1
|
Sallinger M, Humer C, Ong HL, Narayanasamy S, Lin QT, Fahrner M, Grabmayr H, Berlansky S, Choi S, Schmidt T, Maltan L, Atzgerstorfer L, Niederwieser M, Frischauf I, Romanin C, Stathopulos PB, Ambudkar I, Leitner R, Bonhenry D, Schindl R. Essential role of N-terminal SAM regions in STIM1 multimerization and function. Proc Natl Acad Sci U S A 2024; 121:e2318874121. [PMID: 38753510 PMCID: PMC11127010 DOI: 10.1073/pnas.2318874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Christina Humer
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Hwei Ling Ong
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Sasirekha Narayanasamy
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Qi Tong Lin
- Department of Physiology and Pharmacology, Western University, London, ONN6A5C1, Canada
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Sascha Berlansky
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Sean Choi
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Tony Schmidt
- Department of Medical Physics and Biophysics, Medical University of Graz, Graz8010, Austria
| | - Lena Maltan
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Lara Atzgerstorfer
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Martin Niederwieser
- Department of Medical Physics and Biophysics, Medical University of Graz, Graz8010, Austria
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ONN6A5C1, Canada
| | - Indu Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Romana Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Daniel Bonhenry
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-AlzetteL1511, Luxembourg
| | - Rainer Schindl
- Department of Medical Physics and Biophysics, Medical University of Graz, Graz8010, Austria
| |
Collapse
|
2
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
3
|
Hall D. Biophysical Reviews' "Meet the Editors Series": a profile of Damien Hall. Biophys Rev 2023; 15:1883-1896. [PMID: 38192343 PMCID: PMC10771549 DOI: 10.1007/s12551-023-01176-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
This piece introduces Damien Hall, Chief Editor of the Biophysical Reviews journal since 2019. Currently working as an Assistant Professor at Kanazawa University, the author describes his association with the journal along with some parts of his family history and academic journey.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
| |
Collapse
|
4
|
Neamtu A, Serban DN, Barritt GJ, Isac DL, Vasiliu T, Laaksonen A, Serban IL. Molecular dynamics simulations reveal the hidden EF-hand of EF-SAM as a possible key thermal sensor for STIM1 activation by temperature. J Biol Chem 2023; 299:104970. [PMID: 37380078 PMCID: PMC10400917 DOI: 10.1016/j.jbc.2023.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.
Collapse
Affiliation(s)
- Andrei Neamtu
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Dragomir N Serban
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Greg J Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Dragos Lucian Isac
- Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Tudor Vasiliu
- Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden; Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | | |
Collapse
|
5
|
A fortunate period of overlap with Prof. Haruki Nakamura. Biophys Rev 2022; 14:1239-1245. [PMID: 36589736 PMCID: PMC9786412 DOI: 10.1007/s12551-022-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The author recounts a period of overlap with Prof. Haruki Nakamura that stretched from 2007 till the present day. Starting as a short-term research fellow in his laboratory, the author has also been a coauthor, academic colleague, and joint journal editorial board member of Prof. Nakamura.
Collapse
|
6
|
Sallinger M, Tiffner A, Schmidt T, Bonhenry D, Waldherr L, Frischauf I, Lunz V, Derler I, Schober R, Schindl R. Luminal STIM1 Mutants that Cause Tubular Aggregate Myopathy Promote Autophagic Processes. Int J Mol Sci 2020; 21:E4410. [PMID: 32575830 PMCID: PMC7352373 DOI: 10.3390/ijms21124410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a ubiquitously expressed Ca2+ sensor protein that induces permeation of Orai Ca2+ channels upon endoplasmic reticulum Ca2+-store depletion. A drop in luminal Ca2+ causes partial unfolding of the N-terminal STIM1 domains and thus initial STIM1 activation. We compared the STIM1 structure upon Ca2+ depletion from our molecular dynamics (MD) simulations with a recent 2D NMR structure. Simulation- and structure-based results showed unfolding of two α-helices in the canonical and in the non-canonical EF-hand. Further, we structurally and functionally evaluated mutations in the non-canonical EF-hand that have been shown to cause tubular aggregate myopathy. We found these mutations to cause full constitutive activation of Ca2+-release-activated Ca2+ currents (ICRAC) and to promote autophagic processes. Specifically, heterologously expressed STIM1 mutations in the non-canonical EF-hand promoted translocation of the autophagy transcription factors microphthalmia-associated transcription factor (MITF) and transcription factor EB (TFEB) into the nucleus. These STIM1 mutations additionally stimulated an enhanced production of autophagosomes. In summary, mutations in STIM1 that cause structural unfolding promoted Ca2+ down-stream activation of autophagic processes.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria; (T.S.); (L.W.)
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-373 33 Nove Hrady, Czech Republic;
| | - Linda Waldherr
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria; (T.S.); (L.W.)
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Victoria Lunz
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Romana Schober
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria; (T.S.); (L.W.)
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria; (T.S.); (L.W.)
- BioTechMed-Graz, A-8010 Graz, Austria
| |
Collapse
|
7
|
Dokholyan NV. Experimentally-driven protein structure modeling. J Proteomics 2020; 220:103777. [PMID: 32268219 PMCID: PMC7214187 DOI: 10.1016/j.jprot.2020.103777] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
Revolutions in natural and exact sciences started at the dawn of last century have led to the explosion of theoretical, experimental, and computational approaches to determine structures of molecules, complexes, as well as their rich conformational dynamics. Since different experimental methods produce information that is attributed to specific time and length scales, corresponding computational methods have to be tailored to these scales and experiments. These methods can be then combined and integrated in scales, hence producing a fuller picture of molecular structure and motion from the "puzzle pieces" offered by various experiments. Here, we describe a number of computational approaches to utilize experimental data to glance into structure of proteins and understand their dynamics. We will also discuss the limitations and the resolution of the constraints-based modeling approaches. SIGNIFICANCE: Experimentally-driven computational structure modeling and determination is a rapidly evolving alternative to traditional approaches for molecular structure determination. These new hybrid experimental-computational approaches are proving to be a powerful microscope to glance into the structural features of intrinsically or partially disordered proteins, dynamics of molecules and complexes. In this review, we describe various approaches in the field of experimentally-driven computational structure modeling.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Coordination of a Single Calcium Ion in the EF-hand Maintains the Off State of the Stromal Interaction Molecule Luminal Domain. J Mol Biol 2020; 432:367-383. [DOI: 10.1016/j.jmb.2019.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|
9
|
Schober R, Bonhenry D, Lunz V, Zhu J, Krizova A, Frischauf I, Fahrner M, Zhang M, Waldherr L, Schmidt T, Derler I, Stathopulos PB, Romanin C, Ettrich RH, Schindl R. Sequential activation of STIM1 links Ca 2+ with luminal domain unfolding. Sci Signal 2019; 12:eaax3194. [PMID: 31744929 DOI: 10.1126/scisignal.aax3194] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.
Collapse
Affiliation(s)
- Romana Schober
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady CZ-373 33, Czech Republic
| | - Victoria Lunz
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Jinhui Zhu
- Schulich Dentistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Adela Krizova
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - MengQi Zhang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Linda Waldherr
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Rüdiger H Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady CZ-373 33, Czech Republic.
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria.
- BioTechMed-Graz, A-8010 Graz, Austria
| |
Collapse
|
10
|
Gudlur A, Zeraik AE, Hirve N, Hogan PG. STIM calcium sensing and conformational change. J Physiol 2019; 598:1695-1705. [PMID: 31228261 DOI: 10.1113/jp276524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 11/08/2022] Open
Abstract
The control of calcium influx at the plasma membrane by endoplasmic reticulum (ER) calcium stores, a process common to invertebrates and vertebrates, is central to physiological calcium signalling and cellular calcium balance. Stromal interaction molecule 1 (STIM1) is a calcium sensor and regulatory protein localized to the ER. ORAI1 is a calcium channel in the plasma membrane (PM). In outline, STIM1 senses an ER-luminal calcium decrease, relocalizes to ER-PM junctions, and recruits and gates ORAI1 channels. Recent work, reviewed here, has offered detailed insight into the process of sensing and communicating ER calcium-store depletion, and particularly into the STIM1 conformational change that is the basis for communication between the ER and the PM.
Collapse
Affiliation(s)
- Aparna Gudlur
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ana Eliza Zeraik
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - Nupura Hirve
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Program in Immunology, University of California-San Diego, La Jolla, CA, 92037, USA.,Moores Cancer Center, University of California-San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
11
|
Hirve N, Rajanikanth V, Hogan PG, Gudlur A. Coiled-Coil Formation Conveys a STIM1 Signal from ER Lumen to Cytoplasm. Cell Rep 2019; 22:72-83. [PMID: 29298434 DOI: 10.1016/j.celrep.2017.12.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/07/2017] [Accepted: 12/10/2017] [Indexed: 10/18/2022] Open
Abstract
STIM1 and STIM2 are endoplasmic reticulum (ER) membrane proteins that sense decreases in ER-luminal free Ca2+ and, through a conformational change in the STIM cytoplasmic domain, control gating of the plasma membrane Ca2+ channel ORAI1. To determine how STIM1 conveys a signal from the ER lumen to the cytoplasm, we studied the Ca2+-dependent conformational change of engineered STIM1 proteins in isolated ER membranes and, in parallel, physiological activation of these proteins in cells. We find that conserved "sentinel" features of the CC1 region help to prevent activation while Ca2+ is bound to STIM ER-luminal domains. Reduced ER-luminal Ca2+ drives a concerted conformational change, in which STIM luminal domains rearrange and the STIM transmembrane helices and initial parts of the CC1 regions pair in an extended coiled coil. This intradimer rearrangement overcomes the relatively weak CC1-SOAR/CAD interactions that hold STIM in an inactive conformation, releasing the SOAR/CAD domain to activate ORAI channels.
Collapse
Affiliation(s)
- Nupura Hirve
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Vangipurapu Rajanikanth
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Program in Immunology, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Aparna Gudlur
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Qiu R, Lewis RS. Structural features of STIM and Orai underlying store-operated calcium entry. Curr Opin Cell Biol 2019; 57:90-98. [PMID: 30716649 DOI: 10.1016/j.ceb.2018.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Store-operated calcium entry (SOCE) through Orai channels is triggered by receptor-stimulated depletion of Ca2+ from the ER. Orai1 is unique in terms of its activation mechanism, biophysical properties, and structure, and its precise regulation is essential for human health. Recent studies have begun to reveal the structural basis of the major steps in the SOCE pathway and how the system is reliably suppressed in resting cells but able to respond robustly to ER Ca2+ depletion. In this review, we discuss current models describing the activation of ER Ca2+ sensor STIM1, its binding to Orai1, propagation of the binding signal from the channel periphery to the central pore, and the resulting conformational changes underlying opening of the highly Ca2+ selective Orai1 channel.
Collapse
Affiliation(s)
- Ruoyi Qiu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
13
|
Bonhenry D, Schober R, Schmidt T, Waldherr L, Ettrich RH, Schindl R. Mechanistic insights into the Orai channel by molecular dynamics simulations. Semin Cell Dev Biol 2019; 94:50-58. [PMID: 30639326 DOI: 10.1016/j.semcdb.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/12/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Highly Ca2+ selective channels trigger a large variety of cellular signaling processes in both excitable and non-excitable cells. Among these channels, the Orai channel is unique in its activation mechanism and its structure. It mediates Ca2+ influx into the cytosol with an extremely small unitary conductance over longer time-scales, ranging from minutes up to several hours. Its activation is regulated by the Ca2+ content of the endoplasmic reticulum (ER). Depletion of luminal [Ca2+]ER is sensed by the STIM1 single transmembrane protein that directly binds and gates the Orai1 channel. Orai mediated Ca2+ influx increases cytosolic Ca2+ from 100 nM up to low micromolar range close to the pore and thereby forms Ca2+ microdomains. Hence, these features of the Orai channel can trigger long-term signaling processes without affecting the overall Ca2+ content of a single living cell. Here we focus on the architecture and dynamic conformational changes within the Orai channel. This review summarizes current achievements of molecular dynamics simulations in combination with live cell recordings to address gating and permeation of the Orai channel with molecular precision.
Collapse
Affiliation(s)
- Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic.
| | - Romana Schober
- Institute for Biophysics, Johannes Kepler University Linz, A-4040 Linz, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Linda Waldherr
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Rüdiger H Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic; College of Biomedical Sciences, Larkin University, Miami, FL 33169, United States
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
14
|
Stathopulos PB, Ikura M. Does stromal interaction molecule-1 have five senses? Cell Calcium 2018; 77:79-80. [PMID: 30528613 DOI: 10.1016/j.ceca.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 01/04/2023]
Abstract
A single calcium (Ca2+) binding site within the canonical EF-hand loop was thought to govern the stromal interaction molecule-1 (STIM1) structural changes that lead to activation of Orai1 Ca2+ channels. Recent work by Gudlur et al., published in Nat Commun [9(1):4536], suggests that the STIM1 endoplasmic reticulum (ER) luminal domain has ∼5 additional Ca2+ binding sites, which underlie a surprising new proposal for Ca2+ sensing.
Collapse
Affiliation(s)
- Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, London, ON, N6A 5C1, Canada.
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
15
|
Gudlur A, Zeraik AE, Hirve N, Rajanikanth V, Bobkov AA, Ma G, Zheng S, Wang Y, Zhou Y, Komives EA, Hogan PG. Calcium sensing by the STIM1 ER-luminal domain. Nat Commun 2018; 9:4536. [PMID: 30382093 PMCID: PMC6208404 DOI: 10.1038/s41467-018-06816-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) monitors ER-luminal Ca2+ levels to maintain cellular Ca2+ balance and to support Ca2+ signalling. The prevailing view has been that STIM1 senses reduced ER Ca2+ through dissociation of bound Ca2+ from a single EF-hand site, which triggers a dramatic loss of secondary structure and dimerization of the STIM1 luminal domain. Here we find that the STIM1 luminal domain has 5-6 Ca2+-binding sites, that binding at these sites is energetically coupled to binding at the EF-hand site, and that Ca2+ dissociation controls a switch to a second structured conformation of the luminal domain rather than protein unfolding. Importantly, the other luminal-domain Ca2+-binding sites interact with the EF-hand site to control physiological activation of STIM1 in cells. These findings fundamentally revise our understanding of physiological Ca2+ sensing by STIM1, and highlight molecular mechanisms that govern the Ca2+ threshold for activation and the steep Ca2+ concentration dependence.
Collapse
Affiliation(s)
- Aparna Gudlur
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Ana Eliza Zeraik
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, CEP 13563-120, SP, Brazil
| | - Nupura Hirve
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - V Rajanikanth
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
- H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Andrey A Bobkov
- Protein Production and Analysis Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, 92037, USA
| | - Patrick G Hogan
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA.
- Program in Immunology, University of California-San Diego, La Jolla, CA, 92037, USA.
- Moores Cancer Center, University of California-San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
A composite polynomial approach for analyzing the indefinite self-association of macromolecules studied by sedimentation equilibrium. Biophys Chem 2017. [PMID: 28628895 DOI: 10.1016/j.bpc.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A different approach is described for analyzing sedimentation equilibrium experiments of indefinitely self-associating systems. The procedure involves application of conservation of mass criteria, along with local evaluation of the weight average molar mass, to generate a polynomial based on a composite pseudo-independent variable. The outlined method does not depend upon non-linear regression to generate a solution, but instead requires evaluation of the roots of a high-order polynomial.
Collapse
|
17
|
DeForte S, Uversky VN. Quarterly intrinsic disorder digest (April-May-June, 2014). INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1287505. [PMID: 28321370 DOI: 10.1080/21690707.2017.1287505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This is the 6th issue of the Digested Disorder series that continues to use only 2 criteria for inclusion of a paper to this digest: The publication date (a paper should be published within the covered time frame) and the topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the second quarter of 2014; i.e., during the period of April, May, and June of 2014. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included papers a short description is given on its major findings.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Département De Biochimie and Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, Succursale Centre-Ville, Montreal, Quebec, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute of Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
18
|
Mukherjee S, Karolak A, Debant M, Buscaglia P, Renaudineau Y, Mignen O, Guida WC, Brooks WH. Molecular Dynamics Simulations of Membrane-Bound STIM1 to Investigate Conformational Changes during STIM1 Activation upon Calcium Release. J Chem Inf Model 2017; 57:335-344. [PMID: 28151650 DOI: 10.1021/acs.jcim.6b00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.
Collapse
Affiliation(s)
- Sreya Mukherjee
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Aleksandra Karolak
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Marjolaine Debant
- INSERM ESPRI, ERI29/EA2216 Laboratory of Immunotherapy and B Cell Pathologies, Laboratory of Immunology and Immunotherapy, CHRU Morvan, European University of Brittany , F29609 Brest, France.,Network "Ion channels and cancer-Cancéropole Grand Ouest (IC-CGO)" , F29609 Brest, France.,INSERM U1078, Brest University Medical School , F29609 Brest, France
| | - Paul Buscaglia
- Network "Ion channels and cancer-Cancéropole Grand Ouest (IC-CGO)" , F29609 Brest, France.,INSERM U1078, Brest University Medical School , F29609 Brest, France
| | - Yves Renaudineau
- INSERM ESPRI, ERI29/EA2216 Laboratory of Immunotherapy and B Cell Pathologies, Laboratory of Immunology and Immunotherapy, CHRU Morvan, European University of Brittany , F29609 Brest, France.,Network "Ion channels and cancer-Cancéropole Grand Ouest (IC-CGO)" , F29609 Brest, France
| | - Olivier Mignen
- Network "Ion channels and cancer-Cancéropole Grand Ouest (IC-CGO)" , F29609 Brest, France.,INSERM U1078, Brest University Medical School , F29609 Brest, France
| | - Wayne C Guida
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| |
Collapse
|
19
|
Frischauf I, Fahrner M, Jardín I, Romanin C. The STIM1: Orai Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:25-46. [PMID: 27161223 DOI: 10.1007/978-3-319-26974-0_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signalling pathway for a variety of cell functions, including T-cell activation as well as mast-cell degranulation. Depletion of [Ca(2+)]ER results in activation of Ca(2+) channels within the plasmamembrane that mediate sustained Ca(2+) influx which is required for refilling Ca(2+) stores and down-stream Ca(2+) signalling. The CRAC channel is the best characterized store-operated channel (SOC) with well-defined electrophysiological properties. In recent years, the molecular components of the CRAC channel have been defined. The ER - located Ca(2+)-sensor, STIM1 and the Ca(2+)-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Stromal interaction molecule (STIM) 1 is localized in the ER, senses [Ca(2+)]ER and activates the CRAC channel upon store depletion by direct binding to Orai1 in the plasmamembrane. The identification of STIM1 and Orai1 and recently the structural resolution of both proteins by X-ray crystallography and nuclear magnetic resonance substantiated many findings from structure-function studies which has substantially improved the understanding of CRAC channel activation. Within this review, we summarize the functional and structural mechanisms of CRAC channel regulation, present a detailed overview of the STIM1/Orai1 signalling pathway where we focus on the critical domains mediating interactions and on the ion permeation pathway. We portray a mechanistic view of the steps in the dynamics of CRAC channel signalling ranging from STIM1 oligomerization over STIM1-Orai1 coupling to CRAC channel activation and permeation.
Collapse
Affiliation(s)
| | - Marc Fahrner
- Institute of Biophysics, University of Linz, Linz, Austria
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | |
Collapse
|
20
|
Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M. Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun 2015; 460:5-21. [PMID: 25998729 DOI: 10.1016/j.bbrc.2015.01.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
The calcium (Ca(2+)) ion is a universal signalling messenger which plays vital physiological roles in all eukaryotes. To decode highly regulated intracellular Ca(2+) signals, cells have evolved a number of sensor proteins that are ideally adapted to respond to a specific range of Ca(2+) levels. Among many such proteins, calmodulin (CaM) is a multi-functional cytoplasmic Ca(2+) sensor with a remarkable ability to interact with and regulate a plethora of structurally diverse target proteins. CaM achieves this 'multi-talented' functionality through two EF-hand domains, each with an independent capacity to bind targets, and an adaptable flexible linker. By contrast, stromal interaction molecule-1 and -2 (STIMs) have evolved for a specific role in endoplasmic reticulum (ER) Ca(2+) sensing using EF-hand machinery analogous to CaM; however, whereas CaM structurally adjusts to dissimilar binding partners, STIMs use the EF-hand machinery to self-regulate the stability of the Ca(2+) sensing domain. The molecular mechanisms underlying the Ca(2+)-dependent signal transduction by CaM and STIMs have revealed a remarkable repertoire of actions and underscore the flexibility of nature in molecular evolution and adaption to discrete Ca(2+) levels. Recent genomic sequencing efforts have uncovered a number of disease-associated mutations in both CaM and STIM1. This article aims to highlight the most recent key structural and functional findings in the CaM and STIM fields, and discusses how these two Ca(2+) sensor proteins execute their biological functions.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Tadateru Nishikawa
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
21
|
Store-operated calcium entry: Mechanisms and modulation. Biochem Biophys Res Commun 2015; 460:40-9. [PMID: 25998732 DOI: 10.1016/j.bbrc.2015.02.110] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/20/2015] [Indexed: 11/22/2022]
Abstract
Store-operated calcium entry is a central mechanism in cellular calcium signalling and in maintaining cellular calcium balance. This review traces the history of research on store-operated calcium entry, the discovery of STIM and ORAI as central players in calcium entry, and the role of STIM and ORAI in biology and human disease. It describes current knowledge of the basic mechanism of STIM-ORAI signalling and of the varied mechanisms by which STIM-ORAI signalling can be modulated.
Collapse
|
22
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
23
|
Fahrner M, Muik M, Schindl R, Butorac C, Stathopulos P, Zheng L, Jardin I, Ikura M, Romanin C. A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1). J Biol Chem 2014; 289:33231-44. [PMID: 25342749 PMCID: PMC4246082 DOI: 10.1074/jbc.m114.610022] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Store-operated Ca2+ entry, essential for the adaptive immunity, is initiated by the endoplasmic reticulum (ER) Ca2+ sensor STIM1. Ca2+ entry occurs through the plasma membrane resident Ca2+ channel Orai1 that directly interacts with the C-terminal STIM1 domain, named SOAR/CAD. Depletion of the ER Ca2+ store controls this STIM1/Orai1 interaction via transition to an extended STIM1 C-terminal conformation, exposure of the SOAR/CAD domain, and STIM1/Orai1 co-clustering. Here we developed a novel approach termed FRET-derived Interaction in a Restricted Environment (FIRE) in an attempt to dissect the interplay of coiled-coil (CC) interactions in controlling STIM1 quiescent as well as active conformation and cluster formation. We present evidence of a sequential activation mechanism in the STIM1 cytosolic domains where the interaction between CC1 and CC3 segment regulates both SOAR/CAD exposure and CC3-mediated higher-order oligomerization as well as cluster formation. These dual levels of STIM1 auto-inhibition provide efficient control over the coupling to and activation of Orai1 channels.
Collapse
Affiliation(s)
- Marc Fahrner
- From the Life Science Center JKU, Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Martin Muik
- From the Life Science Center JKU, Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Rainer Schindl
- From the Life Science Center JKU, Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Carmen Butorac
- From the Life Science Center JKU, Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Peter Stathopulos
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada, and
| | - Le Zheng
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Isaac Jardin
- From the Life Science Center JKU, Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Christoph Romanin
- From the Life Science Center JKU, Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria,
| |
Collapse
|
24
|
Intrinsic disorder as a generalizable strategy for the rational design of highly responsive, allosterically cooperative receptors. Proc Natl Acad Sci U S A 2014; 111:15048-53. [PMID: 25288724 DOI: 10.1073/pnas.1410796111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Control over the sensitivity with which biomolecular receptors respond to small changes in the concentration of their target ligand is critical for the proper function of many cellular processes. Such control could likewise be of utility in artificial biotechnologies, such as biosensors, genetic logic gates, and "smart" materials, in which highly responsive behavior is of value. In nature, the control of molecular responsiveness is often achieved using "Hill-type" cooperativity, a mechanism in which sequential binding events on a multivalent receptor are coupled such that the first enhances the affinity of the next, producing a steep, higher-order dependence on target concentration. Here, we use an intrinsic-disorder-based mechanism that can be implemented without requiring detailed structural knowledge to rationally introduce this potentially useful property into several normally noncooperative biomolecules. To do so, we fabricate a tandem repeat of the receptor that is destabilized (unfolded) via the introduction of a long, unstructured loop. The first binding event requires the energetically unfavorable closing of this loop, reducing its affinity relative to that of the second binding event, which, in contrast occurs at a preformed site. Using this approach, we have rationally introduced cooperativity into three unrelated DNA aptamers, achieving in the best of these a Hill coefficient experimentally indistinguishable from the theoretically expected maximum. The extent of cooperativity and thus the steepness of the binding transition are, moreover, well modeled as simple functions of the energetic cost of binding-induced folding, speaking to the quantitative nature of this design strategy.
Collapse
|