1
|
Hammel F, Payne NC, Marando VM, Mazitschek R, Walker S. Identification of a Polypeptide Inhibitor of O-GlcNAc Transferase with Picomolar Affinity. J Am Chem Soc 2024; 146:26320-26330. [PMID: 39276112 PMCID: PMC11440498 DOI: 10.1021/jacs.4c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that binds thousands of different proteins, including substrates that it glycosylates and nonsubstrate interactors that regulate its biology. OGT also has one proteolytic substrate, the transcriptional coregulator host cell factor 1 (HCF-1), which it cleaves in a process initiated by glutamate side chain glycosylation at a series of central repeats. Although HCF-1 is OGT's most prominent binding partner, its affinity for the enzyme has not been quantified. Here, we report a time-resolved Förster resonance energy transfer assay to measure ligand binding to OGT and show that an HCF-1-derived polypeptide (HCF3R) binds with picomolar affinity to the enzyme (KD ≤ 85 pM). This high affinity is driven in large part by conserved asparagines in OGT's tetratricopeptide repeat domain, which form bidentate contacts to the HCF-1 peptide backbone; replacing any one of these asparagines with alanine reduces binding by more than 5 orders of magnitude. Because the HCF-1 polypeptide binds so tightly to OGT, we tested its ability to inhibit enzymatic function. We found that HCF3R potently inhibits OGT both in vitro and in cells and used this finding to develop a genetically encoded, inducible OGT inhibitor that can be degraded with a small molecule, allowing for reversible and tunable inhibition of OGT.
Collapse
Affiliation(s)
- Forrest
A. Hammel
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - N. Connor Payne
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Victoria M. Marando
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ralph Mazitschek
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- T.H.
Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Suzanne Walker
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Cucuzza S, Sitnik M, Jurt S, Michel E, Dai W, Müntener T, Ernst P, Häussinger D, Plückthun A, Zerbe O. Unexpected dynamics in femtomolar complexes of binding proteins with peptides. Nat Commun 2023; 14:7823. [PMID: 38016954 PMCID: PMC10684580 DOI: 10.1038/s41467-023-43596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Ultra-tight binding is usually observed for proteins associating with rigidified molecules. Previously, we demonstrated that femtomolar binders derived from the Armadillo repeat proteins (ArmRPs) can be designed to interact very tightly with fully flexible peptides. Here we show for ArmRPs with four and seven sequence-identical internal repeats that the peptide-ArmRP complexes display conformational dynamics. These dynamics stem from transient breakages of individual protein-residue contacts that are unrelated to overall unbinding. The labile contacts involve electrostatic interactions. We speculate that these dynamics allow attaining very high binding affinities, since they reduce entropic losses. Importantly, only NMR techniques can pick up these local events by directly detecting conformational exchange processes without complications from changes in solvent entropy. Furthermore, we demonstrate that the interaction surface of the repeat protein regularizes upon peptide binding to become more compatible with the peptide geometry. These results provide novel design principles for ultra-tight binders.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Malgorzata Sitnik
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Erich Michel
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Wenzhao Dai
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Thomas Müntener
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland.
| | - Oliver Zerbe
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland.
| |
Collapse
|
3
|
Wu K, Bai H, Chang YT, Redler R, McNally KE, Sheffler W, Brunette TJ, Hicks DR, Morgan TE, Stevens TJ, Broerman A, Goreshnik I, DeWitt M, Chow CM, Shen Y, Stewart L, Derivery E, Silva DA, Bhabha G, Ekiert DC, Baker D. De novo design of modular peptide-binding proteins by superhelical matching. Nature 2023; 616:581-589. [PMID: 37020023 PMCID: PMC10115654 DOI: 10.1038/s41586-023-05909-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
General approaches for designing sequence-specific peptide-binding proteins would have wide utility in proteomics and synthetic biology. However, designing peptide-binding proteins is challenging, as most peptides do not have defined structures in isolation, and hydrogen bonds must be made to the buried polar groups in the peptide backbone1-3. Here, inspired by natural and re-engineered protein-peptide systems4-11, we set out to design proteins made out of repeating units that bind peptides with repeating sequences, with a one-to-one correspondence between the repeat units of the protein and those of the peptide. We use geometric hashing to identify protein backbones and peptide-docking arrangements that are compatible with bidentate hydrogen bonds between the side chains of the protein and the peptide backbone12. The remainder of the protein sequence is then optimized for folding and peptide binding. We design repeat proteins to bind to six different tripeptide-repeat sequences in polyproline II conformations. The proteins are hyperstable and bind to four to six tandem repeats of their tripeptide targets with nanomolar to picomolar affinities in vitro and in living cells. Crystal structures reveal repeating interactions between protein and peptide interactions as designed, including ladders of hydrogen bonds from protein side chains to peptide backbones. By redesigning the binding interfaces of individual repeat units, specificity can be achieved for non-repeating peptide sequences and for disordered regions of native proteins.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA
| | - Hua Bai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ya-Ting Chang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Rachel Redler
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | | | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - T J Brunette
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - Adam Broerman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Michelle DeWitt
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yihang Shen
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Daniel Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
- Monod Bio, Seattle, WA, USA.
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Holst LH, Madsen NG, Toftgård FT, Rønne F, Moise IM, Petersen EI, Fojan P. De novo design of a polycarbonate hydrolase. Protein Eng Des Sel 2023; 36:gzad022. [PMID: 38035789 DOI: 10.1093/protein/gzad022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Enzymatic degradation of plastics is currently limited to the use of engineered natural enzymes. As of yet, all engineering approaches applied to plastic degrading enzymes retain the natural $\alpha /\beta $-fold. While mutations can be used to increase thermostability, an inherent maximum likely exists for the $\alpha /\beta $-fold. It is thus of interest to introduce catalytic activity toward plastics in a different protein fold to escape the sequence space of plastic degrading enzymes. Here, a method for designing highly thermostable enzymes that can degrade plastics is described. With the help of Rosetta an active site catalysing the hydrolysis of polycarbonate is introduced into a set of thermostable scaffolds. Through computational evaluation, a potential PCase was selected and produced recombinantly in Escherichia coli. Thermal analysis suggests that the design has a melting temperature of >95$^{\circ }$C. Activity toward polycarbonate was confirmed using atomic force spectroscopy (AFM), proving the successful design of a PCase.
Collapse
Affiliation(s)
- Laura H Holst
- Material Science and Engineering Group, Department of Materials and Production, Aalborg University, 9000 Aalborg, Denmark
| | - Niklas G Madsen
- Material Science and Engineering Group, Department of Materials and Production, Aalborg University, 9000 Aalborg, Denmark
| | - Freja T Toftgård
- Material Science and Engineering Group, Department of Materials and Production, Aalborg University, 9000 Aalborg, Denmark
| | - Freja Rønne
- Material Science and Engineering Group, Department of Materials and Production, Aalborg University, 9000 Aalborg, Denmark
| | - Ioana-Malina Moise
- Material Science and Engineering Group, Department of Materials and Production, Aalborg University, 9000 Aalborg, Denmark
| | - Evamaria I Petersen
- Material Science and Engineering Group, Department of Materials and Production, Aalborg University, 9000 Aalborg, Denmark
| | - Peter Fojan
- Material Science and Engineering Group, Department of Materials and Production, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
5
|
Khersonsky O, Fleishman SJ. What Have We Learned from Design of Function in Large Proteins? BIODESIGN RESEARCH 2022; 2022:9787581. [PMID: 37850148 PMCID: PMC10521758 DOI: 10.34133/2022/9787581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2023] Open
Abstract
The overarching goal of computational protein design is to gain complete control over protein structure and function. The majority of sophisticated binders and enzymes, however, are large and exhibit diverse and complex folds that defy atomistic design calculations. Encouragingly, recent strategies that combine evolutionary constraints from natural homologs with atomistic calculations have significantly improved design accuracy. In these approaches, evolutionary constraints mitigate the risk from misfolding and aggregation, focusing atomistic design calculations on a small but highly enriched sequence subspace. Such methods have dramatically optimized diverse proteins, including vaccine immunogens, enzymes for sustainable chemistry, and proteins with therapeutic potential. The new generation of deep learning-based ab initio structure predictors can be combined with these methods to extend the scope of protein design, in principle, to any natural protein of known sequence. We envision that protein engineering will come to rely on completely computational methods to efficiently discover and optimize biomolecular activities.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Gisdon FJ, Kynast JP, Ayyildiz M, Hine AV, Plückthun A, Höcker B. Modular peptide binders - development of a predictive technology as alternative for reagent antibodies. Biol Chem 2022; 403:535-543. [PMID: 35089661 DOI: 10.1515/hsz-2021-0384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
Abstract
Current biomedical research and diagnostics critically depend on detection agents for specific recognition and quantification of protein molecules. Monoclonal antibodies have been used for this purpose over decades and facilitated numerous biological and biomedical investigations. Recently, however, it has become apparent that many commercial reagent antibodies lack specificity or do not recognize their target at all. Thus, synthetic alternatives are needed whose complex designs are facilitated by multidisciplinary approaches incorporating experimental protein engineering with computational modeling. Here, we review the status of such an engineering endeavor based on the modular armadillo repeat protein scaffold and discuss challenges in its implementation.
Collapse
Affiliation(s)
- Florian J Gisdon
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Josef P Kynast
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Merve Ayyildiz
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Anna V Hine
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
7
|
Lindenburg LH, Pantelejevs T, Gielen F, Zuazua-Villar P, Butz M, Rees E, Kaminski CF, Downs JA, Hyvönen M, Hollfelder F. Improved RAD51 binders through motif shuffling based on the modularity of BRC repeats. Proc Natl Acad Sci U S A 2021; 118:e2017708118. [PMID: 34772801 PMCID: PMC8727024 DOI: 10.1073/pnas.2017708118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/20/2023] Open
Abstract
Exchanges of protein sequence modules support leaps in function unavailable through point mutations during evolution. Here we study the role of the two RAD51-interacting modules within the eight binding BRC repeats of BRCA2. We created 64 chimeric repeats by shuffling these modules and measured their binding to RAD51. We found that certain shuffled module combinations were stronger binders than any of the module combinations in the natural repeats. Surprisingly, the contribution from the two modules was poorly correlated with affinities of natural repeats, with a weak BRC8 repeat containing the most effective N-terminal module. The binding of the strongest chimera, BRC8-2, to RAD51 was improved by -2.4 kCal/mol compared to the strongest natural repeat, BRC4. A crystal structure of RAD51:BRC8-2 complex shows an improved interface fit and an extended β-hairpin in this repeat. BRC8-2 was shown to function in human cells, preventing the formation of nuclear RAD51 foci after ionizing radiation.
Collapse
Affiliation(s)
- Laurens H Lindenburg
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Fabrice Gielen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Pedro Zuazua-Villar
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Maren Butz
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Jessica A Downs
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| |
Collapse
|
8
|
Cucuzza S, Güntert P, Plückthun A, Zerbe O. An automated iterative approach for protein structure refinement using pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2021; 75:319-334. [PMID: 34338940 PMCID: PMC8473369 DOI: 10.1007/s10858-021-00376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/19/2021] [Indexed: 05/02/2023]
Abstract
NMR structure calculation using NOE-derived distance restraints requires a considerable number of assignments of both backbone and sidechains resonances, often difficult or impossible to get for large or complex proteins. Pseudocontact shifts (PCSs) also play a well-established role in NMR protein structure calculation, usually to augment existing structural, mostly NOE-derived, information. Existing refinement protocols using PCSs usually either require a sizeable number of sidechain assignments or are complemented by other experimental restraints. Here, we present an automated iterative procedure to perform backbone protein structure refinements requiring only a limited amount of backbone amide PCSs. Already known structural features from a starting homology model, in this case modules of repeat proteins, are framed into a scaffold that is subsequently refined by experimental PCSs. The method produces reliable indicators that can be monitored to judge about the performance. We applied it to a system in which sidechain assignments are hardly possible, designed Armadillo repeat proteins (dArmRPs), and we calculated the solution NMR structure of YM4A, a dArmRP containing four sequence-identical internal modules, obtaining high convergence to a single structure. We suggest that this approach is particularly useful when approximate folds are known from other techniques, such as X-ray crystallography, while avoiding inherent artefacts due to, for instance, crystal packing.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Tokyo, Japan
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
9
|
Ferruz N, Noske J, Höcker B. Protlego: A Python package for the analysis and design of chimeric proteins. Bioinformatics 2021; 37:3182-3189. [PMID: 33901273 PMCID: PMC8504633 DOI: 10.1093/bioinformatics/btab253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Motivation Duplication and recombination of protein fragments have led to the highly diverse protein space that we observe today. By mimicking this natural process, the design of protein chimeras via fragment recombination has proven experimentally successful and has opened a new era for the design of customizable proteins. The in silico building of structural models for these chimeric proteins, however, remains a manual task that requires a considerable degree of expertise and is not amenable for high-throughput studies. Energetic and structural analysis of the designed proteins often require the use of several tools, each with their unique technical difficulties and available in different programming languages or web servers. Results We implemented a Python package that enables automated, high-throughput design of chimeras and their structural analysis. First, it fetches evolutionarily conserved fragments from a built-in database (also available at fuzzle.uni-bayreuth.de). These relationships can then be represented via networks or further selected for chimera construction via recombination. Designed chimeras or natural proteins are then scored and minimized with the Charmm and Amber forcefields and their diverse structural features can be analyzed at ease. Here, we showcase Protlego’s pipeline by exploring the relationships between the P-loop and Rossmann superfolds, building and characterizing their offspring chimeras. We believe that Protlego provides a powerful new tool for the protein design community. Availability and implementation Protlego runs on the Linux platform and is freely available at (https://hoecker-lab.github.io/protlego/) with tutorials and documentation. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Jakob Noske
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Ernst P, Zosel F, Reichen C, Nettels D, Schuler B, Plückthun A. Structure-Guided Design of a Peptide Lock for Modular Peptide Binders. ACS Chem Biol 2020; 15:457-468. [PMID: 31985201 DOI: 10.1021/acschembio.9b00928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptides play an important role in intermolecular interactions and are frequent analytes in diagnostic assays, also as unstructured, linear epitopes in whole proteins. Yet, due to the many different sequence possibilities even for short peptides, classical selection of binding proteins from a library, one at a time, is not scalable to proteomes. However, moving away from selection to a rational assembly of preselected modules binding to predefined linear epitopes would split the problem into smaller parts. These modules could then be reassembled in any desired order to bind to, in principle, arbitrary sequences, thereby circumventing any new rounds of selection. Designed Armadillo repeat proteins (dArmRPs) are modular, and they do bind elongated peptides in a modular way. Their consensus sequence carries pockets that prefer arginine and lysine. In our quest to select pockets for all amino acid side chains, we had discovered that repetitive sequences can lead to register shifts and peptide flipping during selections from libraries, hindering the selection of new binding specificities. To solve this problem, we now created an orthogonal binding specificity by a combination of grafting from β-catenin, computational design and mutual optimization of the pocket and the bound peptide. We have confirmed the design and the desired interactions by X-ray structure determination. Furthermore, we could confirm the absence of sliding in solution by a single-molecule Förster resonance energy transfer. The new pocket could be moved from the N-terminus of the protein to the middle, retaining its properties, further underlining the modularity of the system.
Collapse
Affiliation(s)
- Patrick Ernst
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Franziska Zosel
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Reichen
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
11
|
Michel E, Plückthun A, Zerbe O. Peptide binding affinity redistributes preassembled repeat protein fragments. Biol Chem 2018; 400:395-404. [DOI: 10.1515/hsz-2018-0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023]
Abstract
Abstract
Designed armadillo repeat proteins (dArmRPs) are modular peptide binders composed of N- and C-terminal capping repeats Y and A and a variable number of internal modules M that each specifically recognize two amino acids of the target peptide. Complementary fragments of dArmRPs obtained by splitting the protein between helices H1 and H2 of an internal module show conditional and specific assembly only in the presence of a target peptide (Michel, E., Plückthun, A., and Zerbe, O. (2018). Peptide-guided assembly of repeat protein fragments. Angew. Chem. Int. Ed. 57, 4576–4579). Here, we investigate dArmRP fragments that already spontaneously assemble with high affinity, e.g. those obtained from splits between entire modules or between helices H2 and H3. We find that the interaction of the peptide with the assembled fragments induces distal conformational rearrangements that suggest an induced fit on a global protein level. A population analysis of an equimolar mixture of an N-terminal and three C-terminal fragments with various affinities for the target peptide revealed predominant assembly of the weakest peptide binder. However, adding a target peptide to this mixture altered the population of the protein complexes such that the combination with the highest affinity for the peptide increased and becomes predominant when adding excess of peptide, highlighting the feasibility of peptide-induced enrichment of best binders from inter-modular fragment mixtures.
Collapse
Affiliation(s)
- Erich Michel
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zürich , Switzerland
| | - Andreas Plückthun
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zürich , Switzerland
| | - Oliver Zerbe
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zürich , Switzerland
| |
Collapse
|
12
|
Michel E, Plückthun A, Zerbe O. Peptide‐Guided Assembly of Repeat Protein Fragments. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Erich Michel
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Andreas Plückthun
- Department of Biochemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Oliver Zerbe
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
13
|
Michel E, Plückthun A, Zerbe O. Peptide-Guided Assembly of Repeat Protein Fragments. Angew Chem Int Ed Engl 2018; 57:4576-4579. [DOI: 10.1002/anie.201713377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Erich Michel
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Andreas Plückthun
- Department of Biochemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Oliver Zerbe
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
14
|
Curvature of designed armadillo repeat proteins allows modular peptide binding. J Struct Biol 2018; 201:108-117. [DOI: 10.1016/j.jsb.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/15/2017] [Accepted: 08/28/2017] [Indexed: 11/17/2022]
|
15
|
Arai R. Hierarchical design of artificial proteins and complexes toward synthetic structural biology. Biophys Rev 2017; 10:391-410. [PMID: 29243094 DOI: 10.1007/s12551-017-0376-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
In multiscale structural biology, synthetic approaches are important to demonstrate biophysical principles and mechanisms underlying the structure, function, and action of bio-nanomachines. A central goal of "synthetic structural biology" is the design and construction of artificial proteins and protein complexes as desired. In this paper, I review recent remarkable progress of an array of approaches for hierarchical design of artificial proteins and complexes that signpost the path forward toward synthetic structural biology as an emerging interdisciplinary field. Topics covered include combinatorial and protein-engineering approaches for directed evolution of artificial binding proteins and membrane proteins, binary code strategy for structural and functional de novo proteins, protein nanobuilding block strategy for constructing nano-architectures, protein-metal-organic frameworks for 3D protein complex crystals, and rational and computational approaches for design/creation of artificial proteins and complexes, novel protein folds, ideal/optimized protein structures, novel binding proteins for targeted therapeutics, and self-assembling nanomaterials. Protein designers and engineers look toward a bright future in synthetic structural biology for the next generation of biophysics and biotechnology.
Collapse
Affiliation(s)
- Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan. .,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan. .,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
16
|
Designing repeat proteins: a modular approach to protein design. Curr Opin Struct Biol 2017; 45:116-123. [DOI: 10.1016/j.sbi.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
|