1
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons R, Niu H, Bochman M. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. Nucleic Acids Res 2024; 52:6317-6332. [PMID: 38613387 PMCID: PMC11194072 DOI: 10.1093/nar/gkae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Zhitong Feng
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Jiangchuan Shen
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Spencer J Gray
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Robert H Simmons
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Hengyao Niu
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons RH, Niu H, Bochman ML. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569902. [PMID: 38105973 PMCID: PMC10723391 DOI: 10.1101/2023.12.04.569902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
|
3
|
Watson JM, Trieb J, Troestl M, Renfrew K, Mandakova T, Fulnecek J, Shippen DE, Riha K. A hypomorphic allele of telomerase uncovers the minimal functional length of telomeres in Arabidopsis. Genetics 2021; 219:6339584. [PMID: 34849882 DOI: 10.1093/genetics/iyab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Johanna Trieb
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Martina Troestl
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Kyle Renfrew
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Terezie Mandakova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Jaroslav Fulnecek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Dorothy E Shippen
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
5
|
Lim CJ, Barbour AT, Zaug AJ, Goodrich KJ, McKay AE, Wuttke DS, Cech TR. The structure of human CST reveals a decameric assembly bound to telomeric DNA. Science 2020; 368:1081-1085. [PMID: 32499435 DOI: 10.1126/science.aaz9649] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
The CTC1-STN1-TEN1 (CST) complex is essential for telomere maintenance and resolution of stalled replication forks genome-wide. Here, we report the 3.0-angstrom cryo-electron microscopy structure of human CST bound to telomeric single-stranded DNA (ssDNA), which assembles as a decameric supercomplex. The atomic model of the 134-kilodalton CTC1 subunit, built almost entirely de novo, reveals the overall architecture of CST and the DNA-binding anchor site. The carboxyl-terminal domain of STN1 interacts with CTC1 at two separate docking sites, allowing allosteric mediation of CST decamer assembly. Furthermore, ssDNA appears to staple two monomers to nucleate decamer assembly. CTC1 has stronger structural similarity to Replication Protein A than the expected similarity to yeast Cdc13. The decameric structure suggests that CST can organize ssDNA analogously to the nucleosome's organization of double-stranded DNA.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Karen J Goodrich
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Allison E McKay
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
6
|
Lai Y, Zhu F, Xu Y. WSSV proteins and DNA genome released by ultrasonic rupture can infect crayfish as effectively as intact virions. J Virol Methods 2020; 283:113917. [PMID: 32579894 DOI: 10.1016/j.jviromet.2020.113917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/28/2022]
Abstract
Proteins and nucleic acids from ultrasonically ruptured white spot syndrome virus (WSSV) can infect crayfish and cause death as effectively as intact WSSV virions. In this study, ultrasound was used to rupture the virus and the resulting suspension was filtered through a 50 nm membrane. Analysis by PCR and SDS-PAGE showed that both viral genes (VP19, VP26, VP28 and DNA polymerase) and proteins (VP15, VP19, VP26 and VP28) were present in the filtered solution. Electron microscopy showed that there were no intact virions in the filtered solution. When crayfish were injected with the filtered solution or with intact WSSV, the mortality in each group was 100 %. The same result was seen when crayfish were challenged orally with the filtered solution and intact WSSV. The filtered solution of ultrasonically ruptured virus, which contains viral proteins and residual DNA genome, can thus infect the host as effectively as intact virions. When the solution of viral proteins and residual DNA genome was digested with DNase I and then injected into crayfish, the survival rate was 100 %. We also found that, although viral proteins (except VP15) in the solution of ruptured virus were destroyed by treatment with DNase I, DNase I did not destroy the structural proteins of intact virions. A remaining viral protein in the DNase I-treated solution protects the DNA genome from degradation and we concluded that this protein is VP15, which is a DNA-binding protein. Our study highlights the extreme danger in producing vaccines from proteins obtained by ultrasonic rupture of viruses sincethe viral DNA genome is difficult to degrade and, if present, will lead to viral infection.
Collapse
Affiliation(s)
- Yongyong Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
7
|
Westmoreland JW, Mihalevic MJ, Bernstein KA, Resnick MA. The global role for Cdc13 and Yku70 in preventing telomere resection across the genome. DNA Repair (Amst) 2017; 62:8-17. [PMID: 29247743 DOI: 10.1016/j.dnarep.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022]
Abstract
Yeast Cdc13 protein (related to human CTC1) maintains telomere stability by preventing 5'-3' end resection. While Cdc13 and Yku70/Yku80 proteins appear to prevent excessive resection, their combined contribution to maintenance of telomere ends across the genome and their relative roles at specific ends of different chromosomes have not been addressable because Cdc13 and Yku70/Yku80 double mutants are sickly. Using our PFGE-shift approach where large resected molecules have slower pulse field gel electrophoresis mobilities, along with methods for maintaining viable double mutants, we address end-resection on most chromosomes as well as telomere end differences. In this global approach to looking at ends of most chromosomes, we identify chromosomes with 1-end resections and end-preferences. We also identify chromosomes with resection at both ends, previously not possible. 10-20% of chromosomes exhibit PFGE-shift when cdc13-1 cells are switched to restrictive temperature (37 °C). In yku70Δ cdc13-1 mutants, there is a telomere resection "storm" with approximately half the chromosomes experiencing at least 1-end resection, ∼10 kb/telomere, due to exonuclease1 and many exhibiting 2-end resection. Unlike for random internal chromosome breaks, resection of telomere ends is not coordinated. Telomere restitution at permissive temperature is rapid (<1 h) in yku70Δ cdc13-1 cells. Surprisingly, survival can be high although strain background dependent. Given large amount of resected telomeres, we examined associated proteins. Up to 90% of cells have ≥1 Rfa1 (RPA) focus and 60% have multiple foci when ∼30-40 telomeres/cell are resected. The ends are dispersed in the nucleus suggesting wide distribution of resected telomeres across nuclear space. The previously reported Rad52 nuclear centers of repair for random DSBs also appear in cells with many resected telomere ends, suggesting a Rad52 commonality to the organization of single strand ends and/or limitation on interactions of single-strand ends with Rad52.
Collapse
Affiliation(s)
- James W Westmoreland
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Michael J Mihalevic
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Michael A Resnick
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
8
|
Pavani RS, Vitarelli MO, Fernandes CAH, Mattioli FF, Morone M, Menezes MC, Fontes MRM, Cano MIN, Elias MC. Replication Protein A-1 Has a Preference for the Telomeric G-rich Sequence in Trypanosoma cruzi. J Eukaryot Microbiol 2017; 65:345-356. [PMID: 29044824 DOI: 10.1111/jeu.12478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 01/20/2023]
Abstract
Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruziRPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruziRPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.
Collapse
Affiliation(s)
- Raphael Souza Pavani
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Marcela O Vitarelli
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Carlos A H Fernandes
- Biophysics and Physics Department, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, 18618970, Brazil
| | - Fabio F Mattioli
- Biophysics and Physics Department, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, 18618970, Brazil
| | - Mariana Morone
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Milene C Menezes
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Marcos R M Fontes
- Biophysics and Physics Department, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, 18618970, Brazil
| | - Maria Isabel N Cano
- Genetics Department, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, 18618970, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| |
Collapse
|
9
|
Rap1 and Cdc13 have complementary roles in preventing exonucleolytic degradation of telomere 5' ends. Sci Rep 2017; 7:8729. [PMID: 28821750 PMCID: PMC5562816 DOI: 10.1038/s41598-017-08663-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
Abstract
Telomere DNA ends with a single-stranded 3′ overhang. Long 3′ overhangs may cause aberrant DNA damage responses and accelerate telomere attrition, which is associated with cancer and aging, respectively. Genetic studies have indicated several important players in preventing 5′ end hyper-resection, yet detailed knowledge about the molecular mechanism in which they act is still lacking. Here, we use an in vitro DNA 5′ end protection assay, to study how N. castellii Cdc13 and Rap1 protect against 5′ exonucleolytic degradation by λ-exonuclease. The homogeneous telomeric repeat sequence of N. castellii allows us to study their protection ability at exact binding sites relative to the 5′ end. We find efficient protection by both Cdc13 and Rap1 when bound close to the 5′ end. Notably, Rap1 provides protection when binding dsDNA at a distance from the 5′ end. The DNA binding domain of Rap1 is sufficient for 5′ end protection, and its wrapping loop region is essential. Intriguingly, Rap1 facilitates protection also when its binding site contains 2 nt of ssDNA, thus spanning across the ds-ss junction. These results highlight a role of Rap1 in 5′ end protection and indicate that Cdc13 and Rap1 have complementary roles in maintaining proper 3′ overhang length.
Collapse
|
10
|
Simon MN, Churikov D, Géli V. Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow085. [PMID: 27683094 DOI: 10.1093/femsyr/fow085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/25/2022] Open
Abstract
Replicative senescence is triggered by short unprotected telomeres that arise in the absence of telomerase. In addition, telomeres are known as difficult regions to replicate due to their repetitive G-rich sequence prone to secondary structures and tightly bound non-histone proteins. Here we review accumulating evidence that telomerase inactivation in yeast immediately unmasks the problems associated with replication stress at telomeres. Early after telomerase inactivation, yeast cells undergo successive rounds of stochastic DNA damages and become dependent on recombination for viability long before the bulk of telomeres are getting critically short. The switch from telomerase to recombination to repair replication stress-induced damage at telomeres creates telomere instability, which may drive further genomic alterations and prepare the ground for telomerase-independent immortalization observed in yeast survivors and in 15% of human cancer.
Collapse
Affiliation(s)
- Marie-Noëlle Simon
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| | - Dmitri Churikov
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| | - Vincent Géli
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| |
Collapse
|
11
|
Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13. Mol Cell Biol 2016; 36:1750-63. [PMID: 27044869 DOI: 10.1128/mcb.00095-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition.
Collapse
|
12
|
Abstract
Telomeres are nucleoprotein complexes that maintain the ends of our chromosomes thus providing genomic stability. Telomerase is a ribonucleoprotein reverse transcriptase that replicates the short tandem repeats of DNA known as telomeres. The telomeric DNA is specifically associated with two major complexes, the shelterin and CST complexes both of which are involved in telomere length regulation and maintenance along with telomerase. Obtaining structural information on these nucleoprotein complexes has been a major bottleneck in fully understanding the mechanism of action of telomeric nucleoproteins for over two decades. The recent advances in molecular and structural biology have enabled us to obtain atomic resolution structures of telomeric proteins alone and in complex with their nucleic acid substrates transforming the field and our understanding and interpretation of this unique biological pathway. Here we report our approach to obtain the structure of the Triobolium castaneum catalytic subunit of telomerase TERT (tcTERT) in its apo- and substrate-bound states.
Collapse
Affiliation(s)
- H Hoffman
- The Wistar Institute, Philadelphia, PA, United States
| | - E Skordalakes
- The Wistar Institute, Philadelphia, PA, United States.
| |
Collapse
|