1
|
Fu J, Zhang J, Yang L, Ding N, Yue L, Zhang X, Lu D, Jia X, Li C, Guo C, Yin Z, Jiang X, Zhao Y, Chen F, Zhou D. Precision Methylome and In Vivo Methylation Kinetics Characterization of Klebsiella pneumoniae. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:418-434. [PMID: 34214662 PMCID: PMC9684165 DOI: 10.1016/j.gpb.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an important pathogen that can cause severe hospital- and community-acquired infections. To systematically investigate its methylation features, we determined the whole-genome sequences of 14 K. pneumoniae strains covering varying serotypes, multilocus sequence types, clonal groups, viscosity/virulence, and drug resistance. Their methylomes were further characterized using Pacific Biosciences single-molecule real-time and bisulfite technologies. We identified 15 methylation motifs [13 N6-methyladenine (6mA) and two 5-methylcytosine (5mC) motifs], among which eight were novel. Their corresponding DNA methyltransferases were also validated. Additionally, we analyzed the genomic distribution of GATC and CCWGG methylation motifs shared by all strains, and identified differential distribution patterns of some hemi-/un-methylated GATC motifs, which tend to be located within intergenic regions (IGRs). Specifically, we characterized the in vivo methylation kinetics at single-base resolution on a genome-wide scale by simulating the dynamic processes of replication-mediated passive demethylation and MTase-catalyzed re-methylation. The slow methylation of the GATC motifs in the replication origin (oriC) regions and IGRs implicates the epigenetic regulation of replication initiation and transcription. Our findings illustrate the first comprehensive dynamic methylome map of K. pneumoniae at single-base resolution, and provide a useful reference to better understand epigenetic regulation in this and other bacterial species.
Collapse
Affiliation(s)
- Jing Fu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,Department of Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou 450001, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Li Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiangli Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Jia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chongye Guo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yongliang Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,Corresponding authors.
| |
Collapse
|
2
|
Vo TD, Schneider AL, Poon GMK, Wilson WD. DNA-facilitated target search by nucleoproteins: Extension of a biosensor-surface plasmon resonance method. Anal Biochem 2021; 629:114298. [PMID: 34252439 PMCID: PMC8427768 DOI: 10.1016/j.ab.2021.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
To extend the value of biosensor-SPR in the characterization of DNA recognition by nucleoproteins, we report a comparative analysis of DNA-facilitated target search by two ETS-family transcription factors: Elk1 and ETV6. ETS domains represent an attractive system for developing biosensor-based techniques due to a broad range of physicochemical properties encoded within a highly conserved DNA-binding motif. Building on a biosensor approach in which the protein is quantitatively sequestered and presented to immobilized cognate DNA as nonspecific complexes, we assessed the impact of intrinsic cognate and nonspecific affinities on long-range (intersegmental) target search. The equilibrium constants of DNA-facilitated binding were sensitive to the intrinsic binding properties of the proteins such that their relative specificity for cognate DNA were reinforced when binding occurred by transfer vs. without nonspecific DNA. Direct measurement of association and dissociation kinetics revealed ionic features of the activated complex that evidenced DNA-facilitated dissociation, even though Elk1 and ETV6 harbor only a single DNA-binding surface. At salt concentrations that masked the effects of nonspecific pre-binding at equilibrium, the dissociation kinetics of cognate binding were nevertheless distinct from conditions under which nonspecific DNA was absent. These results further strengthen the significance of long-range DNA-facilitated translocation in the physiologic environment.
Collapse
Affiliation(s)
- Tam D Vo
- Department of Chemistry, Georgia State University, USA
| | | | - Gregory M K Poon
- Department of Chemistry, Georgia State University, USA; Center for Diagnostics and Therapeutics, Georgia State University, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, USA; Center for Diagnostics and Therapeutics, Georgia State University, USA.
| |
Collapse
|
3
|
Barel I, Reich NO, Brown FLH. Integrated rate laws for processive and distributive enzymatic turnover. J Chem Phys 2019; 150:244120. [PMID: 31255081 DOI: 10.1063/1.5097576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently derived steady-state differential rate laws for the catalytic turnover of molecules containing two substrate sites are reformulated as integrated rate laws. The analysis applies to a broad class of Markovian dynamic models, motivated by the varied and often complex mechanisms associated with DNA modifying enzymes. Analysis of experimental data for the methylation kinetics of DNA by Dam (DNA adenine methyltransferase) is drastically improved through the use of integrated rate laws. Data that are too noisy for fitting to differential predictions are reliably interpreted through the integrated rate laws.
Collapse
Affiliation(s)
- Itay Barel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
4
|
Clark DP, Pazdernik NJ, McGehee MR. Manipulation of Nucleic Acids. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Barel I, Naughton B, Reich NO, Brown FLH. Specificity versus Processivity in the Sequential Modification of DNA: A Study of DNA Adenine Methyltransferase. J Phys Chem B 2018; 122:1112-1120. [DOI: 10.1021/acs.jpcb.7b10349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Itay Barel
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| | - Brigitte Naughton
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Frank L. H. Brown
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Vo T, Wang S, Poon GMK, Wilson WD. Electrostatic control of DNA intersegmental translocation by the ETS transcription factor ETV6. J Biol Chem 2017; 292:13187-13196. [PMID: 28592487 PMCID: PMC5555182 DOI: 10.1074/jbc.m117.792887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/06/2017] [Indexed: 01/22/2023] Open
Abstract
To find their DNA target sites in complex solution environments containing excess heterogeneous DNA, sequence-specific DNA-binding proteins execute various translocation mechanisms known collectively as facilitated diffusion. For proteins harboring a single DNA contact surface, long-range translocation occurs by jumping between widely spaced DNA segments. We have configured biosensor-based surface plasmon resonance to directly measure the affinity and kinetics of this intersegmental jumping by the ETS-family transcription factor ETS variant 6 (ETV6). To isolate intersegmental target binding in a functionally defined manner, we pre-equilibrated ETV6 with excess salmon sperm DNA, a heterogeneous polymer, before exposing the nonspecifically bound protein to immobilized oligomeric DNA harboring a high-affinity ETV6 site. In this way, the mechanism of ETV6-target association could be toggled electrostatically through varying NaCl concentration in the bulk solution. Direct measurements of association and dissociation kinetics of the site-specific complex indicated that 1) freely diffusive binding by ETV6 proceeds through a nonspecific-like intermediate, 2) intersegmental jumping is rate-limited by dissociation from the nonspecific polymer, and 3) dissociation of the specific complex is independent of the history of complex formation. These results show that target searches by proteins with an ETS domain, such as ETV6, whose single DNA-binding domain cannot contact both source and destination sites simultaneously, are nonetheless strongly modulated by intersegmental jumping in heterogeneous site environments. Our findings establish biosensors as a general technique for directly and specifically measuring target site search by DNA-binding proteins via intersegmental translocation.
Collapse
Affiliation(s)
- Tam Vo
- From the Department of Chemistry and
| | - Shuo Wang
- From the Department of Chemistry and
| | - Gregory M K Poon
- From the Department of Chemistry and
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | - W David Wilson
- From the Department of Chemistry and
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
7
|
Naughton BS, Reich NO. Mechanisms of Protein Translocation on DNA Are Differentially Responsive to Water Activity. Biochemistry 2016; 55:6957-6960. [PMID: 27992993 DOI: 10.1021/acs.biochem.6b00872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water plays important but poorly understood roles in the functions of most biomolecules. We are interested in understanding how proteins use diverse search mechanisms to locate specific sites on DNA; here we present a study of the role of closely associated waters in diverse translocation mechanisms. The bacterial DNA adenine methyltransferase, Dam, moves across large segments of DNA using an intersegmental hopping mechanism, relying in part on movement through bulk water. In contrast, other proteins, such as the bacterial restriction endonuclease EcoRI, rely on a sliding mechanism, requiring the protein to stay closely associated with DNA. Here we probed how these two mechanistically distinct proteins respond to well-characterized osmolytes, dimethyl sulfoxide (DMSO), and glycerol. The ability of Dam to move over large segments of DNA is not impacted by either osmolyte, consistent with its minimal reliance on a sliding mechanism. In contrast, EcoRI endonuclease translocation is significantly enhanced by DMSO and inhibited by glycerol, providing further corroboration that these proteins rely on distinct translocation mechanisms. The well-established similar effects of these osmolytes on bulk water, and their differential effects on macromolecule-associated waters, support our results and provide further evidence of the importance of water in interactions between macromolecules and their ligands.
Collapse
Affiliation(s)
- Brigitte S Naughton
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Jeong J, Le TT, Kim HD. Single-molecule fluorescence studies on DNA looping. Methods 2016; 105:34-43. [PMID: 27064000 PMCID: PMC4967024 DOI: 10.1016/j.ymeth.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks.
Collapse
Affiliation(s)
- Jiyoun Jeong
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Tung T Le
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| |
Collapse
|
9
|
Barel I, Reich NO, Brown FLH. Extracting enzyme processivity from kinetic assays. J Chem Phys 2015; 143:224115. [DOI: 10.1063/1.4937155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Itay Barel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Norbert O. Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Frank L. H. Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
10
|
Horton JR, Zhang X, Blumenthal RM, Cheng X. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression. Nucleic Acids Res 2015; 43:4296-308. [PMID: 25845600 PMCID: PMC4417163 DOI: 10.1093/nar/gkv251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/21/2014] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify a DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). Taken together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Pollak AJ, Reich NO. DNA Adenine Methyltransferase Facilitated Diffusion Is Enhanced by Protein–DNA “Roadblock” Complexes That Induce DNA Looping. Biochemistry 2015; 54:2181-92. [DOI: 10.1021/bi501344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Pollak
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
Pollak AJ, Chin AT, Reich NO. Distinct facilitated diffusion mechanisms by E. coli Type II restriction endonucleases. Biochemistry 2014; 53:7028-37. [PMID: 25350874 DOI: 10.1021/bi501110r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The passive search by proteins for particular DNA sequences involving nonspecific DNA is essential for gene regulation, DNA repair, phage defense, and diverse epigenetic processes. Distinct mechanisms contribute to these searches, and it remains unresolved as to which mechanism or blend of mechanisms best suits a particular protein and, more importantly, its biological role. To address this, we compare the translocation properties of two well-studied bacterial restriction endonucleases (ENases), EcoRI and EcoRV. These dimeric, magnesium-dependent enzymes hydrolyze related sites (EcoRI ENase, 5'-GAATTC-3'; EcoRV ENase, 5'-GATATC-3'), leaving overhangs and blunt DNA segments, respectively. Here, we demonstrate that the extensive sliding by EcoRI ENase, involving sliding up to ∼600 bp prior to dissociating from the DNA, contrasts with a larger reliance on hopping mechanism(s) by EcoRV ENase. The mechanism displayed by EcoRI ENase results in a highly thorough search of DNA, whereas the EcoRV ENase mechanism results in an extended, yet less rigorous, interrogation of DNA sequence space. We describe how these mechanistic distinctions are complemented by other aspects of these endonucleases, such as the 10-fold higher in vivo concentrations of EcoRI ENase compared to that of EcoRV ENase. Further, we hypothesize that the highly diverse enzyme arsenal that bacteria employ against foreign DNA involves seemingly similar enzymes that rely on distinct but complementary search mechanisms. Our comparative approach reveals how different proteins utilize distinct site-locating strategies.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Chemistry and Biochemistry, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | | | | |
Collapse
|