits both the endo- and exo-fashion of action. The family GH126 currently counts ~1000 amino acid sequences solely from Bacteria; all belonging to the phylum Firmicutes. The present study delivers the first detailed bioinformatics study of 117 selected amino acid sequences from the family GH126, featuring the insightful sequence-structure comparison with the aim to define seven conserved sequence regions and elucidate the evolutionary relationships within the family. In addition, a comparative structural analysis of the GH126 members with representatives of other GH families adopting the same (α/α)6-barrel catalytic domain fold indicates the possible sharing a catalytic residue between the families GH126 and GH76.
Collapse
|
5
|
Batkhishig D, Enkhbayar P, Kretsinger RH, Matsushima N. A strong correlation between consensus sequences and unique super secondary structures in leucine rich repeats. Proteins 2020; 88:840-852. [DOI: 10.1002/prot.25876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/03/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Dashdavaa Batkhishig
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied SciencesNational University of Mongolia Ulaanbaatar Mongolia
- Department of Physics, School of Mathematics and Natural SciencesMongolian National University of Education Ulaanbaatar Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied SciencesNational University of Mongolia Ulaanbaatar Mongolia
| | | | - Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats Noboribetsu Japan
- Center for Medical Education, Sapporo Medical University Sapporo Japan
| |
Collapse
|
6
|
Njage PMK, Henri C, Leekitcharoenphon P, Mistou M, Hendriksen RS, Hald T. Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next-Generation Sequencing Data. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:1397-1413. [PMID: 30462833 PMCID: PMC7379936 DOI: 10.1111/risa.13239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 05/15/2023]
Abstract
Next-generation sequencing (NGS) data present an untapped potential to improve microbial risk assessment (MRA) through increased specificity and redefinition of the hazard. Most of the MRA models do not account for differences in survivability and virulence among strains. The potential of machine learning algorithms for predicting the risk/health burden at the population level while inputting large and complex NGS data was explored with Listeria monocytogenes as a case study. Listeria data consisted of a percentage similarity matrix from genome assemblies of 38 and 207 strains of clinical and food origin, respectively. Basic Local Alignment (BLAST) was used to align the assemblies against a database of 136 virulence and stress resistance genes. The outcome variable was frequency of illness, which is the percentage of reported cases associated with each strain. These frequency data were discretized into seven ordinal outcome categories and used for supervised machine learning and model selection from five ensemble algorithms. There was no significant difference in accuracy between the models, and support vector machine with linear kernel was chosen for further inference (accuracy of 89% [95% CI: 68%, 97%]). The virulence genes FAM002725, FAM002728, FAM002729, InlF, InlJ, Inlk, IisY, IisD, IisX, IisH, IisB, lmo2026, and FAM003296 were important predictors of higher frequency of illness. InlF was uniquely truncated in the sequence type 121 strains. Most important risk predictor genes occurred at highest prevalence among strains from ready-to-eat, dairy, and composite foods. We foresee that the findings and approaches described offer the potential for rethinking the current approaches in MRA.
Collapse
Affiliation(s)
- Patrick Murigu Kamau Njage
- Division for Epidemiology and Microbial GenomicsNational Food Institute, Technical University of DenmarkKongens LyngbyDenmark
| | - Clementine Henri
- Université PARIS‐EST, Agence Nationale de Sécurité Sanitaire de L'Alimentation, de L'Environnement et du Travail (ANSES)Laboratory for Food SafetyMaisons‐AlfortFrance
| | - Pimlapas Leekitcharoenphon
- Division for Epidemiology and Microbial GenomicsNational Food Institute, Technical University of DenmarkKongens LyngbyDenmark
| | - Michel‐Yves Mistou
- Université PARIS‐EST, Agence Nationale de Sécurité Sanitaire de L'Alimentation, de L'Environnement et du Travail (ANSES)Laboratory for Food SafetyMaisons‐AlfortFrance
| | - Rene S. Hendriksen
- Division for Epidemiology and Microbial GenomicsNational Food Institute, Technical University of DenmarkKongens LyngbyDenmark
| | - Tine Hald
- Division for Epidemiology and Microbial GenomicsNational Food Institute, Technical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
7
|
Genomic Diversity of Listeria monocytogenes Isolated from Clinical and Non-Clinical Samples in Chile. Genes (Basel) 2018; 9:genes9080396. [PMID: 30072604 PMCID: PMC6115834 DOI: 10.3390/genes9080396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes is the causative agent of listeriosis, which is an uncommon but severe infection associated with high mortality rates in humans especially in high-risk groups. This bacterium survives a variety of stress conditions (e.g., high osmolality, low pH), which allows it to colonize different niches especially niches found in food processing environments. Additionally, a considerable heterogeneity in pathogenic potential has been observed in different strains. In this study, 38 isolates of L. monocytogenes collected in Chile from clinical samples (n = 22) and non-clinical samples (n = 16) were analyzed using whole genome sequencing (WGS) to determine their genomic diversity. A core genome Single Nucleotide Polymorphism (SNP) tree using 55 additional L. monocytogenes accessions classified the Chilean isolates in lineages I (n = 25) and II (n = 13). In silico, Multi-locus sequence typing (MLST) differentiated the isolates into 13 sequence types (ST) in which the most common were ST1 (15 isolates) and ST9 (6 isolates) and represented 55% of the isolates. Genomic elements associated with virulence (i.e., LIPI-1, LIPI-3, inlA, inlB, inlC, inlG, inlH, inlD, inlE, inlK, inlF, and inlJ) and stress survival (i.e., stress survival islet 1 and stress survival islet 2) were unevenly distributed among clinical and non-clinical isolates. In addition, one novel inlA premature stop codon (PMSC) was detected. Comparative analysis of L. monocytogenes circulating in Chile revealed the presence of globally distributed sequence types along with differences among the isolates analyzed at a genomic level specifically associated with virulence and stress survival.
Collapse
|
8
|
Chlebicz A, Śliżewska K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E863. [PMID: 29701663 PMCID: PMC5981902 DOI: 10.3390/ijerph15050863] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
Zoonoses are diseases transmitted from animals to humans, posing a great threat to the health and life of people all over the world. According to WHO estimations, 600 million cases of diseases caused by contaminated food were noted in 2010, including almost 350 million caused by pathogenic bacteria. Campylobacter, Salmonella, as well as Yersinia enterocolitica and Listeria monocytogenes may dwell in livestock (poultry, cattle, and swine) but are also found in wild animals, pets, fish, and rodents. Animals, often being asymptomatic carriers of pathogens, excrete them with faeces, thus delivering them to the environment. Therefore, pathogens may invade new individuals, as well as reside on vegetables and fruits. Pathogenic bacteria also penetrate food production areas and may remain there in the form of a biofilm covering the surfaces of machines and equipment. A common occurrence of microbes in food products, as well as their improper or careless processing, leads to common poisonings. Symptoms of foodborne infections may be mild, sometimes flu-like, but they also may be accompanied by severe complications, some even fatal. The aim of the paper is to summarize and provide information on campylobacteriosis, salmonellosis, yersiniosis, and listeriosis and the aetiological factors of those diseases, along with the general characteristics of pathogens, virulence factors, and reservoirs.
Collapse
Affiliation(s)
- Agnieszka Chlebicz
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland.
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland.
| |
Collapse
|
9
|
Kwon DH, Song HK. A Structural View of Xenophagy, a Battle between Host and Microbes. Mol Cells 2018; 41:27-34. [PMID: 29370690 PMCID: PMC5792709 DOI: 10.14348/molcells.2018.2274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
The cytoplasm in mammalian cells is a battlefield between the host and invading microbes. Both the living organisms have evolved unique strategies for their survival. The host utilizes a specialized autophagy system, xenophagy, for the clearance of invading pathogens, whereas bacteria secrete proteins to defend and escape from the host xenophagy. Several molecules have been identified and their structural investigation has enabled the comprehension of these mechanisms at the molecular level. In this review, we focus on one example of host autophagy and the other of bacterial defense: the autophagy receptor, NDP52, in conjunction with the sugar receptor, galectin-8, plays a critical role in targeting the autophagy machinery against Salmonella; and the cysteine protease, RavZ secreted by Legionella pneumophila cleaves the LC3-PE on the phagophore membrane. The structure-function relationships of these two examples and the directions of future research will be discussed.
Collapse
Affiliation(s)
- Do Hoon Kwon
- Department of Life Sciences, Korea University, Seoul 02841,
Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul 02841,
Korea
| |
Collapse
|
10
|
Zhang Y, Zhao L, Chen W, Huang Y, Yang L, Sarathbabu V, Wu Z, Li J, Nie P, Lin L. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes. Microb Pathog 2017; 111:203-211. [DOI: 10.1016/j.micpath.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
|
11
|
Popowska M, Krawczyk-Balska A, Ostrowski R, Desvaux M. InlL from Listeria monocytogenes Is Involved in Biofilm Formation and Adhesion to Mucin. Front Microbiol 2017; 8:660. [PMID: 28473809 PMCID: PMC5397405 DOI: 10.3389/fmicb.2017.00660] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial etiological agent of listeriosis, Listeria monocytogenes, is an opportunistic intracellular foodborne pathogen. The infection cycle of L. monocytogenes is well-characterized and involves several key virulence factors, including internalins A and B. While 35 genes encoding internalins have been identified in L. monocytogenes, less than half of them have been characterized as yet. Focusing on lmo2026, it was shown this gene encodes a class I internalin, InlL, exhibiting domains potentially involved in adhesion. Following a functional genetic approach, InlL was demonstrated to be involved in initial bacterial adhesion as well as sessile development in L. monocytogenes. In addition, InlL enables binding to mucin of type 2, i.e., the main secreted mucin making up the mucus layer, rather than to surface-located mucin of type 1. InlL thus appears as a new molecular determinant contributing to the colonization ability of L. monocytogenes.
Collapse
Affiliation(s)
- Magdalena Popowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Agata Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Rafał Ostrowski
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiSClermont-Ferrand, France
| |
Collapse
|
12
|
Zhang J, Cao G, Xu X, Allard M, Li P, Brown E, Yang X, Pan H, Meng J. Evolution and Diversity of Listeria monocytogenes from Clinical and Food Samples in Shanghai, China. Front Microbiol 2016; 7:1138. [PMID: 27499751 PMCID: PMC4956650 DOI: 10.3389/fmicb.2016.01138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a significant foodborne pathogen causing severe systemic infections in humans with high mortality rates. The objectives of this work were to establish a phylogenetic framework of L. monocytogenes from China and to investigate sequence diversity among different serotypes. We selected 17 L. monocytogenes strains recovered from patients and foods in China representing serotypes 1/2a, 1/2b, and 1/2c. Draft genome sequences were determined using Illumina MiSeq technique and associated protocols. Open reading frames were assigned using prokaryotic genome annotation pipeline by NCBI. Twenty-four published genomes were included for comparative genomic and phylogenetic analysis. More than 154,000 single nucleotide polymorphisms (SNPs) were identified from multiple genome alignment and used to reconstruct maximum likelihood phylogenetic tree. The 41 genomes were differentiated into lineages I and II, which consisted of 4 and 11 subgroups, respectively. A clinical strain from China (SHL009) contained significant SNP differences compared to the rest genomes, whereas clinical strain SHL001 shared most recent common ancestor with strain SHL017 from food. Moreover, clinical strains SHL004 and SHL015 clustered together with two strains (08-5578 and 08-5923) recovered from an outbreak in Canada. Partial sequences of a plasmid found in the Canadian strain were also present in SHL004. We investigated the presence of various genes and gene clusters associated with virulence and subgroup-specific genes, including internalins, L. monocytogenes pathogenicity islands (LIPIs), L. monocytogenes genomic islands (LGIs), stress survival islet 1 (SSI-1), and clustered regularly interspaced short palindromic repeats (CRISPR)/cas system. A novel genomic island, denoted as LGI-2 was identified. Comparative sequence analysis revealed differences among the L. monocytogenes strains related to virulence, survival abilities, and attributes against foreign genetic elements. L. monocytogenes from China were genetically diverse. Strains from clinical specimens and food related closely suggesting foodborne transmission of human listeriosis.
Collapse
Affiliation(s)
- Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Guojie Cao
- Department of Nutrition and Food Science and Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park College Park, MD, USA
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention Shanghai, China
| | - Marc Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration College Park, MD, USA
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Eric Brown
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration College Park, MD, USA
| | - Xiaowei Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Haijian Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Jianghong Meng
- Department of Nutrition and Food Science and Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park College Park, MD, USA
| |
Collapse
|
13
|
Abstract
Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.
Collapse
Affiliation(s)
- Alyssa Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
14
|
Zhang T, Bae D, Wang C. LMOh7858_0369, a gene encoding a putative leucine-rich repeat-containing protein, is required for virulence of Listeria monocytogenes. FEMS Microbiol Lett 2016; 363:fnw060. [PMID: 26976852 DOI: 10.1093/femsle/fnw060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes possesses the highest number of leucine-rich repeat (LRR)-containing proteins among all Gram-positive bacteria; these LRR-containing molecules are known as the 'internalin' family. To understand the functions of largely uncharacterized LRR-containing molecules, we constructed seven deletion mutants in the L. monocytogenes H7858 strain targeting genes in this family and tested their virulence. Among the seven mutants, the ΔLMOh7858_0369 strain and the ΔLMOh7858_2546 strain showed significantly impaired invasiveness of HepG2 cells. We further tested the virulence of these two strains in the intravascular sepsis model using BALB/c mice. Interestingly, the ΔLMOh7858_0369 strain showed significant reduction in organ colonization, bacteremia and invasion of the brain compared with the parental wild-type strain. Host immune responses to listerial intravascular infection were measured at 24 and 72 h post-infection. Transcript levels of several proinflammatory cytokines and chemokines were significantly lower when induced by the ΔlmOh7858_0369 strain than when induced by the wild type. These results suggest that the putative LRR-containing protein encoded by LMOh7858_0369 might be a novel virulence factor of the L. monocytogenes H7858 strain.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Dongryeoul Bae
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| |
Collapse
|
15
|
Miras I, Saul F, Nowakowski M, Weber P, Haouz A, Shepard W, Picardeau M. Structural characterization of a novel subfamily of leucine-rich repeat proteins from the human pathogen Leptospira interrogans. ACTA ACUST UNITED AC 2015; 71:1351-9. [PMID: 26057675 DOI: 10.1107/s139900471500704x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/08/2015] [Indexed: 12/26/2022]
Abstract
Pathogenic Leptospira spp. are the agents of leptospirosis, an emerging zoonotic disease. Analyses of Leptospira genomes have shown that the pathogenic leptospires (but not the saprophytes) possess a large number of genes encoding proteins containing leucine-rich repeat (LRR) domains. In other pathogenic bacteria, proteins with LRR domains have been shown to be involved in mediating host-cell attachment and invasion, but their functions remain unknown in Leptospira. To gain insight into the potential function of leptospiral LRR proteins, the crystal structures of four LRR proteins that represent a novel subfamily with consecutive stretches of a 23-amino-acid LRR repeat motif have been solved. The four proteins analyzed adopt the characteristic α/β-solenoid horseshoe fold. The exposed residues of the inner concave surfaces of the solenoid, which constitute a putative functional binding site, are not conserved. The various leptospiral LRR proteins could therefore recognize distinct structural motifs of different host proteins and thus serve separate and complementary functions in the physiology of these bacteria.
Collapse
Affiliation(s)
- Isabelle Miras
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, Paris, France
| | - Frederick Saul
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, Paris, France
| | - Mireille Nowakowski
- Institut Pasteur, Plate-forme Protéines Recombinantes, CNRS-UMR 3528, Paris, France
| | - Patrick Weber
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, Paris, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, Gif-sur-Yvette, France
| | | |
Collapse
|