1
|
Lahiri H, Israeli E, Krugliak M, Basu K, Britan-Rosich Y, Yaish TR, Arkin IT. Potent Anti-Influenza Synergistic Activity of Theobromine and Arainosine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618054. [PMID: 39416015 PMCID: PMC11482935 DOI: 10.1101/2024.10.13.618054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Influenza represents one of the biggest health threats facing humanity. Seasonal epidemics can transition to global pandemics, with cross-species infection presenting a continuous challenge. Although vaccines and several anti-viral options are available, constant genetic drifts and shifts vitiate any of the aforementioned prevention and treatment options. Therefore, we describe an approach targeted at the virus's channel to derive new anti-viral options. Specifically, Influenza A's M2 protein is a well-characterized channel targeted for a long time by aminoadamantane blockers. However, widespread mutations in the protein render the drugs ineffective. Consequently, we started by screening a repurposed drug library against aminoadamantane-sensitive and resistant M2 channels using bacteria-based genetic assays. Subsequent in cellulo testing and structure-activity relationship studies yielded a combination of Theobromine and Arainosine, which exhibits stark anti-viral activity by inhibiting the virus's channel. The drug duo was potent against H1N1 pandemic swine flu, H5N1 pandemic avian flu, aminoadamantane-resistant and sensitive strains alike, exhibiting activity that surpassed Oseltamivir, the leading anti-flu drug on the market. When this drug duo was tested in an animal model, it once more outperformed Oseltamivir, considerably reducing disease symptoms and viral RNA progeny. In conclusion, the outcome of this study represents a new potential treatment option for influenza alongside an approach that is sufficiently general and readily applicable to other viral targets.
Collapse
|
2
|
Basu K, Krugliak M, Arkin IT. Viroporins of Mpox Virus. Int J Mol Sci 2023; 24:13828. [PMID: 37762131 PMCID: PMC10530900 DOI: 10.3390/ijms241813828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mpox or monkeypox virus (MPXV) belongs to the subclass of Poxviridae and has emerged recently as a global threat. With a limited number of anti-viral drugs available for this new virus species, it is challenging to thwart the illness it begets. Therefore, characterizing new drug targets in the virus may prove advantageous to curbing the disease. Since channels as a family are excellent drug targets, we have sought to identify viral ion channels for this virus, which are instrumental in formulating channel-blocking anti-viral drugs. Bioinformatics analyses yielded eight transmembranous proteins smaller or equal to 100 amino acids in length. Subsequently, three independent bacteria-based assays have pointed to five of the eight proteins that exhibit ion channel activity. Finally, we propose a tentative structure of four ion channels from their primary amino acid sequences, employing AlphaFold2 and molecular dynamic simulation methods. These results may represent the first steps in characterizing MPXV viroporins en route to developing blockers that inhibit their function.
Collapse
Affiliation(s)
| | | | - Isaiah T. Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; (K.B.); (M.K.)
| |
Collapse
|
3
|
Benazraf A, Arkin IT. Exhaustive mutational analysis of severe acute respiratory syndrome coronavirus 2 ORF3a: An essential component in the pathogen's infectivity cycle. Protein Sci 2023; 32:e4528. [PMID: 36468608 PMCID: PMC9795539 DOI: 10.1002/pro.4528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022]
Abstract
Detailed knowledge of a protein's key residues may assist in understanding its function and designing inhibitors against it. Consequently, such knowledge of one of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)'s proteins is advantageous since the virus is the etiological agent behind one of the biggest health crises of recent times. To that end, we constructed an exhaustive library of bacteria differing from each other by the mutated version of the virus's ORF3a viroporin they harbor. Since the protein is harmful to bacterial growth due to its channel activity, genetic selection followed by deep sequencing could readily identify mutations that abolish the protein's function. Our results have yielded numerous mutations dispersed throughout the sequence that counteract ORF3a's ability to slow bacterial growth. Comparing these data with the conservation pattern of ORF3a within the coronavirinae provided interesting insights: Deleterious mutations obtained in our study corresponded to conserved residues in the protein. However, despite the comprehensive nature of our mutagenesis coverage (108 average mutations per site), we could not reveal all of the protein's conserved residues. Therefore, it is tempting to speculate that our study unearthed positions in the protein pertinent to channel activity, while other conserved residues may correspond to different functionalities of ORF3a. In conclusion, our study provides important information on a key component of SARS-CoV-2 and establishes a procedure to analyze other viroporins comprehensively.
Collapse
Affiliation(s)
- Amit Benazraf
- Department of Biological ChemistryThe Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Isaiah T. Arkin
- Department of Biological ChemistryThe Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
4
|
Searching for Blockers of Dengue and West Nile Virus Viroporins. Viruses 2022; 14:v14081750. [PMID: 36016372 PMCID: PMC9413451 DOI: 10.3390/v14081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Flavivirus infections, such as those caused by dengue and West Nile viruses, emerge as new challenges for the global healthcare sector. It has been found that these two viruses encode ion channels collectively termed viroporins. Therefore, drug molecules that block such ion-channel activity can serve as potential antiviral agents and may play a primary role in therapeutic purposes. We screened 2839 FDA-approved drugs and compounds in advanced experimental phases using three bacteria-based channel assays to identify such ion channel blockers. We primarily followed a negative genetic screen in which the channel is harmful to the bacteria due to excessive membrane permeabilization that can be relieved by a blocker. Subsequently, we cross-checked the outcome with a positive genetic screen and a pH-dependent assay. The following drugs exhibited potential blocker activities: plerixafor, streptomycin, tranexamic acid, CI-1040, glecaprevir, kasugamycin, and mesna were effective against dengue virus DP1. In contrast, idasanutlin, benzbromarone, 5-azacytidine, and plerixafor were effective against West Nile Virus MgM. These drugs can serve as future antiviral therapeutic agents following subsequent in vitro and in vivo efficacy studies.
Collapse
|
5
|
Zika M—A Potential Viroporin: Mutational Study and Drug Repurposing. Biomedicines 2022; 10:biomedicines10030641. [PMID: 35327443 PMCID: PMC8944957 DOI: 10.3390/biomedicines10030641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022] Open
Abstract
Genus Flavivirus contains several important human pathogens. Among these, the Zika virus is an emerging etiological agent that merits concern. One of its structural proteins, prM, plays an essential role in viral maturation and assembly, making it an attractive drug and vaccine development target. Herein, we have characterized ZikV-M as a potential viroporin candidate using three different bacteria-based assays. These assays were subsequently employed to screen a library of repurposed drugs from which ten compounds were identified as ZikV-M blockers. Mutational analyses of conserved amino acids in the transmembrane domain of other flaviviruses, including West Nile and Dengue virus, were performed to study their role in ion channel activity. In conclusion, our data show that ZikV-M is a potential ion channel that can be used as a drug target for high throughput screening and drug repurposing.
Collapse
|
6
|
Identification of SARS-CoV-2 E Channel Blockers from a Repurposed Drug Library. Pharmaceuticals (Basel) 2021; 14:ph14070604. [PMID: 34201587 PMCID: PMC8308726 DOI: 10.3390/ph14070604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2, the etiological agent of the COVID-19 pandemic, is a member of the Coronaviridae family. It is an enveloped virus with ion channels in its membrane, the most characterized of which is the E protein. Therefore, in an attempt to identify blockers of the E channel, we screened a library of 2839 approved-for-human-use drugs. Our approach yielded eight compounds that exhibited appreciable activity in three bacteria-based channel assays. Considering the fact that the E channel is the most conserved of all SARS-CoV-2 proteins, any inhibitor of its activity may provide an option to curb the viral spread. In addition, inhibitors can also enhance our ability to understand the exact role played by the E protein during the infectivity cycle. Finally, detailed electrophysiological analyses, alongside in vitro and in vivo studies will be needed to establish the exact potential of each of the blockers identified in our study.
Collapse
|
7
|
Tomar PPS, Krugliak M, Arkin IT. Blockers of the SARS-CoV-2 3a Channel Identified by Targeted Drug Repurposing. Viruses 2021; 13:v13030532. [PMID: 33807095 PMCID: PMC8004704 DOI: 10.3390/v13030532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
The etiological agent of the COVID-19 pandemic is SARS-CoV-2. As a member of the Coronaviridae, the enveloped pathogen has several membrane proteins, of which two, E and 3a, were suggested to function as ion channels. In an effort to increase our treatment options, alongside providing new research tools, we have sought to inhibit the 3a channel by targeted drug repurposing. To that end, using three bacteria-based assays, we screened a library of 2839 approved-for-human-use drugs and identified the following potential channel-blockers: Capreomycin, Pentamidine, Spectinomycin, Kasugamycin, Plerixafor, Flumatinib, Litronesib, Darapladib, Floxuridine and Fludarabine. The stage is now set for examining the activity of these compounds in detailed electrophysiological studies and their impact on the whole virus with appropriate biosafety measures.
Collapse
|
8
|
Singh Tomar PP, Arkin IT. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem Biophys Res Commun 2020; 530:10-14. [PMID: 32828269 PMCID: PMC7305885 DOI: 10.1016/j.bbrc.2020.05.206] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 02/01/2023]
Abstract
COVID-19 is one of the most impactful pandemics in recorded history. As such, the identification of inhibitory drugs against its etiological agent, SARS-CoV-2, is of utmost importance, and in particular, repurposing may provide the fastest route to curb the disease. As the first step in this route, we sought to identify an attractive and viable target in the virus for pharmaceutical inhibition. Using three bacteria-based assays that were tested on known viroporins, we demonstrate that one of its essential components, the E protein, is a potential ion channel and, therefore, is an excellent drug target. Channel activity was demonstrated for E proteins in other coronaviruses, providing further emphasis on the importance of this functionally to the virus' pathogenicity. The results of a screening effort involving a repurposing drug library of ion channel blockers yielded two compounds that inhibit the E protein: Gliclazide and Memantine. In conclusion, as a route to curb viral virulence and abate COVID-19, we point to the E protein of SARS-CoV-2 as an attractive drug target and identify off-label compounds that inhibit it.
Collapse
Affiliation(s)
- Prabhat Pratap Singh Tomar
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 91904, Israel
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
9
|
Tomar PPS, Oren R, Krugliak M, Arkin IT. Potential Viroporin Candidates From Pathogenic Viruses Using Bacteria-Based Bioassays. Viruses 2019; 11:v11070632. [PMID: 31324045 PMCID: PMC6669592 DOI: 10.3390/v11070632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Viroporins are a family of small hydrophobic proteins found in many enveloped viruses that are capable of ion transport. Building upon the ability to inhibit influenza by blocking its archetypical M2 H+ channel, as a family, viroporins may represent a viable target to curb viral infectivity. To this end, using three bacterial assays we analyzed six small hydrophobic proteins from biomedically important viruses as potential viroporin candidates. Our results indicate that Eastern equine encephalitis virus 6k, West Nile virus MgM, Dengue virus 2k, Dengue virus P1, Variola virus gp170, and Variola virus gp151 proteins all exhibit channel activity in the bacterial assays, and as such may be considered viroporin candidates. It is clear that more studies, such as patch clamping, will be needed to characterize the ionic conductivities of these proteins. However, our approach presents a rapid procedure to analyze open reading frames in other viruses, yielding new viroporin candidates for future detailed investigation. Finally, if conductivity is proven vital to their cognate viruses, the bio-assays presented herein afford a simple approach to screen for new channel blockers.
Collapse
Affiliation(s)
- Prabhat Pratap Singh Tomar
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 91904, Israel
| | - Rivka Oren
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 91904, Israel
| | - Miriam Krugliak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 91904, Israel
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
10
|
Santner P, Martins JMDS, Kampmeyer C, Hartmann-Petersen R, Laursen JS, Stein A, Olsen CA, Arkin IT, Winther JR, Willemoës M, Lindorff-Larsen K. Random Mutagenesis Analysis of the Influenza A M2 Proton Channel Reveals Novel Resistance Mutants. Biochemistry 2018; 57:5957-5968. [PMID: 30230310 DOI: 10.1021/acs.biochem.8b00722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influenza M2 proton channel is a major drug target, but unfortunately, the acquisition of resistance mutations greatly reduces the functional life span of a drug in influenza treatment. New M2 inhibitors that inhibit mutant M2 channels otherwise resistant to the early adamantine-based drugs have been reported, but it remains unclear whether and how easy resistance could arise to such inhibitors. We have combined a newly developed proton conduction assay with an established method for selection and screening, both Escherichia coli-based, to enable the study of M2 function and inhibition. Combining this platform with two groups of structurally different M2 inhibitors allowed us to isolate drug resistant M2 channels from a mutant library. Two groups of M2 variants emerged from this analysis. A first group appeared almost unaffected by the inhibitor, M_089 (N13I, I35L, and F47L) and M_272 (G16C and D44H), and the single-substitution variants derived from these (I35L, L43P, D44H, and L46P). Functionally, these resemble the known drug resistant M2 channels V27A, S31N, and swine flu. In addition, a second group of tested M2 variants were all still inhibited by drugs but to a lesser extent than wild type M2. Molecular dynamics simulations aided in distinguishing the two groups where drug binding to the wild type and the less resistant M2 group showed a stable positioning of the ligand in the canonical binding pose, as opposed to the drug resistant group in which the ligand rapidly dissociated from the complex during the simulations.
Collapse
Affiliation(s)
- Paul Santner
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - João Miguel da Silva Martins
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Caroline Kampmeyer
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Jonas S Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Amelie Stein
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Christian A Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Center for Biopharmaceuticals, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Isaiah T Arkin
- Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Givat-Ram, Jerusalem 91904 , Israel
| | - Jakob R Winther
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Santner P, Martins JMDS, Laursen JS, Behrendt L, Riber L, Olsen CA, Arkin IT, Winther JR, Willemoës M, Lindorff-Larsen K. A Robust Proton Flux (pHlux) Assay for Studying the Function and Inhibition of the Influenza A M2 Proton Channel. Biochemistry 2018; 57:5949-5956. [PMID: 30230312 DOI: 10.1021/acs.biochem.8b00721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The M2 protein is an important target for drugs in the fight against the influenza virus. Because of the emergence of resistance against antivirals directed toward the M2 proton channel, the search for new drugs against resistant M2 variants is of high importance. Robust and sensitive assays for testing potential drug compounds on different M2 variants are valuable tools in this search for new inhibitors. In this work, we describe a fluorescence sensor-based assay, which we termed "pHlux", that measures proton conduction through M2 when synthesized from an expression vector in Escherichia coli. The assay was compared to a previously established bacterial potassium ion transport complementation assay, and the results were compared to simulations obtained from analysis of a computational model of M2 and its interaction with inhibitor molecules. The inhibition of M2 was measured for five different inhibitors, including Rimantadine, Amantadine, and spiro type compounds, and the drug resistance of the M2 mutant variants (swine flu, V27A, and S31N) was confirmed. We demonstrate that the pHlux assay is robust and highly sensitive and shows potential for high-throughput screening.
Collapse
Affiliation(s)
- Paul Santner
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - João Miguel da Silva Martins
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Jonas S Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Lars Behrendt
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Leise Riber
- Department of Biology, Section for Microbiology , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Christian A Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Center for Biopharmaceuticals, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Isaiah T Arkin
- Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat-Ram , Jerusalem 91904 , Israel
| | - Jakob R Winther
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| |
Collapse
|