1
|
Lauterbach M, Bräutigam A, Clayton H, Saladié M, Rolland V, Macfarlane TD, Weber APM, Ludwig M. Leaf transcriptomes from C3, C3-C4 intermediate, and C4Neurachne species give insights into C4 photosynthesis evolution. PLANT PHYSIOLOGY 2024; 197:kiae424. [PMID: 39149860 PMCID: PMC11663609 DOI: 10.1093/plphys/kiae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
The C4 photosynthetic pathway is hypothesized to have evolved from the ancestral C3 pathway through progressive changes in leaf anatomy and biochemistry with extant C3-C4 photosynthetic intermediate species representing phenotypes between species demonstrating full C3 and full C4 states. The Australian endemic genus Neurachne is the only known grass group that contains distinct, closely related species that carry out C3, C3-C4 intermediate, or C4 photosynthesis. To explore and understand the molecular mechanisms underlying C4 photosynthesis evolution in this genus, leaf transcriptomes were generated from two C3, three photosynthetic intermediate (proto-Kranz, C2-like, and C2), and two C4Neurachne species. The data were used to reconstruct phylogenetic relationships in Neurachne, which confirmed two independent C4 origins in the genus. Relative transcript abundances substantiated the photosynthetic phenotypes of individual species and highlighted transcriptional investment differences between species, including between the two C4 species. The data also revealed proteins potentially involved in C4 cycle intermediate transport and identified molecular mechanisms responsible for the evolution of C4-associated proteins in the genus.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Bielefeld 33501, Germany
| | - Harmony Clayton
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Montserrat Saladié
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Vivien Rolland
- Commonwealth Scientific and Industrial Research Organisation, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Terry D Macfarlane
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science Division, Western Australian Herbarium, Perth, WA 6152, Australia
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Heinrich-Heine-University, Duesseldorf 40225, Germany
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Liang K, Jin Z, Zhan X, Li Y, Xu Q, Xie Y, Yang Y, Wang S, Wu J, Yan Z. Structural insights into the chloroplast protein import in land plants. Cell 2024; 187:5651-5664.e18. [PMID: 39197452 DOI: 10.1016/j.cell.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Chloroplast proteins are imported via the translocon at the outer chloroplast membrane (TOC)-translocon at the inner chloroplast membrane (TIC) supercomplex, driven by an ATPase motor. The Ycf2-FtsHi complex has been identified as the chloroplast import motor. However, its assembly and cooperation with the TIC complex during preprotein translocation remain unclear. Here, we present the structures of the Ycf2-FtsHi and TIC complexes from Arabidopsis and an ultracomplex formed between them from Pisum. The Ycf2-FtsHi structure reveals a heterohexameric AAA+ ATPase motor module with characteristic features. Four previously uncharacterized components of Ycf2-FtsHi were identified, which aid in complex assembly and anchoring of the motor module at a tilted angle relative to the membrane. When considering the structures of the TIC complex and the TIC-Ycf2-FtsHi ultracomplex together, it becomes evident that the tilted motor module of Ycf2-FtsHi enables its close contact with the TIC complex, thereby facilitating efficient preprotein translocation. Our study provides valuable structural insights into the chloroplast protein import process in land plants.
Collapse
Affiliation(s)
- Ke Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zeyu Jin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuxin Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qikui Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanqiu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaojie Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
3
|
Li N, Jarvis RP. Recruitment of Cdc48 to chloroplasts by a UBX-domain protein in chloroplast-associated protein degradation. NATURE PLANTS 2024; 10:1400-1417. [PMID: 39160348 PMCID: PMC11410653 DOI: 10.1038/s41477-024-01769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
The translocon at the outer chloroplast membrane (TOC) is the gateway for chloroplast protein import and so is vital for photosynthetic establishment and plant growth. Chloroplast-associated protein degradation (CHLORAD) is a ubiquitin-dependent proteolytic system that regulates TOC. In CHLORAD, cytosolic Cdc48 provides motive force for the retrotranslocation of ubiquitinated TOC proteins to the cytosol but how Cdc48 is recruited is unknown. Here, we identify plant UBX-domain protein PUX10 as a component of the CHLORAD machinery. We show that PUX10 is an integral chloroplast outer membrane protein that projects UBX and ubiquitin-associated domains into the cytosol. It interacts with Cdc48 via its UBX domain, bringing it to the chloroplast surface, and with ubiquitinated TOC proteins via its ubiquitin-associated domain. Genetic analyses in Arabidopsis revealed a requirement for PUX10 during CHLORAD-mediated regulation of TOC function and plant development. Thus, PUX10 coordinates ubiquitination and retrotranslocation activities of CHLORAD to enable efficient TOC turnover.
Collapse
Affiliation(s)
- Na Li
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UK
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Nellaepalli S, Lau AS, Jarvis RP. Chloroplast protein translocation pathways and ubiquitin-dependent regulation at a glance. J Cell Sci 2023; 136:jcs241125. [PMID: 37732520 PMCID: PMC10546890 DOI: 10.1242/jcs.241125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Chloroplasts conduct photosynthesis and numerous metabolic and signalling processes that enable plant growth and development. Most of the ∼3000 proteins in chloroplasts are nucleus encoded and must be imported from the cytosol. Thus, the protein import machinery of the organelle (the TOC-TIC apparatus) is of fundamental importance for chloroplast biogenesis and operation. Cytosolic factors target chloroplast precursor proteins to the TOC-TIC apparatus, which drives protein import across the envelope membranes into the organelle, before various internal systems mediate downstream routing to different suborganellar compartments. The protein import system is proteolytically regulated by the ubiquitin-proteasome system (UPS), enabling centralized control over the organellar proteome. In addition, the UPS targets a range of chloroplast proteins directly. In this Cell Science at a Glance article and the accompanying poster, we present mechanistic details of these different chloroplast protein targeting and translocation events, and of the UPS systems that regulate chloroplast proteins.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Anne Sophie Lau
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
- Department of Plant Physiology, Faculty of Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - R. Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
5
|
Bélanger S, Kramer MC, Payne HA, Hui AY, Slotkin RK, Meyers BC, Staub JM. Plastid dsRNA transgenes trigger phased small RNA-based gene silencing of nuclear-encoded genes. THE PLANT CELL 2023; 35:3398-3412. [PMID: 37309669 PMCID: PMC10473229 DOI: 10.1093/plcell/koad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.
Collapse
Affiliation(s)
- Sébastien Bélanger
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Marianne C Kramer
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Hayden A Payne
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Alice Y Hui
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey M Staub
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| |
Collapse
|
6
|
Yu JS, You MK, Lee YJ, Ha SH. Stepwise protein targeting into plastoglobules are facilitated by three hydrophobic regions of rice phytoene synthase 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1181311. [PMID: 37324722 PMCID: PMC10264786 DOI: 10.3389/fpls.2023.1181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Plastoglobules (PGs) are plastidial lipid droplets enclosed by a polar monolayer born from the thylakoid membrane when plants require active lipid metabolism, including carotenogenesis, under the environmental stress and during plastid transition. Despite the fact that many proteins are reported to target PGs, their translocation mechanism has remained largely unexplored. To elucidate this process, we studied the influence of three hydrophobic regions (HR)-HR1 (1-45th aa), HR2 (46-80th aa), and HR3 (229-247th aa)-of rice phytoene synthase 2 (OsPSY2, 398 aa), which has previously shown to target PGs. As results, HR1 includes the crucial sequence (31-45th aa) for chloroplast import and the stromal cleavage occurs at a specific alanine site (64th aa) within HR2, verifying that a N-terminal 64-aa-region works as the transit peptide (Tp). HR2 has a weak PG-targeting signal by showing synchronous and asynchronous localization patterns in both PGs and stroma of chloroplasts. HR3 exhibited a strong PG-targeting role with the required positional specificity to prevent potential issues such as non-accumulation, aggregation, and folding errors in proteins. Herein, we characterized a Tp and two transmembrane domains in three HRs of OsPSY2 and propose a spontaneous pathway for its PG-translocation with a shape embedded in the PG-monolayer. Given this subplastidial localization, we suggest six sophisticated tactics for plant biotechnology applications, including metabolic engineering and molecular farming.
Collapse
|
7
|
Mohd Ali S, Li N, Soufi Z, Yao J, Johnson E, Ling Q, Jarvis RP. Multiple ubiquitin E3 ligase genes antagonistically regulate chloroplast-associated protein degradation. Curr Biol 2023; 33:1138-1146.e5. [PMID: 36822201 DOI: 10.1016/j.cub.2023.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/02/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
The chloroplast is the most prominent member of a diverse group of plant organelles called the plastids, and it is characterized by its vital role in photosynthesis. 1,2,3 Most of the ∼3,000 different proteins in chloroplasts are synthesized in the cytosol in precursor (preprotein) form, each with a cleavable transit peptide. 4,5,6,7,8 Preproteins are imported via translocons in the outer and inner envelope membranes of the chloroplast, termed TOC and TIC, respectively. 9,10,11,12,13 Discovery of the chloroplast-localized ubiquitin E3 ligase SUPPRESSOR OF PPI1 LOCUS1 (SP1) demonstrated that the nucleocytosolic ubiquitin-proteasome system (UPS) targets the TOC apparatus to dynamically control protein import and chloroplast biogenesis in response to developmental and environmental cues. The relevant UPS pathway is termed chloroplast-associated protein degradation (CHLORAD). 14,15,16 Two homologs of SP1 exist, SP1-like1 (SPL1) and SPL2, but their roles have remained obscure. Here, we show that SP1 is ubiquitous in the Viridiplantae and that SPL2 and SPL1 appeared early during the evolution of the Viridiplantae and land plants, respectively. Through genetic and biochemical analysis, we reveal that SPL1 functions as a negative regulator of SP1, potentially by interfering with its ability to catalyze ubiquitination. In contrast, SPL2, the more distantly related SP1 homolog, displays partial functional redundancy with SP1. Both SPL1 and SPL2 modify the extent of leaf senescence, like SP1, but do so in diametrically opposite ways. Thus, SPL1 and SPL2 are bona fide CHLORAD system components with negative and positive regulatory functions that allow for nuanced control of this vital proteolytic pathway.
Collapse
Affiliation(s)
- Sabri Mohd Ali
- Section of Molecular Plant Biology (Department of Biology) and Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Na Li
- Section of Molecular Plant Biology (Department of Biology) and Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ziad Soufi
- Section of Molecular Plant Biology (Department of Biology) and Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Jinrong Yao
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Errin Johnson
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Qihua Ling
- Section of Molecular Plant Biology (Department of Biology) and Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - R Paul Jarvis
- Section of Molecular Plant Biology (Department of Biology) and Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
8
|
Kim DB, Na C, Hwang I, Lee DW. Understanding protein translocation across chloroplast membranes: Translocons and motor proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:408-416. [PMID: 36223071 DOI: 10.1111/jipb.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Subcellular organelles in eukaryotes are surrounded by lipid membranes. In an endomembrane system, vesicle trafficking is the primary mechanism for the delivery of organellar proteins to specific organelles. However, organellar proteins for chloroplasts, mitochondria, the nucleus, and peroxisomes that are translated in the cytosol are directly imported into their target organelles. Chloroplasts are a plant-specific organelle with outer and inner envelope membranes, a dual-membrane structure that is similar to mitochondria. Interior chloroplast proteins translated by cytosolic ribosomes are thus translocated through TOC and TIC complexes (translocons in the outer and inner envelope of chloroplasts, respectively), with stromal ATPase motor proteins playing a critical role in pulling pre-proteins through these import channels. Over the last three decades, the identity and function of TOC/TIC components and stromal motor proteins have been actively investigated, which has shed light on the action mechanisms at a molecular level. However, there remains some disagreement over the exact composition of TIC complexes and genuine stromal motor proteins. In this review, we discuss recent findings on the mechanisms by which proteins are translocated through TOC/TIC complexes and discuss future prospects for this field of research.
Collapse
Affiliation(s)
- Da Been Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Changhee Na
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
9
|
Hipsch M, Michael Y, Lampl N, Sapir O, Cohen Y, Helman D, Rosenwasser S. Early detection of late blight in potato by whole-plant redox imaging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:649-664. [PMID: 36534114 DOI: 10.1111/tpj.16071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Late blight caused by the oomycete Phytophthora infestans is a most devastating disease of potatoes (Solanum tuberosum). Its early detection is crucial for suppressing disease spread. Necrotic lesions are normally seen in leaves at 4 days post-inoculation (dpi) when colonized cells are dead, but early detection of the initial biotrophic growth stage, when the pathogen feeds on living cells, is challenging. Here, the biotrophic growth phase of P. infestans was detected by whole-plant redox imaging of potato plants expressing chloroplast-targeted reduction-oxidation sensitive green fluorescent protein (chl-roGFP2). Clear spots on potato leaves with a lower chl-roGFP2 oxidation state were detected as early as 2 dpi, before any visual symptoms were recorded. These spots were particularly evident during light-to-dark transitions, and reflected the mislocalization of chl-roGFP2 outside the chloroplasts. Image analysis based on machine learning enabled systematic identification and quantification of spots, and unbiased classification of infected and uninfected leaves in inoculated plants. Comparing redox with chlorophyll fluorescence imaging showed that infected leaf areas that exhibit mislocalized chl-roGFP2 also showed reduced non-photochemical quenching and enhanced quantum PSII yield (ΦPSII) compared with the surrounding leaf areas. The data suggest that mislocalization of chloroplast-targeted proteins is an efficient marker of late blight infection, and demonstrate how it can be utilized for non-destructive monitoring of the disease biotrophic stage using whole-plant redox imaging.
Collapse
Affiliation(s)
- Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yaron Michael
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Omer Sapir
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290000, Israel
| | - David Helman
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
- The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| |
Collapse
|
10
|
Sharkey TD. The discovery of rubisco. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:510-519. [PMID: 35689795 DOI: 10.1093/jxb/erac254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Rubisco is possibly the most important enzyme on Earth, certainly in terms of amount. This review describes the initial reports of ribulose 1,5-bisphosphate carboxylating activity. Discoveries of core concepts are described, including its quaternary structure, the requirement for post-translational modification, and its role as an oxygenase as well as a carboxylase. Finally, the requirement for numerous chaperonins for assembly of rubisco in plants is described.
Collapse
Affiliation(s)
- Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Plant Resilience Institute, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
12
|
Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes. Cell 2022; 185:4788-4800.e13. [PMID: 36413996 DOI: 10.1016/j.cell.2022.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid β-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.
Collapse
|
13
|
Bertini L, Proietti S, Fongaro B, Holfeld A, Picotti P, Falconieri GS, Bizzarri E, Capaldi G, Polverino de Laureto P, Caruso C. Environmental Signals Act as a Driving Force for Metabolic and Defense Responses in the Antarctic Plant Colobanthus quitensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3176. [PMID: 36432905 PMCID: PMC9695728 DOI: 10.3390/plants11223176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant Colobanthus quitensis has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species. Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of C. quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach was used to study the response of C. quitensis to different environmental cues. Many differentially expressed proteins were identified highlighting the rewiring of metabolic pathways as well as defense responses. Finally, a different modulation of oxidative stress response between different environmental sites was observed. The data collected in this paper add knowledge on the impact of environmental stimuli on plant metabolism and stress response by providing useful information on the trade-off between plant growth and defense mechanisms.
Collapse
Affiliation(s)
- Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy
| | - Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Gloria Capaldi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | | | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
14
|
Rochaix J. Chloroplast protein import machinery and quality control. FEBS J 2022; 289:6908-6918. [PMID: 35472255 PMCID: PMC9790281 DOI: 10.1111/febs.16464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
Most chloroplast proteins are nucleus-encoded, translated on cytoplasmic ribosomes as precursor proteins, and imported into chloroplasts through TOC and TIC, the translocons of the outer and inner chloroplast envelope membranes. While the composition of the TOC complex is well established, there is still some controversy about the importance of a recently identified TIC complex consisting of Tic20, Tic214, Tic100, and Tic56. TOC and TIC form a supercomplex with a protein channel at the junction of the outer and inner envelope membranes through which preproteins are pulled into the stroma by the ATP-powered Ycf2 complex consisting of several FtsH-like ATPases and/or by chloroplast Hsp proteins. Several components of the TOC/TIC system are moonlighting proteins with additional roles in chloroplast gene expression and metabolism. Chaperones and co-chaperones, associated with TOC and TIC on the cytoplasmic and stromal side of the chloroplast envelope, participate in the unfolding and folding of the precursor proteins and act together with the ubiquitin-proteasome system in protein quality control. Chloroplast protein import is also intimately linked with retrograde signaling, revealing altogether an unsuspected complexity in the regulation of this process.
Collapse
Affiliation(s)
- Jean‐David Rochaix
- Departments of Molecular Biology and Plant BiologyUniversity of GenevaSwitzerland
| |
Collapse
|
15
|
Sáiz-Bonilla M, Martín Merchán A, Pallás V, Navarro JA. Molecular characterization, targeting and expression analysis of chloroplast and mitochondrion protein import components in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1040688. [PMID: 36388587 PMCID: PMC9643744 DOI: 10.3389/fpls.2022.1040688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Improved bioinformatics tools for annotating gene function are becoming increasingly available, but such information must be considered theoretical until further experimental evidence proves it. In the work reported here, the genes for the main components of the translocons of the outer membrane of chloroplasts (Toc) and mitochondria (Tom), including preprotein receptors and protein-conducting channels of N. benthamiana, were identified. Sequence identity searches and phylogenetic relationships with functionally annotated sequences such as those of A. thaliana revealed that N. benthamiana orthologs mainly exist as recently duplicated loci. Only a Toc34 ortholog was found (NbToc34), while Toc159 receptor family was composed of four orthologs but somewhat different from those of A. thaliana. Except for NbToc90, the rest (NbToc120, NbToc159A and NbToc159B) had a molecular weight of about 150 kDa and an acidic domain similar in length. Only two orthologs of the Tom20 receptors, NbTom20-1 and NbTom20-2, were found. The number of the Toc and Tom receptor isoforms in N. benthamiana was comparable to that previously reported in tomato and what we found in BLAST searches in other species in the genera Nicotiana and Solanum. After cloning, the subcellular localization of N. benthamiana orthologs was studied, resulting to be identical to that of A. thaliana receptors. Phenotype analysis after silencing together with relative expression analysis in roots, stems and leaves revealed that, except for the Toc and Tom channel-forming components (NbToc75 and NbTom40) and NbToc34, functional redundancy could be observed either among Toc159 or mitochondrial receptors. Finally, heterodimer formation between NbToc34 and the NbToc159 family receptors was confirmed by two alternative techniques indicating that different Toc complexes could be assembled. Additional work needs to be addressed to know if this results in a functional specialization of each Toc complex.
Collapse
Affiliation(s)
| | | | - Vicente Pallás
- *Correspondence: Vicente Pallas, ; Jose Antonio Navarro,
| | | |
Collapse
|
16
|
Jeong J, Moon B, Hwang I, Lee DW. GREEN FLUORESCENT PROTEIN variants with enhanced folding are more efficiently imported into chloroplasts. PLANT PHYSIOLOGY 2022; 190:238-249. [PMID: 35699510 PMCID: PMC9434181 DOI: 10.1093/plphys/kiac291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Chloroplasts and mitochondria are subcellular organelles that evolved from cyanobacteria and α-proteobacteria, respectively. Although they have their own genomes, the majority of their proteins are encoded by nuclear genes, translated by cytosolic ribosomes, and imported via outer and inner membrane translocon complexes. The unfolding of mature regions of proteins is thought to be a prerequisite for the import of the proteins into these organelles. However, it is not fully understood how protein folding properties affect their import into these organelles. In this study, we examined the import behavior of chloroplast and mitochondrial reporters with normal green fluorescent protein (GFP) and two GFP variants with enhanced folding propensity, superfolder GFP (sfGFP) and extra-superfolder GFP (esGFP), which is folded better than sfGFP. sfGFP and esGFP were less dependent on the sequence motifs of the transit peptide (TP) and import machinery during protein import into Arabidopsis (Arabidopsis thaliana) chloroplasts, compared with normal GFP. sfGFP and esGFP were efficiently imported into chloroplasts by a mutant TP with an alanine substitution in the N-terminal MLM motif, whereas the same mutant TP showed a defect in importing normal GFP into chloroplasts. Moreover, sfGFP and esGFP were efficiently imported into plastid protein import 2 (ppi2) and heat shock protein 93-V (hsp93-V) plants, which have mutations in atToc159 and Hsp93-V, respectively. In contrast, the presequence-mediated mitochondrial import of sfGFP and esGFP was severely impaired. Based on these results, we propose that the chloroplast import machinery is more tolerant to different folding states of preproteins, whereas the mitochondrial machinery is more specialized in the translocation of unfolded preproteins.
Collapse
Affiliation(s)
- Jinseung Jeong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, South Korea
| | - Byeongho Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, South Korea
| | | | | |
Collapse
|
17
|
Chloroplasts Protein Quality Control and Turnover: A Multitude of Mechanisms. Int J Mol Sci 2022; 23:ijms23147760. [PMID: 35887108 PMCID: PMC9319218 DOI: 10.3390/ijms23147760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
As the organelle of photosynthesis and other important metabolic pathways, chloroplasts contain up to 70% of leaf proteins with uniquely complex processes in synthesis, import, assembly, and turnover. Maintaining functional protein homeostasis in chloroplasts is vitally important for the fitness and survival of plants. Research over the past several decades has revealed a multitude of mechanisms that play important roles in chloroplast protein quality control and turnover under normal and stress conditions. These mechanisms include: (i) endosymbiotically-derived proteases and associated proteins that play a vital role in maintaining protein homeostasis inside the chloroplasts, (ii) the ubiquitin-dependent turnover of unimported chloroplast precursor proteins to prevent their accumulation in the cytosol, (iii) chloroplast-associated degradation of the chloroplast outer-membrane translocon proteins for the regulation of chloroplast protein import, (iv) chloroplast unfolded protein response triggered by accumulated unfolded and misfolded proteins inside the chloroplasts, and (v) vesicle-mediated degradation of chloroplast components in the vacuole. Here, we provide a comprehensive review of these diverse mechanisms of chloroplast protein quality control and turnover and discuss important questions that remain to be addressed in order to better understand and improve important chloroplast functions.
Collapse
|
18
|
Xu Q, Wang X, Wang Y, Zhang H, Zhang H, Di H, Zhang L, Dong L, Zeng X, Liu X, Lee M, Wang Z, Zhou Y. Combined QTL mapping and RNA-Seq pro-filing reveal candidate genes related to low-temperature tolerance in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:33. [PMID: 37312966 PMCID: PMC10248625 DOI: 10.1007/s11032-022-01297-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Maize (Zea mays L.) is the most important food crop in the world, with significant acreage and production across the globe. However, it is affected by low temperatures throughout its growth process, especially during germination. Therefore, it is important to identify more QTLs or genes associated with germination under low-temperature conditions. For the QTL analysis of traits related to low-temperature germination, we used a high-res genetic map of 213 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, which had 6618 bin markers. We detected 28 QTLs of eight phenotypic characteristics associated with low-temperature germination, while they explained the phenotypic contribution rate of 5.4 ~ 13.34%. Additionally, 14 overlapping QTLs produced six QTL clusters on every chromosome, except for 8 and 10. RNA-Seq found six genes related to low-temperature tolerance in these QTLs, while qRT-PCR analysis demonstrated that the expression trends of the Zm00001d045568 gene in the LT_BvsLT_M group and the CK_BvsCK_M group were highly significantly different at all four-time points (P < 0.01), and encoded the RING zinc finger protein. It was located on qRTL9-2 and qRSVI9-1 and is related to the total length and simple vitality index. These results provided potential candidate genes for further gene cloning and improving the low-temperature tolerance of maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01297-6.
Collapse
Affiliation(s)
- Qingyu Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Xuerui Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Yuhe Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Hong Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Hongzhou Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Xianjun Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Michael Lee
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| | - Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Department of Agriculture, Northeast Agricultural University, HarbinHeilongjiang, 150030 China
| |
Collapse
|
19
|
King SJ, Jerkovic A, Brown LJ, Petroll K, Willows RD. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii. Microb Biotechnol 2022; 15:1946-1965. [PMID: 35338590 PMCID: PMC9249334 DOI: 10.1111/1751-7915.14024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogen is a clean alternative to fossil fuels. It has applications for electricity generation and transportation and is used for the manufacturing of ammonia and steel. However, today, H2 is almost exclusively produced from coal and natural gas. As such, methods to produce H2 that do not use fossil fuels need to be developed and adopted. The biological manufacturing of H2 may be one promising solution as this process is clean and renewable. Hydrogen is produced biologically via enzymes called hydrogenases. There are three classes of hydrogenases namely [FeFe], [NiFe] and [Fe] hydrogenases. The [FeFe] hydrogenase HydA1 from the model unicellular algae Chlamydomonas reinhardtii has been studied extensively and belongs to the A1 subclass of [FeFe] hydrogenases that have the highest turnover frequencies amongst hydrogenases (21,000 ± 12,000 H2 s−1 for CaHydA from Clostridium acetobutyliticum). Yet to date, limitations in C. reinhardtii H2 production pathways have hampered commercial scale implementation, in part due to O2 sensitivity of hydrogenases and competing metabolic pathways, resulting in low H2 production efficiency. Here, we describe key processes in the biogenesis of HydA1 and H2 production pathways in C. reinhardtii. We also summarize recent advancements of algal H2 production using synthetic biology and describe valuable tools such as high‐throughput screening (HTS) assays to accelerate the process of engineering algae for commercial biological H2 production.
Collapse
Affiliation(s)
- Samuel J King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ante Jerkovic
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert D Willows
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
20
|
New Insights into the Chloroplast Outer Membrane Proteome and Associated Targeting Pathways. Int J Mol Sci 2022; 23:ijms23031571. [PMID: 35163495 PMCID: PMC8836251 DOI: 10.3390/ijms23031571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Plastids are a dynamic class of organelle in plant cells that arose from an ancient cyanobacterial endosymbiont. Over the course of evolution, most genes encoding plastid proteins were transferred to the nuclear genome. In parallel, eukaryotic cells evolved a series of targeting pathways and complex proteinaceous machinery at the plastid surface to direct these proteins back to their target organelle. Chloroplasts are the most well-characterized plastids, responsible for photosynthesis and other important metabolic functions. The biogenesis and function of chloroplasts rely heavily on the fidelity of intracellular protein trafficking pathways. Therefore, understanding these pathways and their regulation is essential. Furthermore, the chloroplast outer membrane proteome remains relatively uncharted territory in our understanding of protein targeting. Many key players in the cytosol, receptors at the organelle surface, and insertases that facilitate insertion into the chloroplast outer membrane remain elusive for this group of proteins. In this review, we summarize recent advances in the understanding of well-characterized chloroplast outer membrane protein targeting pathways as well as provide new insights into novel targeting signals and pathways more recently identified using a bioinformatic approach. As a result of our analyses, we expand the known number of chloroplast outer membrane proteins from 117 to 138.
Collapse
|
21
|
Zheng C, Xu X, Zhang L, Lu D. Liquid-Liquid Phase Separation Phenomenon on Protein Sorting Within Chloroplasts. Front Physiol 2022; 12:801212. [PMID: 35002776 PMCID: PMC8740050 DOI: 10.3389/fphys.2021.801212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
In higher plants, chloroplasts are vital organelles possessing highly complex compartmentalization. As most chloroplast-located proteins are encoded in the nucleus and synthesized in the cytosol, the correct sorting of these proteins to appropriate compartments is critical for the proper functions of chloroplasts as well as plant survival. Nuclear-encoded chloroplast proteins are imported into stroma and further sorted to distinct compartments via different pathways. The proteins predicted to be sorted to the thylakoid lumen by the chloroplast twin arginine transport (cpTAT) pathway are shown to be facilitated by STT1/2 driven liquid-liquid phase separation (LLPS). Liquid-liquid phase separation is a novel mechanism to facilitate the formation of membrane-less sub-cellular compartments and accelerate biochemical reactions temporally and spatially. In this review, we introduce the sorting mechanisms within chloroplasts, and briefly summarize the properties and significance of LLPS, with an emphasis on the novel function of LLPS in the sorting of cpTAT substrate proteins. We conclude with perspectives for the future research on chloroplast protein sorting and targeting mechanisms.
Collapse
Affiliation(s)
- Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
22
|
Yang C, Yan W, Chang H, Sun C. Arabidopsis CIA2 and CIL have distinct and overlapping functions in regulating chloroplast and flower development. PLANT DIRECT 2022; 6:e380. [PMID: 35106435 PMCID: PMC8786619 DOI: 10.1002/pld3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis CHLOROPLAST IMPORT APPARATUS 2 (CIA2) and its paralogous protein CIA2-LIKE (CIL) are nuclear transcription factors containing a C-terminal CCT motif. CIA2 promotes the expression of nuclear genes encoding chloroplast-localized translocons and ribosomal proteins, thereby increasing the efficiency of protein import and synthesis in chloroplasts. We have previously reported that CIA2 and CIL form a homodimer or heterodimer through their C-terminal sequences and interact with other nuclear proteins, such as CONSTANS (CO), via their N-terminal sequences, but the function of CIL had remained unclear. In this study, we verified through transgenic cia2 mutant plants expressing the CIL coding sequence that CIL is partially functionally redundant to CIA2 during vegetative growth. We also compared phenotypes and gene expression profiles of wildtype Col-0, cia2, cil, and cia2/cil mutants. Our results indicate that CIA2 and CIL coordinate chloroplast biogenesis and function mainly by upregulating the expression of the nuclear factor GOLDEN2-LIKE 1 (GLK1) and chloroplast transcription-, translation-, protein import-, and photosynthesis-related genes, with CIA2 playing a more crucial role. Furthermore, we compared flowering phenotypes in single, double, and triple mutant plants of co, cia2, and cil. We found that CIA2 and CIL participate in modulating long-day floral development. Notably, CIA2 increases flower number and height of the inflorescence main axis, whereas CIL promotes flowering.
Collapse
Affiliation(s)
- Chun‐Yen Yang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Wen‐You Yan
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hsin‐Yen Chang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chih‐Wen Sun
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
23
|
Cheong MS, Choe H, Jeong MS, Yoon YE, Jung HS, Lee YB. Different Inhibitory Effects of Erythromycin and Chlortetracycline on Early Growth of Brassica campestris Seedlings. Antibiotics (Basel) 2021; 10:antibiotics10101273. [PMID: 34680853 PMCID: PMC8532913 DOI: 10.3390/antibiotics10101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/14/2023] Open
Abstract
Veterinary antibiotics, including erythromycin (Ery) and chlortetracycline (CTC), are often detected in agricultural land. Although these contaminants affect plant growth and development, their effects on crops remain elusive. In this study, the effects of Ery and CTC on plant growth were investigated and compared by analyzing transcript abundance in Brassica campestris seedlings. Treatment with Ery and/or CTC reduced chlorophyll content in leaves and photosynthetic efficiency. Examination of the chloroplast ultrastructure revealed the presence of abnormally shaped plastids in response to Ery and CTC treatments. The antibiotics produced similar phenotypes of lower accumulation of photosynthetic genes, including RBCL and LHCB1.1. Analysis of the transcript levels revealed that Ery and CTC differentially down-regulated genes involved in the tetrapyrrole biosynthetic pathway and primary root growth. In the presence of Ery and CTC, chloroplasts were undeveloped and photosynthesis efficiency was reduced. These results suggest that both Ery and CTC individually affect gene expression and influence plant physiological activity, independently of one another.
Collapse
Affiliation(s)
- Mi Sun Cheong
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
| | - Hyeonji Choe
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea
| | - Young-Eun Yoon
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
| | - Yong Bok Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
- Correspondence: ; Tel.: +82-55-772-1967
| |
Collapse
|
24
|
Anderson SA, Satyanarayan MB, Wessendorf RL, Lu Y, Fernandez DE. A homolog of GuidedEntry of Tail-anchored proteins3 functions in membrane-specific protein targeting in chloroplasts of Arabidopsis. THE PLANT CELL 2021; 33:2812-2833. [PMID: 34021351 PMCID: PMC8408437 DOI: 10.1093/plcell/koab145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 05/12/2023]
Abstract
The chloroplasts and mitochondria of photosynthetic eukaryotes contain proteins that are closely related to cytosolic Guided Entry of Tail-anchored proteins3 (Get3). Get3 is a targeting factor that efficiently escorts tail-anchored (TA) proteins to the ER. Because other components of the cytosolic-targeting pathway appear to be absent in organelles, previous investigators have asserted that organellar Get3 homologs are unlikely to act as targeting factors. However, we show here both that the Arabidopsis thaliana chloroplast homolog designated as GET3B is structurally similar to cytosolic Get3 proteins and that it selectively binds a thylakoid-localized TA protein. Based on genetic interactions between a get3b mutation and mutations affecting the chloroplast signal recognition particle-targeting pathway, as well as changes in the abundance of photosynthesis-related proteins in mutant plants, we propose that GET3B acts primarily to direct proteins to the thylakoids. Furthermore, through molecular complementation experiments, we show that function of GET3B depends on its ability to hydrolyze ATP, and this is consistent with action as a targeting factor. We propose that GET3B and related organellar Get3 homologs play a role that is analogous to that of cytosolic Get3 proteins, and that GET3B acts as a targeting factor in the chloroplast stroma to deliver TA proteins in a membrane-specific manner.
Collapse
Affiliation(s)
- Stacy A. Anderson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Manasa B. Satyanarayan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Ryan L. Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Donna E. Fernandez
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
25
|
PRAT Proteins Operate in Organellar Protein Import and Export in Arabidopsis thaliana. PLANTS 2021; 10:plants10050958. [PMID: 34064964 PMCID: PMC8151980 DOI: 10.3390/plants10050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
Chloroplasts need to import preproteins and amino acids from the cytosol during their light-induced differentiation. Similarly, chloroplasts have to export organic matter including proteins and amino acids during leaf senescence. Members of the PRAT (preprotein and amino acid transporter) family are candidate transporters for both processes. Here, we defined the role of two small PRAT gene families, At4g26670 and At5g55510 (HP20 subfamily) versus At3g49560 and At5g24650 (HP30 subfamily) during greening of etiolated plants and during leaf senescence. Using a combination of reverse genetics, protein biochemistry and physiological tools, evidence was obtained for a role of chloroplast HP20, HP30 and HP30-2 in protein, but not amino acid, import into chloroplasts. HP20, HP30 and HP30-2 form larger complexes involved in the uptake of transit sequence-less cytosolic precursors. In addition, we identified a fraction of HP30-2 in mitochondria where it served a similar function as found for chloroplasts and operated in the uptake of transit sequence-less cytosolic precursor proteins. By contrast, HP22 was found to act in the export of proteins from chloroplasts during leaf senescence, and thus its role is entirely different from that of its orthologue, HP20. HP22 is part of a unique protein complex in the envelope of senescing chloroplasts that comprises at least 11 proteins and contains with HP65b (At5g55220) a protein that is related to the bacterial trigger factor chaperone. An ortholog of HP65b exists in the cyanobacterium Synechocystis and has previously been implicated in protein secretion. Whereas plants depleted of either HP22 or HP65b or even both were increasingly delayed in leaf senescence and retained much longer stromal chloroplast constituents than wild-type plants, HP22 overexpressors showed premature leaf senescence that was associated with accelerated losses of stromal chloroplast proteins. Together, our results identify the PRAT protein family as a unique system for importing and exporting proteins from chloroplasts.
Collapse
|
26
|
Yuan H, Pawlowski EG, Yang Y, Sun T, Thannhauser TW, Mazourek M, Schnell D, Li L. Arabidopsis ORANGE protein regulates plastid pre-protein import through interacting with Tic proteins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1059-1072. [PMID: 33165598 DOI: 10.1093/jxb/eraa528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 05/19/2023]
Abstract
Chloroplast-targeted proteins are actively imported into chloroplasts via the machinery spanning the double-layered membranes of chloroplasts. While the key translocons at the outer (TOC) and inner (TIC) membranes of chloroplasts are defined, proteins that interact with the core components to facilitate pre-protein import are continuously being discovered. A DnaJ-like chaperone ORANGE (OR) protein is known to regulate carotenoid biosynthesis as well as plastid biogenesis and development. In this study, we found that OR physically interacts with several Tic proteins including Tic20, Tic40, and Tic110 in the classic TIC core complex of the chloroplast import machinery. Knocking out or and its homolog or-like greatly affects the import efficiency of some photosynthetic and non-photosynthetic pre-proteins. Consistent with the direct interactions of OR with Tic proteins, the binding efficiency assay revealed that the effect of OR occurs at translocation at the inner envelope membrane (i.e. at the TIC complex). OR is able to reduce the Tic40 protein turnover rate through its chaperone activity. Moreover, OR was found to interfere with the interaction between Tic40 and Tic110, and reduces the binding of pre-proteins to Tic110 in aiding their release for translocation and processing. Our findings suggest that OR plays a new and regulatory role in stabilizing key translocons and in facilitating the late stage of plastid pre-protein translocation to regulate plastid pre-protein import.
Collapse
Affiliation(s)
- Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Emily G Pawlowski
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Danny Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
27
|
Gawroński P, Burdiak P, Scharff LB, Mielecki J, Górecka M, Zaborowska M, Leister D, Waszczak C, Karpiński S. CIA2 and CIA2-LIKE are required for optimal photosynthesis and stress responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:619-638. [PMID: 33119927 DOI: 10.1111/tpj.15058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
Chloroplast-to-nucleus retrograde signaling is essential for cell function, acclimation to fluctuating environmental conditions, plant growth and development. The vast majority of chloroplast proteins are nuclear-encoded, and must be imported into the organelle after synthesis in the cytoplasm. This import is essential for the development of fully functional chloroplasts. On the other hand, functional chloroplasts act as sensors of environmental changes and can trigger acclimatory responses that influence nuclear gene expression. Signaling via mobile transcription factors (TFs) has been recently recognized as a way of communication between organelles and the nucleus. In this study, we performed a targeted reverse genetic screen to identify dual-localized TFs involved in chloroplast retrograde signaling during stress responses. We found that CHLOROPLAST IMPORT APPARATUS 2 (CIA2) has a functional plastid transit peptide, and can be located both in chloroplasts and the nucleus. Further, we found that CIA2, along with its homolog CIA2-like (CIL) are involved in the regulation of Arabidopsis responses to UV-AB, high light and heat shock. Finally, our results suggest that both CIA2 and CIL are crucial for chloroplast translation. Our results contribute to a deeper understanding of signaling events in the chloroplast-nucleus cross-talk.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Paweł Burdiak
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Lars B Scharff
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Magdalena Górecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Magdalena Zaborowska
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, Planegg-Martinsried, 82152, Germany
| | - Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| |
Collapse
|
28
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
29
|
Chiu LY, Chen IH, Hsu YH, Tsai CH. The Lipid Transfer Protein 1 from Nicotiana benthamiana Assists Bamboo mosaic virus Accumulation. Viruses 2020; 12:E1361. [PMID: 33261222 PMCID: PMC7760991 DOI: 10.3390/v12121361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Host factors play a pivotal role in regulating virus infection. Uncovering the mechanism of how host factors are involved in virus infection could pave the way to defeat viral disease. In this study, we characterized a lipid transfer protein, designated NbLTP1 in Nicotiana benthamiana, which was downregulated after Bamboo mosaic virus (BaMV) inoculation. BaMV accumulation significantly decreased in NbLTP1-knockdown leaves and protoplasts compared with the controls. The subcellular localization of the NbLTP1-orange fluorescent protein (OFP) was mainly the extracellular matrix. However, when we removed the signal peptide (NbLTP1/ΔSP-OFP), most of the expressed protein targeted chloroplasts. Both NbLTP1-OFP and NbLTP1/ΔSP-OFP were localized in chloroplasts when we removed the cell wall. These results suggest that NbLTP1 may have a secondary targeting signal. Transient overexpression of NbLTP1 had no effect on BaMV accumulation, but that of NbLTP1/ΔSP significantly increased BaMV expression. NbLTP1 may be a positive regulator of BaMV accumulation especially when its expression is associated with chloroplasts, where BaMV replicates. The mutation was introduced to the predicted phosphorylation site to simulate the phosphorylated status, NbLTP/ΔSP/P(+), which could still assist BaMV accumulation. By contrast, a mutant lacking calmodulin-binding or simulates the phosphorylation-negative status could not support BaMV accumulation. The lipid-binding activity of LTP1 was reported to be associated with calmodulin-binding and phosphorylation, by which the C-terminus functional domain of NbLTP1 may play a critical role in BaMV accumulation.
Collapse
Affiliation(s)
- Ling-Ying Chiu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
- Advanced Plant Biotechnology Center, National Chung Hing University, Taichung 402, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
- Advanced Plant Biotechnology Center, National Chung Hing University, Taichung 402, Taiwan
| |
Collapse
|
30
|
Imai K, Nakai K. Tools for the Recognition of Sorting Signals and the Prediction of Subcellular Localization of Proteins From Their Amino Acid Sequences. Front Genet 2020; 11:607812. [PMID: 33324450 PMCID: PMC7723863 DOI: 10.3389/fgene.2020.607812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
At the time of translation, nascent proteins are thought to be sorted into their final subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting or targeting signals). Thus, it is interesting to computationally recognize these signals from the amino acid sequences of any given proteins and to predict their final subcellular localization with such information, supplemented with additional information (e.g., k-mer frequency). This field has a long history and many prediction tools have been released. Even in this era of proteomic atlas at the single-cell level, researchers continue to develop new algorithms, aiming at accessing the impact of disease-causing mutations/cell type-specific alternative splicing, for example. In this article, we overview the entire field and discuss its future direction.
Collapse
Affiliation(s)
- Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Bhattacharya O, Ortiz I, Walling LL. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. PLANT METHODS 2020; 16:131. [PMID: 32983250 PMCID: PMC7513546 DOI: 10.1186/s13007-020-00667-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chloroplasts are critical organelles that perceive and convey metabolic and stress signals to different cellular components, while remaining the seat of photosynthesis and a metabolic factory. The proteomes of intact leaves, chloroplasts, and suborganellar fractions of plastids have been evaluated in the model plant Arabidopsis, however fewer studies have characterized the proteomes of plastids in crops. Tomato (Solanum lycopersicum) is an important world-wide crop and a model system for the study of wounding, herbivory and fruit ripening. While significant advances have been made in understanding proteome and metabolome changes in fruit ripening, far less is known about the tomato chloroplast proteome or its subcompartments. RESULTS With the long-term goal of understanding chloroplast proteome dynamics in response to stress, we describe a high-yielding method to isolate intact tomato chloroplasts and stromal proteins for proteomic studies. The parameters that limit tomato chloroplast yields were identified and revised to increase yields. Compared to published data, our optimized method increased chloroplast yields by 6.7- and 4.3-fold relative to published spinach and Arabidopsis leaf protocols, respectively; furthermore, tomato stromal protein yields were up to 79-fold higher than Arabidopsis stromal proteins yields. We provide immunoblot evidence for the purity of the stromal proteome isolated using our enhanced methods. In addition, we leverage our nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS) data to assess the quality of our stromal proteome. Using strict criteria, proteins detected by 1 peptide spectral match, by one peptide, or were sporadically detected were designated as low-level contaminating proteins. A set of 254 proteins that reproducibly co-isolated with the tomato chloroplast stroma were identified. The subcellular localization, frequency of detection, normalized spectral abundance, and functions of the co-isolating proteins are discussed. CONCLUSIONS Our optimized method for chloroplast isolation increased the yields of tomato chloroplasts eightfold enabling the proteomics analysis of the chloroplast stromal proteome. The set of 254 proteins that co-isolate with the chloroplast stroma provides opportunities for developing a better understanding of the extensive and dynamic interactions of chloroplasts with other organelles. These co-isolating proteins also have the potential for expanding our knowledge of proteins that are co-localized in multiple subcellular organelles.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Irma Ortiz
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
32
|
Ding Y, Shiota T, Le Brun AP, Dunstan RA, Wang B, Hsu HY, Lithgow T, Shen HH. Characterization of BamA reconstituted into a solid-supported lipid bilayer as a platform for measuring dynamics during substrate protein assembly into the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183317. [DOI: 10.1016/j.bbamem.2020.183317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
|
33
|
Yang CY, Sun CW. Sequence analysis and protein interactions of Arabidopsis CIA2 and CIL proteins. BOTANICAL STUDIES 2020; 61:20. [PMID: 32556735 PMCID: PMC7303255 DOI: 10.1186/s40529-020-00297-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND A previous screening of Arabidopsis thaliana for mutants exhibiting dysfunctional chloroplast protein transport identified the chloroplast import apparatus (cia) gene. The cia2 mutant has a pale green phenotype and reduced rate of protein import into chloroplasts, but leaf shape and size are similar to wild-type plants of the same developmental stage. Microarray analysis showed that nuclear CIA2 protein enhances expression of the Toc75, Toc33, CPN10 and cpRPs genes, thereby up-regulating protein import and synthesis efficiency in chloroplasts. CIA2-like (CIL) shares 65% sequence identity to CIA2, suggesting that CIL and CIA2 are homologous proteins in Arabidopsis. Here, we further assess the protein interactions and sequence features of CIA2 and CIL. RESULTS Subcellular localizations of truncated CIA2 protein fragments in our onion transient assay demonstrate that CIA2 contains two nuclear localization signals (NLS) located at amino acids (aa) 62-65 and 291-308, whereas CIL has only one NLS at aa 47-50. We screened a yeast two-hybrid (Y2H) Arabidopsis cDNA library to search for putative CIA2-interacting proteins and identified 12 nuclear proteins, including itself, CIL, and flowering-control proteins (such as CO, NF-YB1, NF-YC1, NF-YC9 and ABI3). Additional Y2H experiments demonstrate that CIA2 and CIL mainly interact with flowering-control proteins via their N-termini, but preferentially form homo- or hetero-dimers through their C-termini. Moreover, sequence alignment showed that the N-terminal sequences of CIA2, CIL and NF-YA are highly conserved. Therefore, NF-YA in the NF-Y complex could be substituted by CIA2 or CIL. CONCLUSIONS We show that Arabidopsis CIA2 and CIL can interact with CO and NF-Y complex, so not only may they contribute to regulate chloroplast function but also to modulate flower development.
Collapse
Affiliation(s)
- Chun-Yen Yang
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Chih-Wen Sun
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan.
| |
Collapse
|
34
|
Lee DW, Hwang I. Liquid-Liquid Phase Transition as a New Means of Protein Targeting in Chloroplasts. MOLECULAR PLANT 2020; 13:679-681. [PMID: 32298786 DOI: 10.1016/j.molp.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea.
| |
Collapse
|
35
|
Protein import into chloroplasts and its regulation by the ubiquitin-proteasome system. Biochem Soc Trans 2020; 48:71-82. [PMID: 31922184 PMCID: PMC7054747 DOI: 10.1042/bst20190274] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Chloroplasts are photosynthetic plant organelles descended from a bacterial ancestor. The vast majority of chloroplast proteins are synthesized in the cytosol and then imported into the chloroplast post-translationally. Translocation complexes exist in the organelle's outer and inner envelope membranes (termed TOC and TIC, respectively) to facilitate protein import. These systems recognize chloroplast precursor proteins and mediate their import in an energy-dependent manner. However, many unanswered questions remain regarding mechanistic details of the import process and the participation and functions of individual components; for example, the cytosolic events that mediate protein delivery to chloroplasts, the composition of the TIC apparatus, and the nature of the protein import motor all require resolution. The flux of proteins through TOC and TIC varies greatly throughout development and in response to specific environmental cues. The import process is, therefore, tightly regulated, and it has emerged that the ubiquitin-proteasome system (UPS) plays a key role in this regard, acting at several different steps in the process. The UPS is involved in: the selective degradation of transcription factors that co-ordinate the expression of chloroplast precursor proteins; the removal of unimported chloroplast precursor proteins in the cytosol; the inhibition of chloroplast biogenesis pre-germination; and the reconfiguration of the TOC apparatus in response to developmental and environmental signals in a process termed chloroplast-associated protein degradation. In this review, we highlight recent advances in our understanding of protein import into chloroplasts and how this process is regulated by the UPS.
Collapse
|
36
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
37
|
Li HM, Schnell D, Theg SM. Protein Import Motors in Chloroplasts: On the Role of Chaperones. THE PLANT CELL 2020; 32:536-542. [PMID: 31932485 PMCID: PMC7054032 DOI: 10.1105/tpc.19.00300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/01/2019] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Affiliation(s)
- Hsou-Min Li
- Institute of Molecular Biology Academia Sinica Taipei 11529, Taiwan
| | - Danny Schnell
- Department of Plant Biology Michigan State University East Lansing, Michigan 48824
| | - Steven M Theg
- Department of Plant Biology University of California Davis, California 95616
| |
Collapse
|
38
|
Richardson LGL, Schnell DJ. Origins, function, and regulation of the TOC-TIC general protein import machinery of plastids. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1226-1238. [PMID: 31730153 PMCID: PMC7031061 DOI: 10.1093/jxb/erz517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/14/2019] [Indexed: 05/11/2023]
Abstract
The evolution of chloroplasts from the original endosymbiont involved the transfer of thousands of genes from the ancestral bacterial genome to the host nucleus, thereby combining the two genetic systems to facilitate coordination of gene expression and achieve integration of host and organelle functions. A key element of successful endosymbiosis was the evolution of a unique protein import system to selectively and efficiently target nuclear-encoded proteins to their site of function within the chloroplast after synthesis in the cytoplasm. The chloroplast TOC-TIC (translocon at the outer chloroplast envelope-translocon at the inner chloroplast envelope) general protein import system is conserved across the plant kingdom, and is a system of hybrid origin, with core membrane transport components adapted from bacterial protein targeting systems, and additional components adapted from host genes to confer the specificity and directionality of import. In vascular plants, the TOC-TIC system has diversified to mediate the import of specific, functionally related classes of plastid proteins. This functional diversification occurred as the plastid family expanded to fulfill cell- and tissue-specific functions in terrestrial plants. In addition, there is growing evidence that direct regulation of TOC-TIC activities plays an essential role in the dynamic remodeling of the organelle proteome that is required to coordinate plastid biogenesis with developmental and physiological events.
Collapse
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
39
|
Ali MS, Baek KH. Co-Suppression of NbClpC1 and NbClpC2, Encoding Clp Protease Chaperons, Elicits Significant Changes in the Metabolic Profile of Nicotiana benthamiana. PLANTS 2020; 9:plants9020259. [PMID: 32085404 PMCID: PMC7076384 DOI: 10.3390/plants9020259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/30/2022]
Abstract
Metabolites in plants are the products of cellular metabolic processes, and their differential amount can be regarded as the final responses of plants to genetic, epigenetic, or environmental stresses. The Clp protease complex, composed of the chaperonic parts and degradation proteases, is the major degradation system for proteins in plastids. ClpC1 and ClpC2 are the two chaperonic proteins for the Clp protease complex and share more than 90% nucleotide and amino acid sequence similarities. In this study, we employed virus-induced gene silencing to simultaneously suppress the expression of ClpC1 and ClpC2 in Nicotiana benthamiana (NbClpC1/C2). The co-suppression of NbClpC1/C2 in N. benthamiana resulted in aberrant development, with severely chlorotic leaves and stunted growth. A comparison of the control and NbClpC1/C2 co-suppressed N. benthamiana metabolomes revealed a total of 152 metabolites identified by capillary electrophoresis time-of-flight mass spectrometry. The co-suppression of NbClpC1/C2 significantly altered the levels of metabolites in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and the purine biosynthetic pathway, as well as polyamine and antioxidant metabolites. Our results show that the simultaneous suppression of ClpC1 and ClpC2 leads to aberrant morphological changes in chloroplasts and that these changes are related to changes in the contents of major metabolites acting in cellular metabolism and biosynthetic pathways.
Collapse
|
40
|
Knopp M, Garg SG, Handrich M, Gould SB. Major Changes in Plastid Protein Import and the Origin of the Chloroplastida. iScience 2020; 23:100896. [PMID: 32088393 PMCID: PMC7038456 DOI: 10.1016/j.isci.2020.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Core components of plastid protein import and the principle of using N-terminal targeting sequences are conserved across the Archaeplastida, but lineage-specific differences exist. Here we compare, in light of plastid protein import, the response to high-light stress from representatives of the three archaeplastidal groups. Similar to land plants, Chlamydomonas reinhardtii displays a broad response to high-light stress, not observed to the same degree in the glaucophyte Cyanophora paradoxa or the rhodophyte Porphyridium purpureum. We find that only the Chloroplastida encode both Toc75 and Oep80 in parallel and suggest that elaborate high-light stress response is supported by changes in plastid protein import. We propose the origin of a phenylalanine-independent import pathway via Toc75 allowed higher import rates to rapidly service high-light stress, but with the cost of reduced specificity. Changes in plastid protein import define the origin of the green lineage, whose greatest evolutionary success was arguably the colonization of land. Chloroplastida evolved a dual system, Toc75/Oep80, for high throughput protein import Loss of F-based targeting led to dual organelle targeting using a single ambiguous NTS Relaxation of functional constraints allowed a wider Toc/Tic modification A broad response to high-light stress appears unique to Chloroplastida
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Handrich
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
41
|
Schnell DJ. The TOC GTPase Receptors: Regulators of the Fidelity, Specificity and Substrate Profiles of the General Protein Import Machinery of Chloroplasts. Protein J 2020; 38:343-350. [PMID: 31201619 PMCID: PMC6589150 DOI: 10.1007/s10930-019-09846-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
More than 2500 nuclear encoded preproteins are required for the function of chloroplasts in terrestrial plants. These preproteins are imported into chloroplasts via the concerted action of two multi-subunit translocons of the outer (TOC) and inner (TIC) membranes of the chloroplast envelope. This general import machinery functions to recognize and import proteins with high fidelity and efficiency to ensure that organelle biogenesis is properly coordinated with developmental and physiological events. Two components of the TOC machinery, Toc34 and Toc159, act as the primary receptors for preproteins at the chloroplast surface. They interact with the intrinsic targeting signals (transit peptides) of preproteins to mediate the selectivity of targeting, and they contribute to the quality control of import by constituting a GTP-dependent checkpoint in the import reaction. The TOC receptor family has expanded to regulate the import of distinct classes of preproteins that are required for remodeling of organelle proteomes during plastid-type transitions that accompany developmental changes. As such, the TOC receptors function as central regulators of the fidelity, specificity and selectivity of the general import machinery, thereby contributing to the integration of protein import with plastid biogenesis.
Collapse
Affiliation(s)
- Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
42
|
Zhang Z, Fan Y, Xiong J, Guo X, Hu K, Wang Z, Gao J, Wen J, Yi B, Shen J, Ma C, Fu T, Xia S, Tu J. Two young genes reshape a novel interaction network in Brassica napus. THE NEW PHYTOLOGIST 2020; 225:530-545. [PMID: 31407340 DOI: 10.1111/nph.16113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
New genes often drive the evolution of gene interaction networks. In Brassica napus, the widely used genic male sterile breeding system 7365ABC is controlled by two young genes, Bnams4b and BnaMs3. However, the interaction mechanism of these two young genes remains unclear. Here, we confirmed that Bnams4b interacts with the nuclear localised E3 ligase BRUTUS (BTS). Ectopic expression of AtBRUTUS (AtBTS) and comparison between Bnams4b -transgenic Arabidopsis and bts mutants suggested that Bnams4b may drive translocation of BTS to cause various toxic defects. BnaMs3 gained an exclusive interaction with the plastid outer-membrane translocon Toc33 compared with Bnams3 and AtTic40, and specifically compensated for the toxic effects of Bnams4b . Heat shock treatment also rescued the sterile phenotype, and high temperature suppressed the interaction between Bnams4b and BTS in yeast. Furthermore, the ubiquitin system and TOC (translocon at the outer envelope membrane of chloroplasts) component accumulation were affected in Bnams4b -transgenic Arabidopsis plants. Taken together, these results indicate that new chimeric Bnams4b carries BTS from nucleus to chloroplast, which may disrupt the normal ubiquitin-proteasome system to cause toxic effects, and these defects can be compensated by BnaMs3-Toc33 interaction or environmental heat shock. It reveals a scenario in which two population-specific coevolved young genes reshape a novel interaction network in plants.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Fan
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
43
|
Launay H, Receveur-Bréchot V, Carrière F, Gontero B. Orchestration of algal metabolism by protein disorder. Arch Biochem Biophys 2019; 672:108070. [PMID: 31408624 DOI: 10.1016/j.abb.2019.108070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/12/2023]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that provide many functional advantages in a large number of metabolic and signalling pathways. Because of their high flexibility that endows them with pressure-, heat- and acid-resistance, IDPs are valuable metabolic regulators that help algae to cope with extreme conditions of pH, temperature, pressure and light. They have, however, been overlooked in these organisms. In this review, we present some well-known algal IDPs, including the conditionally disordered CP12, a protein involved in the regulation of CO2 assimilation, as probably the best known example, whose disorder content is strongly dependent on the redox conditions, and the essential pyrenoid component 1 that serves as a scaffold for ribulose-1, 5-bisphosphate carboxylase/oxygenase. We also describe how some enzymes are regulated by protein regions, called intrinsically disordered regions (IDRs), such as ribulose-1, 5-bisphosphate carboxylase/oxygenase activase, the A2B2 form of glyceraldehyde-3-phosphate dehydrogenase and the adenylate kinase. Several molecular chaperones, which are crucial for cell proteostasis, also display significant disorder propensities such as the algal heat shock proteins HSP33, HSP70 and HSP90. This review confirms the wide distribution of IDPs in algae but highlights that further studies are needed to uncover their full role in orchestrating algal metabolism.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.
| |
Collapse
|
44
|
Protein import into chloroplasts via the Tic40-dependent and -independent pathways depends on the amino acid composition of the transit peptide. Biochem Biophys Res Commun 2019; 518:66-71. [PMID: 31400859 DOI: 10.1016/j.bbrc.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 11/23/2022]
Abstract
Preprotein import into chloroplasts is mediated by the coordinated actions of translocons at the outer and inner envelopes of chloroplasts (Toc and Tic, respectively). The cleavable N-terminal transit peptide (TP) of preproteins plays an essential role in the import of preproteins into chloroplasts. The Tic40 protein, a component of the Tic complex, is believed to mediate the import of preproteins through the inner envelope. In this study, we aimed to obtain in vivo evidence supporting the role of Tic40 in preprotein import into chloroplasts. Contrary to previous findings, the import of various preproteins with wild-type TPs showed no difference between tic40 and wild-type protoplasts of Arabidopsis thaliana. However, the import of N-terminal mutants of the RbcS protein (RbcS-nt), in which basic amino acid residues (arginine and lysine) in the central region of the TP were substituted with neutral (alanine) or acidic (glutamic acid) amino acid residues, was dependent on Tic40. In addition, in tic40 protoplasts, the inner envelope protein Tic40 tagged with HA (hemagglutinin) showed more intermediate form present in the stroma. Based on these results, we propose that protein can be imported into chloroplast by either Tic40-independent or Tic40-dependent pathways depending on the types of TP.
Collapse
|
45
|
Yeates AM, Zubko MK, Ruban AV. Absence of photosynthetic state transitions in alien chloroplasts. PLANTA 2019; 250:589-601. [PMID: 31134341 PMCID: PMC6602992 DOI: 10.1007/s00425-019-03187-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION The absence of state transitions in a Nt(Hn) cybrid is due to a cleavage of the threonine residue from the misprocessed N-terminus of the LHCII polypeptides. The cooperation between the nucleus and chloroplast genomes is essential for plant photosynthetic fitness. The rapid and specific interactions between nucleus-encoded and chloroplast-encoded proteins are under intense investigation with potential for applications in agriculture and renewable energy technology. Here, we present a novel model for photosynthesis research in which alien henbane (Hyoscyamus niger) chloroplasts function on the nuclear background of a tobacco (Nicotiana tabacum). The result of this coupling is a cytoplasmic hybrid (cybrid) with inhibited state transitions-a mechanism responsible for balancing energy absorption between photosystems. Protein analysis showed differences in the LHCII composition of the cybrid plants. SDS-PAGE analysis revealed a novel banding pattern in the cybrids with at least one additional 'LHCII' band compared to the wild-type parental species. Proteomic work suggested that the N-terminus of at least some of the cybrid Lhcb proteins was missing. These findings provide a mechanistic explanation for the lack of state transitions-the N-terminal truncation of the Lhcb proteins in the cybrid included the threonine residue that is phosphorylated/dephosphorylated in order to trigger state transitions and therefore crucial energy balancing mechanism in plants.
Collapse
Affiliation(s)
- Anna M Yeates
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Mikrobiologický Institute, Novohradská 237 - Opatovický Mlýn, 37901, Třeboň, Czech Republic
| | - Mikhajlo K Zubko
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester St, Manchester, M1 5GD, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
46
|
Sadali NM, Sowden RG, Ling Q, Jarvis RP. Differentiation of chromoplasts and other plastids in plants. PLANT CELL REPORTS 2019; 38:803-818. [PMID: 31079194 PMCID: PMC6584231 DOI: 10.1007/s00299-019-02420-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 05/17/2023]
Abstract
Plant cells are characterized by a unique group of interconvertible organelles called plastids, which are descended from prokaryotic endosymbionts. The most studied plastid type is the chloroplast, which carries out the ancestral plastid function of photosynthesis. During the course of evolution, plastid activities were increasingly integrated with cellular metabolism and functions, and plant developmental processes, and this led to the creation of new types of non-photosynthetic plastids. These include the chromoplast, a carotenoid-rich organelle typically found in flowers and fruits. Here, we provide an introduction to non-photosynthetic plastids, and then review the structures and functions of chromoplasts in detail. The role of chromoplast differentiation in fruit ripening in particular is explored, and the factors that govern plastid development are examined, including hormonal regulation, gene expression, and plastid protein import. In the latter process, nucleus-encoded preproteins must pass through two successive protein translocons in the outer and inner envelope membranes of the plastid; these are known as TOC and TIC (translocon at the outer/inner chloroplast envelope), respectively. The discovery of SP1 (suppressor of ppi1 locus1), which encodes a RING-type ubiquitin E3 ligase localized in the plastid outer envelope membrane, revealed that plastid protein import is regulated through the selective targeting of TOC complexes for degradation by the ubiquitin-proteasome system. This suggests the possibility of engineering plastid protein import in novel crop improvement strategies.
Collapse
Affiliation(s)
- Najiah M Sadali
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Robert G Sowden
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
47
|
de Luna-Valdez LA, Villaseñor-Salmerón CI, Cordoba E, Vera-Estrella R, León-Mejía P, Guevara-García AA. Functional analysis of the Chloroplast GrpE (CGE) proteins from Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:293-306. [PMID: 30927692 DOI: 10.1016/j.plaphy.2019.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
The function of proteins depends on specific partners that regulate protein folding, degradation and protein-protein interactions, such partners are the chaperones and cochaperones. In chloroplasts, proteins belonging to several families of chaperones have been identified: chaperonins (Cpn60s), Hsp90s (Hsp90-5/Hsp90C), Hsp100s (Hsp93/ClpC) and Hsp70s (cpHsc70s). Several lines of evidence have demonstrated that cpHsc70 chaperones are involved in molecular processes like protein import, protein folding and oligomer formation that impact important physiological aspects in plants such as thermotolerance and thylakoid biogenesis. Despite the vast amount of data existing around the function of cpHcp70s chaperones, very little attention has been paid to the roles of DnaJ and GrpE cochaperones in the chloroplast. In this study, we performed a phylogenetic analysis of the chloroplastic GrpE (CGE) proteins from 71 species. Based on their phylogenetic relationships and on a motif enrichment analysis, we propose a classification system for land plants' CGEs, which include two independent groups with specific primary structure traits. Furthermore, using in vivo assays we determined that the two CGEs from A. thaliana (AtCGEs) complement the mutant phenotype displayed by a knockout E. coli strain defective in the bacterial grpE gene. Moreover, we determined in planta that the two AtCGEs are bona fide chloroplastic proteins, which form the essential homodimers needed to establish direct physical interactions with the cpHsc70-1 chaperone. Finally, we found evidence suggesting that AtCGE1 is involved in specific physiological phenomena in A. thaliana, such as the chloroplastic response to heat stress, and the correct oligomerization of the photosynthesis-related LHCII complex.
Collapse
Affiliation(s)
- L A de Luna-Valdez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - C I Villaseñor-Salmerón
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - E Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - R Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - P León-Mejía
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - A A Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
48
|
Wiesemann K, Simm S, Mirus O, Ladig R, Schleiff E. Regulation of two GTPases Toc159 and Toc34 in the translocon of the outer envelope of chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:627-636. [PMID: 30611779 DOI: 10.1016/j.bbapap.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023]
Abstract
The GTPases Toc159 and Toc34 of the translocon of the outer envelope of chloroplasts (TOC) are involved in recognition and transfer of precursor proteins at the cytosolic face of the organelle. Both proteins engage multiple interactions within the translocon during the translocation process, including dimeric states of their G-domains. The units of the Toc34 homodimer are involved in the recognition of the transit peptide representing the translocation signal of precursor proteins. This substrate recognition is part of the regulation of the GTPase cycle of Toc34. The Toc159 monomer and the Toc34 homodimer recognize the transit peptide of the small subunit of Rubisco at the N- and at the C-terminal region, respectively. Analysis of the transit peptide interaction by crosslinking shows that the heterodimer between both G-domains binds pSSU most efficiently. While substrate recognition by Toc34 homodimer was shown to regulate nucleotide exchange, we provide evidence that the high activation energy of the GTPase Toc159 is lowered by substrate recognition. The nucleotide affinity of Toc34G homodimer and Toc159G monomer are distinct, Toc34G homodimer recognizes GDP and Toc159G GTP with highest affinity. Moreover, the analysis of the nucleotide association rates of the monomeric and dimeric receptor units suggests that the heterodimer has an arrangement distinct from the homodimer of Toc34. Based on the biochemical parameters determined we propose a model for the order of events at the cytosolic side of TOC. The molecular processes described by this hypothesis range from transit peptide recognition to perception of the substrate by the translocation channel.
Collapse
Affiliation(s)
- Katharina Wiesemann
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany
| | - Oliver Mirus
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Cluster of Excellence Frankfurt, Goethe University, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany; Cluster of Excellence Frankfurt, Goethe University, D-60438 Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Str. 15, D-60438 Frankfurt, Germany.
| |
Collapse
|
49
|
Ganesan I, Theg SM. Structural considerations of folded protein import through the chloroplast TOC/TIC translocons. FEBS Lett 2019; 593:565-572. [PMID: 30775779 DOI: 10.1002/1873-3468.13342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 11/11/2022]
Abstract
Protein import into chloroplasts is carried out by the protein translocons at the outer and inner envelope membranes (TOC and TIC). Detailed structures for these translocons are lacking, with only a low-resolution TOC complex structure available. Recently, we showed that the TOC/TIC translocons can import folded proteins, a rather unique feat for a coupled double membrane system. We also determined the maximum functional TOC/TIC pore size to be 30-35 Å. Here, we discuss how such large pores could form and compare the structural dynamics of the pore-forming Toc75 subunit to its bacterial/mitochondrial Omp85 family homologs. We put forward structural models that can be empirically tested and also briefly review the pore dynamics of other protein translocons with known structures.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Department of Plant Biology, University of California Davis, CA, USA
| | - Steven M Theg
- Department of Plant Biology, University of California Davis, CA, USA
| |
Collapse
|
50
|
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. FRONTIERS IN PLANT SCIENCE 2019; 10:593. [PMID: 31156665 PMCID: PMC6530659 DOI: 10.3389/fpls.2019.00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Higher plants contain a small, 5-member family of Rieske non-heme oxygenases that comprise the inner plastid envelope protein TIC55, phaeophorbide a oxygenasee (PAO), chlorophyllide a oxygenase (CAO), choline monooxygenase, and a 52 kDa protein (PTC52) associated with the precursor NADPH:protochlorophyllide (Pchlide) oxidoreductase A (pPORA) A translocon (PTC). Some of these chloroplast proteins have documented roles in chlorophyll biosynthesis (CAO) and degradation (PAO and TIC55), whereas the function of PTC52 remains unresolved. Biochemical evidence provided here identifies PTC52 as Pchlide a oxygenase of the inner plastid envelope linking Pchlide b synthesis to pPORA import. Protochlorophyllide b is the preferred substrate of PORA and its lack no longer allows pPORA import. The Pchlide b-dependent import pathway of pPORA thus operates in etiolated seedlings and is switched off during greening. Using dexamethasone-induced RNA interference (RNAi) we tested if PTC52 is involved in controlling both, pPORA import and Pchlide homeostasis in planta. As shown here, RNAi plants deprived of PTC52 transcript and PTC52 protein were unable to import pPORA and died as a result of excess Pchlide a accumulation causing singlet oxygen formation during greening. In genetic studies, no homozygous ptc52 knock-out mutants could be obtained presumably as a result of embryo lethality, suggesting a role for PTC52 in the initial greening of plant embryos. Phylogenetic studies identified PTC52-like genes amongst unicellular photosynthetic bacteria and higher plants, suggesting that the biochemical function associated with PTC52 may have an ancient evolutionary origin. PTC52 also harbors conserved motifs with bacterial oxygenases such as the terminal oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KshA) from Rhodococcus rhodochrous. 3D-modeling of PTC52 structure permitted the prediction of amino acid residues that contribute to the substrate specificity of this enzyme. In vitro-mutagenesis was used to test the predicted PTC52 model and provide insights into the reaction mechanism of this Rieske non-heme oxygenase.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
- *Correspondence: Steffen Reinbothe, John Gray,
| | - Sandra Bartsch
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Claudia Rossig
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Steffen Reinbothe, John Gray,
| |
Collapse
|