1
|
Chen X, Li B. Analysis of Co-localized Biosynthetic Gene Clusters Identifies a Membrane-Permeabilizing Natural Product. JOURNAL OF NATURAL PRODUCTS 2024; 87:1694-1703. [PMID: 38949271 DOI: 10.1021/acs.jnatprod.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Combination therapy is an effective strategy to combat antibiotic resistance. Multiple synergistic antimicrobial combinations are produced by enzymes encoded in biosynthetic gene clusters (BGCs) that co-localize on the bacterial genome. This phenomenon led to the hypothesis that mining co-localized BGCs will reveal new synergistic combinations of natural products. Here, we bioinformatically identified 38 pairs of co-localized BGCs, which we predict to produce natural products that are related to known compounds, including polycyclic tetramate macrolactams (PoTeMs). We further showed that ikarugamycin, a PoTeM, increases the membrane permeability of Acinetobacter baumannii and Staphylococcus aureus, which suggests that ikarugamycin might be an adjuvant that facilitates the entry of other natural products. Our work outlines a promising avenue to discover synergistic combinations of natural products by mining bacterial genomes.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
3
|
Chodkowski JL, Shade A. Bioactive exometabolites drive maintenance competition in simple bacterial communities. mSystems 2024; 9:e0006424. [PMID: 38470039 PMCID: PMC11019792 DOI: 10.1128/msystems.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
During prolonged resource limitation, bacterial cells can persist in metabolically active states of non-growth. These maintenance periods, such as those experienced in stationary phase, can include upregulation of secondary metabolism and release of exometabolites into the local environment. As resource limitation is common in many environmental microbial habitats, we hypothesized that neighboring bacterial populations employ exometabolites to compete or cooperate during maintenance and that these exometabolite-facilitated interactions can drive community outcomes. Here, we evaluated the consequences of exometabolite interactions over the stationary phase among three environmental strains: Burkholderia thailandensis E264, Chromobacterium subtsugae ATCC 31532, and Pseudomonas syringae pv. tomato DC3000. We assembled them into synthetic communities that only permitted chemical interactions. We compared the responses (transcripts) and outputs (exometabolites) of each member with and without neighbors. We found that transcriptional dynamics were changed with different neighbors and that some of these changes were coordinated between members. The dominant competitor B. thailandensis consistently upregulated biosynthetic gene clusters to produce bioactive exometabolites for both exploitative and interference competition. These results demonstrate that competition strategies during maintenance can contribute to community-level outcomes. It also suggests that the traditional concept of defining competitiveness by growth outcomes may be narrow and that maintenance competition could be an additional or alternative measure. IMPORTANCE Free-living microbial populations often persist and engage in environments that offer few or inconsistently available resources. Thus, it is important to investigate microbial interactions in this common and ecologically relevant condition of non-growth. This work investigates the consequences of resource limitation for community metabolic output and for population interactions in simple synthetic bacterial communities. Despite non-growth, we observed active, exometabolite-mediated competition among the bacterial populations. Many of these interactions and produced exometabolites were dependent on the community composition but we also observed that one dominant competitor consistently produced interfering exometabolites regardless. These results are important for predicting and understanding microbial interactions in resource-limited environments.
Collapse
Affiliation(s)
- John L. Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| |
Collapse
|
4
|
Sathyamoorthi S. Fun With Unusual Functional Groups: Sulfamates, Phosphoramidates, and Di-tert-butyl Silanols. European J Org Chem 2024; 27:e202301283. [PMID: 39309710 PMCID: PMC11415259 DOI: 10.1002/ejoc.202301283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 09/25/2024]
Abstract
Compared to ubiquitous functional groups such as alcohols, carboxylic acids, amines, and amides, which serve as central "actors" in most organic reactions, sulfamates, phosphoramidates, and di-tert-butyl silanols have historically been viewed as "extras". Largely considered functional group curiosities rather than launch-points of vital reactivity, the chemistry of these moieties is under-developed. Our research program has uncovered new facets of reactivity of each of these functional groups, and we are optimistic that the chemistry of these fascinating molecules can be developed into truly general transformations, useful for chemists across multiple disciplines. In the ensuing sections, I will describe our efforts to develop new reactions with these "unusual" functional groups, namely sulfamates, phosphoramidates, and di-tert-butyl silanols.
Collapse
Affiliation(s)
- Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
5
|
Sinha SK, Ghosh P, Jain S, Maiti S, Al-Thabati SA, Alshehri AA, Mokhtar M, Maiti D. Transition-metal catalyzed C-H activation as a means of synthesizing complex natural products. Chem Soc Rev 2023; 52:7461-7503. [PMID: 37811747 DOI: 10.1039/d3cs00282a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Over the past few decades, the advent of C-H activation has led to a rethink among chemists about the synthetic strategies employed for multi-step transformations. Indeed, deploying innovative and masterful tricks against the numerous classical organic transformations has been the need of the hour. Despite this, the immense importance of C-H activation remains unfulfilled unless the methodology can be deployed for large-scale industrial processes and towards the concise, step-economic synthesis of prodigious natural products and pharmaceutical drugs. Lately, the growing potential of C-H activation methodology has indeed driven the pioneers of synthetic organic chemists into finding more efficient methods to accelerate the synthesis of such complex molecular scaffolds. This review aims to draw a general overview of the various C-H activation procedures that have been adopted for synthesizing these vast majority of structurally complicated natural products. Our objective lies in drawing a complete picture and taking the readers through the synthesis of a series of such complex organic compounds by simplified techniques, making it step-economic on a larger scale and thus instigating the readers to trigger the use of such methodology and uncover new, unique patterns for future synthesis of such natural products.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shubhanshu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh - 466114, India
| | - Shaeel A Al-Thabati
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdulmohsen Ali Alshehri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohamed Mokhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
6
|
Seely SM, Parajuli NP, De Tarafder A, Ge X, Sanyal S, Gagnon MG. Molecular basis of the pleiotropic effects by the antibiotic amikacin on the ribosome. Nat Commun 2023; 14:4666. [PMID: 37537169 PMCID: PMC10400623 DOI: 10.1038/s41467-023-40416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria. Amikacin carries the 4-amino-2-hydroxy butyrate (AHB) moiety at the N1 amino group of the central 2-deoxystreptamine (2-DOS) ring, which may confer amikacin a unique ribosome inhibition profile. Here we use in vitro fast kinetics combined with X-ray crystallography and cryo-EM to dissect the mechanisms of ribosome inhibition by amikacin and the parent compound, kanamycin. Amikacin interferes with tRNA translocation, release factor-mediated peptidyl-tRNA hydrolysis, and ribosome recycling, traits attributed to the additional interactions amikacin makes with the decoding center. The binding site in the large ribosomal subunit proximal to the 3'-end of tRNA in the peptidyl (P) site lays the groundwork for rational design of amikacin derivatives with improved antibacterial properties.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Narayan P Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Arindam De Tarafder
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
7
|
Engdahl CS, Tikhe CV, Dimopoulos G. Discovery of novel natural products for mosquito control. Parasit Vectors 2022; 15:481. [PMID: 36539851 PMCID: PMC9768913 DOI: 10.1186/s13071-022-05594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Vector control plays a key role in reducing the public health burden of mosquito-borne diseases. Today's vector control strategies largely rely on synthetic insecticides that can have a negative environmental impact when applied outdoors and often become inefficient because of the mosquitoes' ability to develop resistance. An alternative and promising approach to circumvent these challenges involves the implementation of insecticides derived from nature (biopesticides) for vector control. Biopesticides can constitute naturally occurring organisms or substances derived from them that have lifespan-shortening effects on disease vectors such as mosquitoes. Here we present the discovery and evaluation of natural product-based biological control agents that can potentially be developed into biopesticides for mosquito control. We screened a natural product collection comprising 390 compounds and initially identified 26 molecules with potential ability to kill the larval stages of the yellow fever mosquito Aedes aegypti, which is responsible for transmitting viruses such as dengue, Zika, chikungunya and yellow fever. Natural products identified as hits in the screen were further evaluated for their suitability for biopesticide development. We show that a selection of the natural product top hits, bactobolin, maytansine and ossamycin, also killed the larval stages of the malaria-transmitting mosquito Anopheles gambiae as well as the adult form of both species. We have further explored the usefulness of crude extracts and preparations from two of the best candidates' sources (organisms of origin) for mosquitocidal activity, that is extracts from the two bacteria Burkholderia thailandensis and Streptomyces hygroscopicus var. ossamyceticus.
Collapse
Affiliation(s)
- Cecilia S Engdahl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden
| | - Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Nagamalla S, Mague JT, Sathyamoorthi S. Progress towards the syntheses of Bactobolin A and C4- epi-Bactobolin A using a sulfamate-tethered aza-Wacker cyclization strategy. Tetrahedron 2022; 128:133112. [PMID: 37719878 PMCID: PMC10503945 DOI: 10.1016/j.tet.2022.133112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a progress report towards Bactobolin A and C4-epi-Bactobolin A. Sulfamate-tethered aza-Wacker cyclization followed by a Tsuji-Wacker ketone synthesis furnishes a key tricyclic intermediate which we hypothesize can be elaborated into C4-epi-Bactobolin A. Epimerization of one of the stereocenters of this compound furnishes an intermediate which we hypothesize can be elaborated into Bactobolin A.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- University of Kansas, Department of Medicinal Chemistry, Lawrence, KS, 66047, USA
| | - Joel T. Mague
- Tulane University, Department of Chemistry, New Orleans, LA, 70118, USA
| | - Shyam Sathyamoorthi
- University of Kansas, Department of Medicinal Chemistry, Lawrence, KS, 66047, USA
| |
Collapse
|
9
|
Tharra PR, Mikhaylov AA, Švejkar J, Gysin M, Hobbie SN, Švenda J. Short Synthesis of (+)‐Actinobolin: Simple Entry to Complex Small‐Molecule Inhibitors of Protein Synthesis. Angew Chem Int Ed Engl 2022; 61:e202116520. [DOI: 10.1002/anie.202116520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Prabhakara R. Tharra
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Andrey A. Mikhaylov
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Jiří Švejkar
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
| | - Marina Gysin
- Institute of Medical Microbiology University of Zürich Gloriastrasse 30 Zürich 8006 Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology University of Zürich Gloriastrasse 30 Zürich 8006 Switzerland
| | - Jakub Švenda
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| |
Collapse
|
10
|
Tharra PR, Mikhaylov AA, Švejkar J, Gysin M, Hobbie SN, Švenda J. Short Synthesis of (+)‐Actinobolin: Simple Entry to Complex Small‐Molecule Inhibitors of Protein Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prabhakara R. Tharra
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Andrey A. Mikhaylov
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Jiří Švejkar
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
| | - Marina Gysin
- Institute of Medical Microbiology University of Zürich Gloriastrasse 30 Zürich 8006 Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology University of Zürich Gloriastrasse 30 Zürich 8006 Switzerland
| | - Jakub Švenda
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| |
Collapse
|
11
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
14
|
Nelli MR, Heitmeier KN, Looper RE. Dissecting the Nucleoside Antibiotics as Universal Translation Inhibitors. Acc Chem Res 2021; 54:2798-2811. [PMID: 34152729 DOI: 10.1021/acs.accounts.1c00221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Without question, natural products have provided the lion share of leads, if not drugs themselves, for the treatment of bacterial infections. The bacterial arms race, fueled by selection and survival pressures has delivered a natural arsenal of small molecules targeting the most essential of life processes. Antibiotics that target these critical intracellular processes face the formidable defense of both penetrating a bacterial cell membrane and avoiding efflux to exert their effect. These challenges are especially effective in Gram-negative (Gram-(-)) bacteria, which have a double membrane structure and efficient efflux systems from the combination of outer-membrane porins and inner membrane proton pumps. In this landscape of offense and defense, our clinically used antibiotics have only successfully targeted three intracellular processes for therapeutic intervention in Gram-(-) bacteria: dihydrofolate biosynthesis, transcription, and translation. Not surprisingly, such critical survival machinery is a popular target for bacterial warfare, and eight of our 14 classes of commonly used antibiotics target translation with the bacterial ribosome remaining one the most vetted targets for antimicrobial therapy. On the plus side, its anionic character attracts cationic inhibitors, which are generally more capable of penetrating the bacterial cell wall, and clinical resistance rates are usually manageable as mutation of such a highly evolved machine is difficult. On the down side, this highly evolved machine renders it difficult to inhibit selectively, and the inhibition of prokaryotic translation versus both eukaryotic cellular and mitochondrial translation is critical for clinical development and minimization of undesired toxicities.A class of natural products known as the "nucleoside antibiotics" have historically been recognized as universal inhibitors of the ribosome and can inhibit translation in prokaryotes, eukaryotes, and archaea. While they have served an essential role in dissecting the biochemical underpinnings of the enzymatic functions of the ribosome, they have not proven therapeutically useful as they target the highly conserved rRNA in the P-site and are toxic to mammalian cells. In this Account, we describe our studies on the natural product amicetin, a nucleoside antibiotic that we have demonstrated to break the rule of being a universal translation inhibitor. While the cytosine of amicetin mimics C75 of the 3'-CCA tail of the P-site tRNA akin to other nucleoside antibiotics, we advance a hypothesis that amicetin's unique interaction with the ribosomal protein uL16 exploits an untapped mechanism for selectively targeting the bacterial ribosome. A complex molecule comprised of a nucleoside, carbohydrates and amino acids, amicetin is also chemically unstable. Our initial attempts to stabilize and simplify this scaffold are presented with the ultimate goal of rebuilding the compound with improved penetrance to bacterial cells. If successful, this scaffold would demonstrate a path forward for a new class of antibiotics capable of selectively targeting the ribosomal P-site.
Collapse
Affiliation(s)
- Matthew R. Nelli
- Department of Chemistry, University of Utah, Salt Lake City Utah 84103, United States
| | - Kendall N. Heitmeier
- Department of Chemistry, University of Utah, Salt Lake City Utah 84103, United States
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, Salt Lake City Utah 84103, United States
| |
Collapse
|
15
|
Nagamalla S, Johnson DK, Sathyamoorthi S. Sulfamate-tethered aza-Wacker approach towards analogs of Bactobolin A. Med Chem Res 2021; 30:1348-1357. [PMID: 37860778 PMCID: PMC10586517 DOI: 10.1007/s00044-021-02724-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Here, we describe an approach towards analogs of the potent antibiotic Bactobolin A. Sulfamate-tethered aza-Wacker cyclization reactions furnish key synthons, which we envision can be elaborated into analogs of Bactobolin A. Docking studies show that the C4 epimer of Bactobolin A and the C4/C6 diastereomer interact with different residues of the 23S rRNA (bacterial ribosome 50S subunit) than the natural product, suggesting that these molecules could be valuable tool compounds for fundamental studies of the bacterial translational machinery.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - David K. Johnson
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
16
|
Foxfire A, Buhrow AR, Orugunty RS, Smith L. Drug discovery through the isolation of natural products from Burkholderia. Expert Opin Drug Discov 2021; 16:807-822. [PMID: 33467922 PMCID: PMC9844120 DOI: 10.1080/17460441.2021.1877655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: The increasing threat of antibiotic-resistant pathogens makes it imperative that new antibiotics to combat them are discovered. Burkholderia is a genus of Gram-negative, non-sporulating bacteria. While ubiquitous and capable of growing within plants and groundwater, they are primarily soil-dwelling organisms. These include the more virulent forms of Burkholderia such as Burkholderia mallei, Burkholderia pseudomallei, and the Burkholderia cepacia complex (Bcc).Areas covered: This review provides a synopsis of current research on the natural products isolated from the genus Burkholderia. The authors also cover the research on the drug discovery efforts that have been performed on the natural products derived from Burkholderia.Expert opinion: Though Burkholderia has a small number of pathogenic species, the majority of the genus is avirulent and almost all members of the genus are capable of producing useful antimicrobial products that could potentially lead to the development of novel therapeutics against infectious diseases. The need for discovery of new antibiotics is urgent due to the ever-increasing prevalence of antibiotic-resistant pathogens, coupled with the decline in the discovery of new antibiotics.
Collapse
Affiliation(s)
- Adam Foxfire
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Andrew Riley Buhrow
- Department of Biology, Texas A&M University, College Station, TX 77843,Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77803
| | | | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843,Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77803,Address correspondence to Leif Smith,
| |
Collapse
|
17
|
Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures. Appl Environ Microbiol 2020; 86:AEM.01452-20. [PMID: 33008823 DOI: 10.1128/aem.01452-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
The bacterium Burkholderia thailandensis produces an arsenal of secondary metabolites that have diverse structures and roles in the ecology of this soil-dwelling bacterium. In coculture experiments, B. thailandensis strain E264 secretes an antimicrobial that nearly eliminates another soil bacterium, Bacillus subtilis strain 168. To identify the antimicrobial, we used a transposon mutagenesis approach. This screen identified antimicrobial-defective mutants with insertions in the hmqA, hmqC, and hmqF genes involved in biosynthesis of a family of 2-alkyl-4(1H)-quinolones called 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs), which are closely related to the Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs). Insertions also occurred in the previously uncharacterized gene BTH_II1576 ("hmqL"). The results confirm that BTH_II1576 is involved in generating N-oxide derivatives of HMAQs (HMAQ-NOs). Synthetic HMAQ-NO is active against B. subtilis 168, showing ∼50-fold more activity than HMAQ. Both the methyl group and the length of the carbon side chain account for the high activity of HMAQ-NO. The results provide new information on the biosynthesis and activities of HMAQs and reveal new insight into how these molecules might be important for the ecology of B. thailandensis IMPORTANCE The soil bacterium Burkholderia thailandensis produces 2-alkyl-4(1H)-quinolones that are mostly methylated 4-hydroxyalkenylquinolines, a family of relatively unstudied metabolites similar to molecules also synthesized by Pseudomonas aeruginosa Several of the methylated 4-hydroxyalkenylquinolines have antimicrobial activity against other species. We show that Bacillus subtilis strain 168 is particularly susceptible to N-oxidated methylalkenylquinolines (HMAQ-NOs). We confirmed that HMAQ-NO biosynthesis requires the previously unstudied protein HmqL. These results provide new information about the biology of 2-alkyl-4(1H)-quinolones, particularly the methylated 4-hydroxyalkenylquinolines, which are unique to B. thailandensis This study also has importance for understanding B. thailandensis secondary metabolites and has implications for potential therapeutic development.
Collapse
|
18
|
Secondary metabolites from the Burkholderia pseudomallei complex: structure, ecology, and evolution. J Ind Microbiol Biotechnol 2020; 47:877-887. [PMID: 33052546 DOI: 10.1007/s10295-020-02317-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Bacterial secondary metabolites play important roles in promoting survival, though few have been carefully studied in their natural context. Numerous gene clusters code for secondary metabolites in the genomes of members of the Bptm group, made up of three closely related species with distinctly different lifestyles: the opportunistic pathogen Burkholderia pseudomallei, the non-pathogenic saprophyte Burkholderia thailandensis, and the host-adapted pathogen Burkholderia mallei. Several biosynthetic gene clusters are conserved across two or all three species, and this provides an opportunity to understand how the corresponding secondary metabolites contribute to survival in different contexts in nature. In this review, we discuss three secondary metabolites from the Bptm group: bactobolin, malleilactone (and malleicyprol), and the 4-hydroxy-3-methyl-2-alkylquinolines, providing an overview of each of their biosynthetic pathways and insight into their potential ecological roles. Results of studies on these secondary metabolites provide a window into how secondary metabolites contribute to bacterial survival in different environments, from host infections to polymicrobial soil communities.
Collapse
|
19
|
Serrano CM, Kannareddy HR, Eiler D, Koch M, Tresco BIC, Barrows LR, Vanderlinden RT, Testa CA, Sebahar PR, Looper RE. Unifying the Aminohexopyranose- and Peptidyl-Nucleoside Antibiotics: Implications for Antibiotic Design. Angew Chem Int Ed Engl 2020; 59:11330-11333. [PMID: 32342623 PMCID: PMC8186834 DOI: 10.1002/anie.202003094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Indexed: 11/09/2022]
Abstract
In search of new anti-tuberculars compatible with anti-retroviral therapy we re-identified amicetin as a lead compound. Amicetin's binding to the 70S ribosomal subunit of Thermus thermophilus (Tth) has been unambiguously determined by crystallography and reveals it to occupy the peptidyl transferase center P-site of the ribosome. The amicetin binding site overlaps significantly with that of the well-known protein synthesis inhibitor balsticidin S. Amicetin, however, is the first compound structurally characterized to bind to the P-site with demonstrated selectivity for the inhibition of prokaryotic translation. The natural product-ribosome structure enabled the synthesis of simplified analogues that retained both potency and selectivity for the inhibition of prokaryotic translation.
Collapse
Affiliation(s)
- Catherine M. Serrano
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112 (USA)
| | | | - Daniel Eiler
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave., New Haven, CT 06250 (USA)
| | - Michael Koch
- Department of Pharmacology and Toxicology, University of Utah, 30 South 1900 East, Salt Lake City, Utah, 84112 (USA)
| | - Ben I. C. Tresco
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112 (USA)
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, 30 South 1900 East, Salt Lake City, Utah, 84112 (USA)
| | - Ryan T. Vanderlinden
- Synthetic and Medicinal Chemistry Core Facility, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112 (USA)
| | - Charles A. Testa
- Synthetic and Medicinal Chemistry Core Facility, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112 (USA)
| | - Paul R. Sebahar
- Synthetic and Medicinal Chemistry Core Facility, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112 (USA)
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112 (USA)
- Synthetic and Medicinal Chemistry Core Facility, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112 (USA)
| |
Collapse
|
20
|
Mao D, Yoshimura A, Wang R, Seyedsayamdost MR. Reporter-Guided Transposon Mutant Selection for Activation of Silent Gene Clusters in Burkholderia thailandensis. Chembiochem 2020; 21:1826-1831. [PMID: 31984619 DOI: 10.1002/cbic.201900748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression. Herein, we apply a similar approach to Burkholderia thailandensis and, using transposon mutagenesis, mutagenize three strains, each carrying a fluorescent reporter in the malleilactone (mal), capistruin (cap), or an unidentified ribosomal peptide (tomm) gene cluster. We show that even a small library of <500 mutants can be used to induce expression of each cluster. We also explore the mechanism of activation and find that inhibition of pyrimidine biosynthesis is linked to the induction of the mal cluster. Both a transposon insertion into pyrF as well as small-molecule-mediated inhibition of PyrF trigger malleilactone biosynthesis. Our results pave the way toward the broad application of RGMS and related approaches to Burkholderia spp.
Collapse
Affiliation(s)
- Dainan Mao
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Aya Yoshimura
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Rurun Wang
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
21
|
Park JD, Moon K, Miller C, Rose J, Xu F, Ebmeier CC, Jacobsen JR, Mao D, Old WM, DeShazer D, Seyedsayamdost MR. Thailandenes, Cryptic Polyene Natural Products Isolated from Burkholderia thailandensis Using Phenotype-Guided Transposon Mutagenesis. ACS Chem Biol 2020; 15:1195-1203. [PMID: 31816232 DOI: 10.1021/acschembio.9b00883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Burkholderia thailandensis has emerged as a model organism for investigating the production and regulation of diverse secondary metabolites. Most of the biosynthetic gene clusters encoded in B. thailandensis are silent, motivating the development of new methods for accessing their products. In the current work, we add to the canon of available approaches using phenotype-guided transposon mutagenesis to characterize a silent biosynthetic gene cluster. Because secondary metabolite biosynthesis is often associated with phenotypic changes, we carried out random transposon mutagenesis followed by phenotypic inspection of the resulting colonies. Several mutants exhibited intense pigmentation and enhanced expression of an iterative type I polyketide synthase cluster that we term org. Disruptions of orgA, orgB, and orgC abolished the biosynthesis of the diffusible pigment, thus linking it to the org operon. Isolation and structural elucidation by HR-MS and 1D/2D NMR spectroscopy revealed three novel, cryptic metabolites, thailandene A-C. Thailandenes are linear formylated or acidic polyenes containing a combination of cis and trans double bonds. Variants A and B exhibited potent antibiotic activity against Staphylococcus aureus and Saccharomyces cerevisiae but not against Escherichia coli. One of the transposon mutants that exhibited an enhanced expression of org contained an insertion upstream of a σ54-dependent transcription factor. Closer inspection of the org operon uncovered a σ54 promoter consensus sequence upstream of orgA, providing clues regarding its regulation. Our results showcase the utility of phenotype-guided transposon mutagenesis in uncovering cryptic metabolites encoded in bacterial genomes.
Collapse
Affiliation(s)
- Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kyuho Moon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Cheryl Miller
- Molecular and Translational Science Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Jessica Rose
- Biotechnology Program, Hagerstown Community College, Hagerstown, Maryland 21742, United States
| | - Fei Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Christopher C. Ebmeier
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Jeremy R. Jacobsen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Dainan Mao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William M. Old
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | | |
Collapse
|
22
|
Serrano CM, Kanna Reddy HR, Eiler D, Koch M, Tresco BIC, Barrows LR, VanderLinden RT, Testa CA, Sebahar PR, Looper RE. Unifying the Aminohexopyranose‐ and Peptidyl‐Nucleoside Antibiotics: Implications for Antibiotic Design. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Catherine M. Serrano
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | | | - Daniel Eiler
- Department of Molecular Biophysics and Biochemistry Yale University 266 Whitney Ave. New Haven CT 06250 USA
| | - Michael Koch
- Department of Pharmacology and Toxicology University of Utah 30 South 1900 East Salt Lake City UT 84112 USA
| | - Ben I. C. Tresco
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology University of Utah 30 South 1900 East Salt Lake City UT 84112 USA
| | - Ryan T. VanderLinden
- Synthetic and Medicinal Chemistry Core Facility University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Charles A. Testa
- Synthetic and Medicinal Chemistry Core Facility University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Paul R. Sebahar
- Synthetic and Medicinal Chemistry Core Facility University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Ryan E. Looper
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
- Synthetic and Medicinal Chemistry Core Facility University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
23
|
Vojáčková P, Michalska L, Nečas M, Shcherbakov D, Böttger EC, Šponer J, Šponer JE, Švenda J. Stereocontrolled Synthesis of (−)-Bactobolin A. J Am Chem Soc 2020; 142:7306-7311. [DOI: 10.1021/jacs.0c01554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petra Vojáčková
- Department of Chemistry, Masaryk University, Brno 625 00, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 656 91, Czech Republic
| | - Lucyna Michalska
- Department of Chemistry, Masaryk University, Brno 625 00, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 656 91, Czech Republic
| | - Marek Nečas
- Department of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology, University of Zürich, Zürich 8006, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zürich, Zürich 8006, Switzerland
| | - Jiří Šponer
- Institute of Biophysics, Czech Academy of Sciences, Brno 612 65, Czech Republic
| | - Judit E. Šponer
- Institute of Biophysics, Czech Academy of Sciences, Brno 612 65, Czech Republic
| | - Jakub Švenda
- Department of Chemistry, Masaryk University, Brno 625 00, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 656 91, Czech Republic
| |
Collapse
|
24
|
Greenberg EP, Chandler JR, Seyedsayamdost MR. The Chemistry and Biology of Bactobolin: A 10-Year Collaboration with Natural Product Chemist Extraordinaire Jon Clardy. JOURNAL OF NATURAL PRODUCTS 2020; 83:738-743. [PMID: 32105069 PMCID: PMC8118907 DOI: 10.1021/acs.jnatprod.9b01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bactobolin is a hybrid natural product with potent cytotoxic activity. Its production from Burkholderia thailandensis was reported as part of a collaboration between the Greenberg and Clardy laboratories in 2010. The collaboration sparked a series of studies leading to the discovery of new analogues and associated structure-activity relationships, the identification of the bactobolin biosynthetic gene cluster and assembly of its unusual amino acid building block, the molecular target of and resistance to the antibiotic, and finally an X-ray crystal structure of the ribosome-bactobolin complex. Herein, we review the collaborations that led to our current understanding of the chemistry and biology of bactobolin.
Collapse
Affiliation(s)
- E Peter Greenberg
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Josephine R Chandler
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Mohammad R Seyedsayamdost
- Departments of Chemistry and Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Benomar S, Evans KC, Unckless RL, Chandler JR. Efflux Pumps in Chromobacterium Species Increase Antibiotic Resistance and Promote Survival in a Coculture Competition Model. Appl Environ Microbiol 2019; 85:e00908-19. [PMID: 31324628 PMCID: PMC6752006 DOI: 10.1128/aem.00908-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Members of the Chromobacterium genus include opportunistic but often-fatal pathogens and soil saprophytes with highly versatile metabolic capabilities. In previous studies of Chromobacterium subtsugae (formerly C. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM) that confers resistance to several antibiotics, including the bactobolin antibiotic produced by the soil saprophyte Burkholderia thailandensis Here, we show the cdeAB-oprM genes increase C. subtsugae survival in a laboratory competition model with B. thailandensis We also demonstrate that adding sublethal bactobolin concentrations to the coculture increases C. subtsugae survival, but this effect is not through CdeAB-OprM. Instead, the increased survival requires a second, previously unreported pump we call CseAB-OprN. We show that in cells exposed to sublethal bactobolin concentrations, the cseAB-oprN genes are transcriptionally induced, and this corresponds to an increase in bactobolin resistance. Induction of this pump is highly specific and sensitive to bactobolin, while CdeAB-OprM appears to have a broader range of antibiotic recognition. We examine the distribution of cseAB-oprN and cdeAB-oprM gene clusters in members of the Chromobacterium genus and find the cseAB-oprN genes are limited to the nonpathogenic C. subtsugae strains, whereas the cdeAB-oprM genes are more widely distributed among members of the Chromobacterium genus. Our results provide new information on the antibiotic resistance mechanisms of Chromobacterium species and highlight the importance of efflux pumps for saprophytic bacteria existing in multispecies communities.IMPORTANCE Antibiotic efflux pumps are best known for increasing antibiotic resistance of pathogens; however, the role of these pumps in saprophytes is much less well defined. This study describes two predicted efflux pump gene clusters in the Chromobacterium genus, which is comprised of both nonpathogenic saprophytes and species that cause highly fatal human infections. One of the predicted efflux pump clusters is present in every member of the Chromobacterium genus and increases resistance to a broad range of antibiotics. The other gene cluster has more narrow antibiotic specificity and is found only in Chromobacterium subtsugae, a subset of entirely nonpathogenic species. We demonstrate the role of both pumps in increasing antibiotic resistance and demonstrate the importance of efflux-dependent resistance induction for C. subtsugae survival in a dual-species competition model. These results have implications for managing antibiotic-resistant Chromobacterium infections and for understanding the evolution of efflux pumps outside the host.
Collapse
Affiliation(s)
- Saida Benomar
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Kara C Evans
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Josephine R Chandler
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
26
|
Thapa SS, Grove A. Do Global Regulators Hold the Key to Production of Bacterial Secondary Metabolites? Antibiotics (Basel) 2019; 8:antibiotics8040160. [PMID: 31547528 PMCID: PMC6963729 DOI: 10.3390/antibiotics8040160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
The emergence of multiple antibiotic resistant bacteria has pushed the available pool of antibiotics to the brink. Bacterial secondary metabolites have long been a valuable resource in the development of antibiotics, and the genus Burkholderia has recently emerged as a source of novel compounds with antibacterial, antifungal, and anti-cancer activities. Genome mining has contributed to the identification of biosynthetic gene clusters, which encode enzymes that are responsible for synthesis of such secondary metabolites. Unfortunately, these large gene clusters generally remain silent or cryptic under normal laboratory settings, which creates a hurdle in identification and isolation of these compounds. Various strategies, such as changes in growth conditions and antibiotic stress, have been applied to elicit the expression of these cryptic gene clusters. Although a number of compounds have been isolated from different Burkholderia species, the mechanisms by which the corresponding gene clusters are regulated remain poorly understood. This review summarizes the activity of well characterized secondary metabolites from Burkholderia species and the role of local regulators in their synthesis, and it highlights recent evidence for the role of global regulators in controlling production of secondary metabolites. We suggest that targeting global regulators holds great promise for the awakening of cryptic gene clusters and for developing better strategies for discovery of novel antibiotics.
Collapse
Affiliation(s)
- Sudarshan Singh Thapa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
27
|
Svidritskiy E, Korostelev AA. Mechanism of Inhibition of Translation Termination by Blasticidin S. J Mol Biol 2019; 430:591-593. [PMID: 29366636 DOI: 10.1016/j.jmb.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 01/25/2023]
Abstract
Understanding the mechanisms of inhibitors of translation termination may inform development of new antibacterials and therapeutics for premature termination diseases. We report the crystal structure of the potent termination inhibitor blasticidin S bound to the ribosomal 70S•release factor 1 (RF1) termination complex. Blasticidin S shifts the catalytic domain 3 of RF1 and restructures the peptidyl transferase center. Universally conserved uridine 2585 in the peptidyl transferase center occludes the catalytic backbone of the GGQ motif of RF1, explaining the structural mechanism of inhibition. Rearrangement of domain 3 relative to the codon-recognition domain 2 provides insight into the dynamics of RF1 implicated in termination accuracy.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
28
|
Thailandamide, a Fatty Acid Synthesis Antibiotic That Is Coexpressed with a Resistant Target Gene. Antimicrob Agents Chemother 2018; 62:AAC.00463-18. [PMID: 29914944 DOI: 10.1128/aac.00463-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/09/2018] [Indexed: 12/25/2022] Open
Abstract
Microbes encode many uncharacterized gene clusters that may produce antibiotics and other bioactive small molecules. Methods for activating these genes are needed to explore their biosynthetic potential. A transposon containing an inducible promoter was randomly inserted into the genome of the soil bacterium Burkholderia thailandensis to induce antibiotic expression. This screen identified the polyketide/nonribosomal peptide thailandamide as an antibiotic and discovered its regulator, AtsR. Mutants of Salmonella resistant to thailandamide had mutations in the accA gene for acetyl coenzyme A (acetyl-CoA) carboxylase, which is one of the first enzymes in the fatty acid synthesis pathway. A second copy of accA in the thailandamide synthesis gene cluster keeps B. thailandensis resistant to its own antibiotic. These genetic techniques will likely be powerful tools for discovering other unusual antibiotics.
Collapse
|
29
|
Wu Y, Seyedsayamdost MR. The Polyene Natural Product Thailandamide A Inhibits Fatty Acid Biosynthesis in Gram-Positive and Gram-Negative Bacteria. Biochemistry 2018; 57:4247-4251. [DOI: 10.1021/acs.biochem.8b00678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yihan Wu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
30
|
Duong LT, Schwarz S, Gross H, Breitbach K, Hochgräfe F, Mostertz J, Eske-Pogodda K, Wagner GE, Steinmetz I, Kohler C. GvmR - A Novel LysR-Type Transcriptional Regulator Involved in Virulence and Primary and Secondary Metabolism of Burkholderia pseudomallei. Front Microbiol 2018; 9:935. [PMID: 29867844 PMCID: PMC5964159 DOI: 10.3389/fmicb.2018.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/23/2018] [Indexed: 01/22/2023] Open
Abstract
Burkholderia pseudomallei is a soil-dwelling bacterium able to survive not only under adverse environmental conditions, but also within various hosts which can lead to the disease melioidosis. The capability of B. pseudomallei to adapt to environmental changes is facilitated by the large number of regulatory proteins encoded by its genome. Among them are more than 60 uncharacterized LysR-type transcriptional regulators (LTTRs). Here we analyzed a B. pseudomallei mutant harboring a transposon in the gene BPSL0117 annotated as a LTTR, which we named gvmR (globally acting virulence and metabolism regulator). The gvmR mutant displayed a growth defect in minimal medium and macrophages in comparison with the wild type. Moreover, disruption of gvmR rendered B. pseudomallei avirulent in mice indicating a critical role of GvmR in infection. These defects of the mutant were rescued by ectopic expression of gvmR. To identify genes whose expression is modulated by GvmR, global transcriptome analysis of the B. pseudomallei wild type and gvmR mutant was performed using whole genome tiling microarrays. Transcript levels of 190 genes were upregulated and 141 genes were downregulated in the gvmR mutant relative to the wild type. Among the most downregulated genes in the gvmR mutant were important virulence factor genes (T3SS3, T6SS1, and T6SS2), which could explain the virulence defect of the gvmR mutant. In addition, expression of genes related to amino acid synthesis, glyoxylate shunt, iron-sulfur cluster assembly, and syrbactin metabolism (secondary metabolite) was decreased in the mutant. On the other hand, inactivation of GvmR increased expression of genes involved in pyruvate metabolism, ATP synthesis, malleobactin, and porin genes. Quantitative real-time PCR verified the differential expression of 27 selected genes. In summary, our data show that GvmR acts as an activating and repressing global regulator that is required to coordinate expression of a diverse set of metabolic and virulence genes essential for the survival in the animal host and under nutrient limitation.
Collapse
Affiliation(s)
- Linh Tuan Duong
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls University of Tübingen, Tübingen, Germany.,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Katrin Breitbach
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Kristin Eske-Pogodda
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Ivo Steinmetz
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany.,Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
31
|
Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annu Rev Biochem 2018; 87:451-478. [PMID: 29570352 DOI: 10.1146/annurev-biochem-062917-011942] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have developed resistance to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors, and in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules.
Collapse
Affiliation(s)
- Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;
| | - Dejian Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; .,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA.,Current affiliation: Department of Microbiology and Immunology, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
32
|
Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME JOURNAL 2018; 12:1263-1272. [PMID: 29374267 DOI: 10.1038/s41396-018-0047-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
Many Proteobacteria use quorum sensing to regulate production of public goods, such as antimicrobials and proteases, that are shared among members of a community. Public goods are vulnerable to exploitation by cheaters, such as quorum sensing-defective mutants. Quorum sensing- regulated private goods, goods that benefit only producing cells, can prevent the emergence of cheaters under certain growth conditions. Previously, we developed a laboratory co-culture model to investigate the importance of quorum-regulated antimicrobials during interspecies competition. In our model, Burkholderia thailandensis and Chromobacterium violaceum each use quorum sensing-controlled antimicrobials to inhibit the other species' growth. Here, we show that C. violaceum uses quorum sensing to increase resistance to bactobolin, a B. thailandensis antibiotic, by increasing transcription of a putative antibiotic efflux pump. We demonstrate conditions where C. violaceum quorum-defective cheaters emerge and show that in these conditions, bactobolin restrains cheaters. We also demonstrate that bactobolin restrains quorum-defective mutants in our co-culture model, and the increase in antimicrobial-producing cooperators drives the C. violaceum population to become more competitive. Our results describe a mechanism of cheater restraint involving quorum control of efflux pumps and demonstrate that interspecies competition can reinforce cooperative behaviors by placing constraints on quorum sensing-defective mutants.
Collapse
|
33
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
34
|
Affiliation(s)
- Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| |
Collapse
|
35
|
Abstract
The sheer molecular scale of the ribosome is intimidating to the traditional drug designer. By analyzing the ribosome as a series of 12 key target sites, this review seeks to make the ribosome ligand design process more manageable. Analysis of recently evaluated ribosomal structures, particularly those with bound antibiotics, indicates where the ligand target sites are located. This review employs current research data to map antibiotic binding across the ribosome. A number of neighboring ligand-binding sites are often contiguous and can be combined. Ligands that bind in close proximity can be combined into hybrid structures. The different ways antibiotics disrupt ribosomal function are also discussed. Antibiotics tend to inhibit conformational changes that are essential to the ribosomal mechanism.
Collapse
|
36
|
Arenz S, Wilson DN. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025361. [PMID: 27481773 DOI: 10.1101/cshperspect.a025361] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Stefan Arenz
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Daniel N Wilson
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany Gene Center and Department for Biochemistry, University of Munich, 81377 Munich, Germany
| |
Collapse
|
37
|
Auerbach-Nevo T, Baram D, Bashan A, Belousoff M, Breiner E, Davidovich C, Cimicata G, Eyal Z, Halfon Y, Krupkin M, Matzov D, Metz M, Rufayda M, Peretz M, Pick O, Pyetan E, Rozenberg H, Shalev-Benami M, Wekselman I, Zarivach R, Zimmerman E, Assis N, Bloch J, Israeli H, Kalaora R, Lim L, Sade-Falk O, Shapira T, Taha-Salaime L, Tang H, Yonath A. Ribosomal Antibiotics: Contemporary Challenges. Antibiotics (Basel) 2016; 5:antibiotics5030024. [PMID: 27367739 PMCID: PMC5039520 DOI: 10.3390/antibiotics5030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 11/30/2022] Open
Abstract
Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.
Collapse
Affiliation(s)
- Tamar Auerbach-Nevo
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - David Baram
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Matthew Belousoff
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Elinor Breiner
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Chen Davidovich
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Giuseppe Cimicata
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Zohar Eyal
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Yehuda Halfon
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Miri Krupkin
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Markus Metz
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Mruwat Rufayda
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Moshe Peretz
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ophir Pick
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Erez Pyetan
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Itai Wekselman
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Raz Zarivach
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ella Zimmerman
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Nofar Assis
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Joel Bloch
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Hadar Israeli
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Rinat Kalaora
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Lisha Lim
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ofir Sade-Falk
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Tal Shapira
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Leena Taha-Salaime
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Hua Tang
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
38
|
Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt-29 biosensor. Sci Rep 2016; 6:27475. [PMID: 27273550 PMCID: PMC4895344 DOI: 10.1038/srep27475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/19/2016] [Indexed: 01/07/2023] Open
Abstract
Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis.
Collapse
|
39
|
Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res 2016; 44:2439-50. [PMID: 26809677 PMCID: PMC4797290 DOI: 10.1093/nar/gkw018] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022] Open
Abstract
With bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac71 -35, oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac71 -35, Pyrrhocoricin, Metalnikowin and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibiotic-binding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | - Raktim N Roy
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Tanja Florin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607-7173, USA
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607-7173, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| |
Collapse
|
40
|
Arenz S, Wilson DN. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Mol Cell 2015; 61:3-14. [PMID: 26585390 DOI: 10.1016/j.molcel.2015.10.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein synthesis is a major target within the bacterial cell for antibiotics. Investigations into ribosome-targeting antibiotics have provided much needed functional and structural insight into their mechanism of action. However, the increasing prevalence of multi-drug-resistant bacteria has limited the utility of our current arsenal of clinically relevant antibiotics, highlighting the need for the development of new classes. Recent structural studies have characterized a number of antibiotics discovered decades ago that have unique chemical scaffolds and/or utilize novel modes of action to interact with the ribosome and inhibit translation. Additionally, structures of eukaryotic cytoplasmic and mitochondrial ribosomes have provided further structural insight into the basis for specificity and toxicity of antibiotics. Together with our increased understanding of bacterial resistance mechanisms, revisiting our treasure trove of "forgotten" antibiotics could pave the way for the next generation of antimicrobial agents.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany
| | - Daniel N Wilson
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany; Center for integrated Protein Science Munich, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|