1
|
Wu Y, Kong W, Van Stappen J, Kong L, Huang Z, Yang Z, Kuo YA, Chen YI, He Y, Yeh HC, Lu T, Lu Y. Genetically Encoded Fluorogenic DNA Aptamers for Imaging Metabolite in Living Cells. J Am Chem Soc 2025; 147:1529-1541. [PMID: 39739942 DOI: 10.1021/jacs.4c09855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Genetically encoded fluorescent protein and fluorogenic RNA sensors are indispensable tools for imaging biomolecules in cells. To expand the toolboxes and improve the generalizability and stability of this type of sensor, we report herein a genetically encoded fluorogenic DNA aptamer (GEFDA) sensor by linking a fluorogenic DNA aptamer for dimethylindole red with an ATP aptamer. The design enhances red fluorescence by 4-fold at 650 nm in the presence of ATP. Additionally, upon dimerization, it improves the signal-to-noise ratio by 2-3 folds. We further integrated the design into a plasmid to create a GEFDA sensor for sensing ATP in live bacterial and mammalian cells. This work expanded genetically encoded sensors by employing fluorogenic DNA aptamers, which offer enhanced stability over fluorogenic proteins and RNAs, providing a novel tool for real-time monitoring of an even broader range of small molecular metabolites in biological systems.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jacqueline Van Stappen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhimei Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Zhao W, Guo Y. Increasing the efficiency of gene editing with CRISPR-Cas9 via concurrent expression of the Beta protein. Int J Biol Macromol 2024; 270:132431. [PMID: 38759853 DOI: 10.1016/j.ijbiomac.2024.132431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Escherichia coli has emerged as an important host for the production of biopharmaceuticals or other industrially relevant molecules. An efficient gene editing tool is indispensable for ensuring high production levels and optimal release of target products. However, in Escherichia coli, the CRISPR-Cas9 system has been shown to achieve gene modifications with relatively low frequency. Large-scale PCR screening is required, hindering the identification of positive clones. The beta protein, which weakly binds to single-stranded DNA but tightly associates with complementary strand annealing products, offers a promising solution to this issue. In the present study, we describe a targeted and continuous gene editing strategy for the Escherichia coli genome. This strategy involves the coexpression of the beta protein alongside the CRISPR-Cas9 system, enabling a variety of genome modifications such as gene deletion and insertion with an efficiency exceeding 80 %. The integrity of beta proteins is essential for the CRISPR-Cas9/Beta-based gene editing system. In this work, the deletion of either the N- or C-terminal domain significantly impaired system efficiency. Overall, our findings established the CRISPR-Cas9/Beta system as a suitable gene editing tool for various applications in Escherichia coli.
Collapse
Affiliation(s)
- Weiyu Zhao
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China; School of Economics and Management, Tongji University, No. 1239 Siping Road, Shanghai 200092, China; Institute of Logistics Science and Engineering, Shanghai Maritime University, 1550 Haigang Avenue, Shanghai 201306, China
| | - Yanan Guo
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China; Department of Biology, Georgia State University, Atlanta, GA 30303, United States of America.
| |
Collapse
|
3
|
Zakharova K, Liu M, Greenwald JR, Caldwell BC, Qi Z, Wysocki VH, Bell CE. Structural Basis for the Interaction of Redβ Single-Strand Annealing Protein with Escherichia coli Single-Stranded DNA-Binding Protein. J Mol Biol 2024; 436:168590. [PMID: 38663547 DOI: 10.1016/j.jmb.2024.168590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Redβ is a protein from bacteriophage λ that binds to single-stranded DNA (ssDNA) to promote the annealing of complementary strands. Together with λ-exonuclease (λ-exo), Redβ is part of a two-component DNA recombination system involved in multiple aspects of genome maintenance. The proteins have been exploited in powerful methods for bacterial genome engineering in which Redβ can anneal an electroporated oligonucleotide to a complementary target site at the lagging strand of a replication fork. Successful annealing in vivo requires the interaction of Redβ with E. coli single-stranded DNA-binding protein (SSB), which coats the ssDNA at the lagging strand to coordinate access of numerous replication proteins. Previous mutational analysis revealed that the interaction between Redβ and SSB involves the C-terminal domain (CTD) of Redβ and the C-terminal tail of SSB (SSB-Ct), the site for binding of numerous host proteins. Here, we have determined the x-ray crystal structure of Redβ CTD in complex with a peptide corresponding to the last nine residues of SSB (MDFDDDIPF). Formation of the complex is predominantly mediated by hydrophobic interactions between two phenylalanine side chains of SSB (Phe-171 and Phe-177) and an apolar groove on the CTD, combined with electrostatic interactions between the C-terminal carboxylate of SSB and Lys-214 of the CTD. Mutation of any of these residues to alanine significantly disrupts the interaction of full-length Redβ and SSB proteins. Structural knowledge of this interaction will help to expand the utility of Redβ-mediated recombination to a wider range of bacterial hosts for applications in synthetic biology.
Collapse
Affiliation(s)
- Katerina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Mengqi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jacelyn R Greenwald
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Brian C Caldwell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zihao Qi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Charles E Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Wang X, Zheng W, Zhou H, Tu Q, Tang YJ, Stewart AF, Zhang Y, Bian X. Improved dsDNA recombineering enables versatile multiplex genome engineering of kilobase-scale sequences in diverse bacteria. Nucleic Acids Res 2021; 50:e15. [PMID: 34792175 PMCID: PMC8860599 DOI: 10.1093/nar/gkab1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
Recombineering assisted multiplex genome editing generally uses single-stranded oligonucleotides for site directed mutational changes. It has proven highly efficient for functional screens and to optimize microbial cell factories. However, this approach is limited to relatively small mutational changes. Here, we addressed the challenges involved in the use of double-stranded DNA substrates for multiplex genome engineering. Recombineering is mediated by phage single-strand annealing proteins annealing ssDNAs into the replication fork. We apply this insight to facilitate the generation of ssDNA from the dsDNA substrate and to alter the speed of replication by elevating the available deoxynucleoside triphosphate (dNTP) levels. Intracellular dNTP concentration was elevated by ribonucleotide reductase overexpression or dNTP addition to establish double-stranded DNA Recombineering-assisted Multiplex Genome Engineering (dReaMGE), which enables rapid and flexible insertional and deletional mutagenesis at multiple sites on kilobase scales in diverse bacteria without the generation of double-strand breaks or disturbance of the mismatch repair system. dReaMGE can achieve combinatorial genome engineering works, for example, alterations to multiple biosynthetic pathways, multiple promoter or gene insertions, variations of transcriptional regulator combinations, within a few days. dReaMGE adds to the repertoire of bacterial genome engineering to facilitate discovery, functional genomics, strain optimization and directed evolution of microbial cell factories.
Collapse
Affiliation(s)
- Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Wentao Zheng
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Qiang Tu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ya-Jie Tang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Zakharova K, Caldwell BJ, Ta S, Wheat CT, Bell CE. Mutational Analysis of Redβ Single Strand Annealing Protein: Roles of the 14 Lysine Residues in DNA Binding and Recombination In Vivo. Int J Mol Sci 2021; 22:ijms22147758. [PMID: 34299376 PMCID: PMC8303780 DOI: 10.3390/ijms22147758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 01/05/2023] Open
Abstract
Redβ is a 261 amino acid protein from bacteriophage λ that promotes a single-strand annealing (SSA) reaction for repair of double-stranded DNA (dsDNA) breaks. While there is currently no high-resolution structure available for Redβ, models of its DNA binding domain (residues 1-188) have been proposed based on homology with human Rad52, and a crystal structure of its C-terminal domain (CTD, residues 193-261), which binds to λ exonuclease and E. coli single-stranded DNA binding protein (SSB), has been determined. To evaluate these models, the 14 lysine residues of Redβ were mutated to alanine, and the variants tested for recombination in vivo and DNA binding and annealing in vitro. Most of the lysines within the DNA binding domain, including K36, K61, K111, K132, K148, K154, and K172, were found to be critical for DNA binding in vitro and recombination in vivo. By contrast, none of the lysines within the CTD, including K214, K245, K251, K253, and K258 were required for DNA binding in vitro, but two, K214 and K253, were critical for recombination in vivo, likely due to their involvement in binding to SSB. K61 was identified as a residue that is critical for DNA annealing, but not for initial ssDNA binding, suggesting a role in binding to the second strand of DNA incorporated into the complex. The K148A variant, which has previously been shown to be defective in oligomer formation, had the lowest affinity for ssDNA, and was the only variant that was completely non-cooperative, suggesting that ssDNA binding is coupled to oligomerization.
Collapse
Affiliation(s)
- Katerina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; (K.Z.); (B.J.C.); (S.T.); (C.T.W.)
| | - Brian J. Caldwell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; (K.Z.); (B.J.C.); (S.T.); (C.T.W.)
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shalya Ta
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; (K.Z.); (B.J.C.); (S.T.); (C.T.W.)
| | - Carter T. Wheat
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; (K.Z.); (B.J.C.); (S.T.); (C.T.W.)
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E. Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; (K.Z.); (B.J.C.); (S.T.); (C.T.W.)
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
6
|
Chang Y, Wang Q, Su T, Qi Q. Identification of phage recombinase function unit in genus Corynebacterium. Appl Microbiol Biotechnol 2021; 105:5067-5075. [PMID: 34131780 DOI: 10.1007/s00253-021-11384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
Phage recombinase function unit (PRFU) plays a key role in the life cycle of phage. Repurposing this system such as lambda-Redαβ or Rac-RecET for recombineering has gained success in Escherichia coli. Previous studies have showed that most PRFUs only worked well in its native hosts but poorly in the distant species. Thus, identification of new PRFUs in specific species is necessary for the development of its corresponding genetic engineering tools. Here, we present a thorough study of PRFUs in the genomes of genus Corynebacterium. We first used a database to database searching method to facilitate accurate prediction of novel PRFUs in 423 genomes. A total number of 60 sets of unique PRFUs were identified and divided into 8 types based on evolution affinities. Recombineering ability of the 8 representative PRFUs was experimentally verified in the Corynebacterium glutamicum ATCC 13032 strain. In particular, PRFU from C. aurimucosum achieved highest efficiency in both ssDNA and dsDNA mediated recombineering, which is expected to greatly facilitate genome engineering in genus Corynebacterium. These results will provide new insights for the study and application of PRFUs. KEY POINTS: • First report of bioinformatic mining and systematic analysis of Phage recombinase function unit (PRFU) in Corynebacterium genomes. • Recombineering ability of the representative PRFUs was experimentally verified in Corynebacterium glutamicum ATCC 13032 strain. • PRFU with the highest recombineering efficiency at 10-2 magnitude was identified from Corynebacterium aurimucosum.
Collapse
Affiliation(s)
- Yizhao Chang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qian Wang
- National Glycoengineering Center, Shandong University, Qingdao, Shandong, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Caldwell BJ, Norris A, Zakharova E, Smith CE, Wheat CT, Choudhary D, Sotomayor M, Wysocki VH, Bell CE. Oligomeric complexes formed by Redβ single strand annealing protein in its different DNA bound states. Nucleic Acids Res 2021; 49:3441-3460. [PMID: 33693865 PMCID: PMC8034648 DOI: 10.1093/nar/gkab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Redβ is a single strand annealing protein from bacteriophage λ that binds loosely to ssDNA, not at all to pre-formed dsDNA, but tightly to a duplex intermediate of annealing. As viewed by electron microscopy, Redβ forms oligomeric rings on ssDNA substrate, and helical filaments on the annealed duplex intermediate. However, it is not clear if these are the functional forms of the protein in vivo. We have used size-exclusion chromatography coupled with multi-angle light scattering, analytical ultracentrifugation and native mass spectrometry (nMS) to characterize the size of the oligomers formed by Redβ in its different DNA-bound states. The nMS data, which resolve species with the highest resolution, reveal that Redβ forms an oligomer of 12 subunits in the absence of DNA, complexes ranging from 4 to 14 subunits on 38-mer ssDNA, and a much more distinct and stable complex of 11 subunits on 38-mer annealed duplex. We also measure the concentration of Redβ in cells active for recombination and find it to range from 7 to 27 μM. Collectively, these data provide new insights into the dynamic nature of the complex on ssDNA, and the more stable and defined complex on annealed duplex.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ekaterina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher E Smith
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Carter T Wheat
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Mutant and Recombinant Phages Selected from In Vitro Coevolution Conditions Overcome Phage-Resistant Listeria monocytogenes. Appl Environ Microbiol 2020; 86:AEM.02138-20. [PMID: 32887717 DOI: 10.1128/aem.02138-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages.IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy.
Collapse
|
9
|
Brewster JL, Tolun G. Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red-beta annealase. IUBMB Life 2020; 72:1622-1633. [PMID: 32621393 PMCID: PMC7496540 DOI: 10.1002/iub.2343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 01/03/2023]
Abstract
DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.
Collapse
Affiliation(s)
- Jodi L Brewster
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Keiraville, New South Wales, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Gökhan Tolun
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Keiraville, New South Wales, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
10
|
Caldwell BJ, Bell CE. Structure and mechanism of the Red recombination system of bacteriophage λ. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:33-46. [PMID: 30904699 DOI: 10.1016/j.pbiomolbio.2019.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Abstract
While much of this volume focuses on mammalian DNA repair systems that are directly involved in genome stability and cancer, it is important to still be mindful of model systems from prokaryotes. Herein we review the Red recombination system of bacteriophage λ, which consists of an exonuclease for resecting dsDNA ends, and a single-strand annealing protein (SSAP) for binding the resulting 3'-overhang and annealing it to a complementary strand. The genetics and biochemistry of Red have been studied for over 50 years, in work that has laid much of the foundation for understanding DNA recombination in higher eukaryotes. In fact, the Red exonuclease (λ exo) is homologous to Dna2, a nuclease involved in DNA end-resection in eukaryotes, and the Red annealing protein (Redβ) is homologous to Rad52, the primary SSAP in eukaryotes. While eukaryotic recombination involves an elaborate network of proteins that is still being unraveled, the phage systems are comparatively simple and streamlined, yet still encompass the fundamental features of recombination, namely DNA end-resection, homologous pairing (annealing), and a coupling between them. Moreover, the Red system has been exploited in powerful methods for bacterial genome engineering that are important for functional genomics and systems biology. However, several mechanistic aspects of Red, particularly the action of the annealing protein, remain poorly understood. This review will focus on the proteins of the Red recombination system, with particular attention to structural and mechanistic aspects, and how the lessons learned can be applied to eukaryotic systems.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA; Department of Chemistry and Biochemistry, 484 West 12th Avenue, 1060 Carmack Road, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Caldwell BJ, Zakharova E, Filsinger GT, Wannier TM, Hempfling JP, Chun-Der L, Pei D, Church GM, Bell CE. Crystal structure of the Redβ C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein. Nucleic Acids Res 2019; 47:1950-1963. [PMID: 30624736 PMCID: PMC6393309 DOI: 10.1093/nar/gky1309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Bacteriophage λ encodes a DNA recombination system that includes a 5'-3' exonuclease (λ Exo) and a single strand annealing protein (Redβ). The two proteins form a complex that is thought to mediate loading of Redβ directly onto the single-stranded 3'-overhang generated by λ Exo. Here, we present a 2.3 Å crystal structure of the λ Exo trimer bound to three copies of the Redβ C-terminal domain (CTD). Mutation of residues at the hydrophobic core of the interface disrupts complex formation in vitro and impairs recombination in vivo. The Redβ CTD forms a three-helix bundle with unexpected structural homology to phage λ Orf, a protein that binds to E. coli single-stranded DNA binding protein (SSB) to function as a recombination mediator. Based on this relationship, we found that Redβ binds to full-length SSB, and to a peptide corresponding to its nine C-terminal residues, in an interaction that requires the CTD. These results suggest a dual role of the CTD, first in binding to λ Exo to facilitate loading of Redβ directly onto the initial single-stranded DNA (ssDNA) at a 3'-overhang, and second in binding to SSB to facilitate annealing of the overhang to SSB-coated ssDNA at the replication fork.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Ekaterina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Gabriel T Filsinger
- Department of Systems Biology, Harvard Medical School, Cambridge, MA 02138, USA
| | - Timothy M Wannier
- Department of Genetics, Harvard Medical School, Cambridge, MA 02138, USA
| | - Jordan P Hempfling
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Lee Chun-Der
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Payne SR, Pau DI, Whiting AL, Kim YJ, Pharoah BM, Moi C, Boddy CN, Bernal F. Inhibition of Bacterial Gene Transcription with an RpoN-Based Stapled Peptide. Cell Chem Biol 2018; 25:1059-1066.e4. [PMID: 29887265 DOI: 10.1016/j.chembiol.2018.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/06/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
In response to environmental and other stresses, the σ54 subunit of bacterial RNA polymerase (RNAP) controls expression of several genes that play a significant role in the virulence of both plant and animal pathogens. Recruitment of σ54 to RNAP initiates promoter-specific transcription via the double-stranded DNA denaturation mechanism of the cofactor. The RpoN box, a recognition helix found in the C-terminal region of σ54, has been identified as the component necessary for major groove insertion at the -24 position of the promoter. We employed the hydrocarbon stapled peptide methodology to design and synthesize stapled σ54 peptides capable of penetrating Gram-negative bacteria, binding the σ54 promoter, and blocking the interaction between endogenous σ54 and its target DNA sequence, thereby reducing transcription and activation of σ54 response genes.
Collapse
Affiliation(s)
- Sterling R Payne
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Daniel I Pau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Amanda L Whiting
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ye Joon Kim
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Blaze M Pharoah
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Christina Moi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Federico Bernal
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Subramaniam S, Erler A, Fu J, Kranz A, Tang J, Gopalswamy M, Ramakrishnan S, Keller A, Grundmeier G, Müller D, Sattler M, Stewart AF. DNA annealing by Redβ is insufficient for homologous recombination and the additional requirements involve intra- and inter-molecular interactions. Sci Rep 2016; 6:34525. [PMID: 27708411 PMCID: PMC5052646 DOI: 10.1038/srep34525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023] Open
Abstract
Single strand annealing proteins (SSAPs) like Redβ initiate homologous recombination by annealing complementary DNA strands. We show that C-terminally truncated Redβ, whilst still able to promote annealing and nucleoprotein filament formation, is unable to mediate homologous recombination. Mutations of the C-terminal domain were evaluated using both single- and double stranded (ss and ds) substrates in recombination assays. Mutations of critical amino acids affected either dsDNA recombination or both ssDNA and dsDNA recombination indicating two separable functions, one of which is critical for dsDNA recombination and the second for recombination per se. As evaluated by co-immunoprecipitation experiments, the dsDNA recombination function relates to the Redα-Redβ protein-protein interaction, which requires not only contacts in the C-terminal domain but also a region near the N-terminus. Because the nucleoprotein filament formed with C-terminally truncated Redβ has altered properties, the second C-terminal function could be due to an interaction required for functional filaments. Alternatively the second C-terminal function could indicate a requirement for a Redβ-host factor interaction. These data further advance the model for Red recombination and the proposition that Redβ and RAD52 SSAPs share ancestral and mechanistic roots.
Collapse
Affiliation(s)
| | - Axel Erler
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany.,Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Andrea Kranz
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Jing Tang
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Mohanraj Gopalswamy
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747 Garching, Germany
| | - Saminathan Ramakrishnan
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Daniel Müller
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstraße 26, 4058 Basel, Switzerland
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747 Garching, Germany
| | - A Francis Stewart
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|