1
|
Hasanbasri Z, Tessmer MH, Stoll S, Saxena S. Modeling of Cu(II)-based protein spin labels using rotamer libraries. Phys Chem Chem Phys 2024; 26:6806-6816. [PMID: 38324256 PMCID: PMC10883468 DOI: 10.1039/d3cp05951k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
The bifunctional spin label double-histidine copper-(II) capped with nitrilotriacetate [dHis-Cu(II)-NTA], used in conjunction with electron paramagnetic resonance (EPR) methods can provide high-resolution distance data for investigating protein structure and backbone conformational diversity. Quantitative utilization of this data is limited due to a lack of rapid and accurate dHis-Cu(II)-NTA modeling methods that can be used to translate experimental data into modeling restraints. Here, we develop two dHis-Cu(II)-NTA rotamer libraries using a set of recently published molecular dynamics simulations and a semi-empirical meta-dynamics-based conformational ensemble sampling tool for use with the recently developed chiLife bifunctional spin label modeling method. The accuracy of both the libraries and the modeling method are tested by comparing model predictions to experimentally determined distance distributions. We show that this method is accurate with absolute deviation between the predicted and experimental modes between 0.0-1.2 Å with an average of 0.6 Å over the test data used. In doing so, we also validate the generality of the chiLife bifunctional label modeling method. Taken together, the increased structural resolution and modeling accuracy of dHis-Cu(II)-NTA over other spin labels promise improvements in the accuracy and resolution of protein models by EPR.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, PA, 15260, USA.
| | - Maxx H Tessmer
- Department of Chemistry, University of Washington, WA, 98195, USA.
| | - Stefan Stoll
- Department of Chemistry, University of Washington, WA, 98195, USA.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, PA, 15260, USA.
| |
Collapse
|
2
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Wort JL, Ackermann K, Giannoulis A, Bode BE. Enhanced sensitivity for pulse dipolar EPR spectroscopy using variable-time RIDME. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107460. [PMID: 37167826 DOI: 10.1016/j.jmr.2023.107460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Pulse dipolar EPR spectroscopy (PDS) measurements are an important complementary tool in structural biology and are increasingly applied to macromolecular assemblies implicated in human health and disease at physiological concentrations. This requires ever higher sensitivity, and recent advances have driven PDS measurements into the mid-nanomolar concentration regime, though optimization and acquisition of such measurements remains experimentally demanding and time expensive. One important consideration is that constant-time acquisition represents a hard limit for measurement sensitivity, depending on the maximum measured distance. Determining this distance a priori has been facilitated by machine-learning structure prediction (AlphaFold2 and RoseTTAFold) but is often confounded by non-representative behaviour in frozen solution that may mandate multiple rounds of optimization and acquisition. Herein, we endeavour to simultaneously enhance sensitivity and streamline PDS measurement optimization to one-step by benchmarking a variable-time acquisition RIDME experiment applied to CuII-nitroxide and CuII-CuII model systems. Results demonstrate marked sensitivity improvements of both 5- and 6-pulse variable-time RIDME of between 2- and 5-fold over the constant-time analogues.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland.
| |
Collapse
|
4
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
5
|
Abstract
Microbial rhodopsins represent the most abundant phototrophic systems known today. A similar molecular architecture with seven transmembrane helices and a retinal cofactor linked to a lysine in helix 7 enables a wide range of functions including ion pumping, light-controlled ion channel gating, or sensing. Deciphering their molecular mechanisms therefore requires a combined consideration of structural, functional, and spectroscopic data in order to identify key factors determining their function. Important insight can be gained by solid-state NMR spectroscopy by which the large homo-oligomeric rhodopsin complexes can be studied directly within lipid bilayers. This chapter describes the methodological background and the necessary sample preparation requirements for the study of photointermediates, for the analysis of protonation states, H-bonding and chromophore conformations, for 3D structure determination, and for probing oligomer interfaces of microbial rhodopsins. The use of data extracted from these NMR experiments is discussed in the context of complementary biophysical methods.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Xue K, Movellan KT, Zhang XC, Najbauer EE, Forster MC, Becker S, Andreas LB. Towards a native environment: structure and function of membrane proteins in lipid bilayers by NMR. Chem Sci 2021; 12:14332-14342. [PMID: 34880983 PMCID: PMC8580007 DOI: 10.1039/d1sc02813h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023] Open
Abstract
Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins. ssNMR can probe both the structure and dynamics of membrane proteins, revealing protein function in a near-native lipid bilayer environment. The main limitation of the method is spectral resolution and sensitivity, however recent developments in ssNMR hardware, including the commercialization of 28 T magnets (1.2 GHz proton frequency) and ultrafast MAS spinning (<100 kHz) promise to accelerate acquisition, while reducing sample requirement, both of which are critical to membrane protein studies. Here, we review recent advances in ssNMR methodology used for structure determination of membrane proteins in native and mimetic environments, as well as the study of protein functions such as protein dynamics, and interactions with ligands, lipids and cholesterol.
Collapse
Affiliation(s)
- Kai Xue
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Kumar Tekwani Movellan
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Xizhou Cecily Zhang
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Eszter E Najbauer
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Marcel C Forster
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Loren B Andreas
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| |
Collapse
|
7
|
Hasanbasri Z, Singewald K, Gluth TD, Driesschaert B, Saxena S. Cleavage-Resistant Protein Labeling With Hydrophilic Trityl Enables Distance Measurements In-Cell. J Phys Chem B 2021; 125:5265-5274. [PMID: 33983738 DOI: 10.1021/acs.jpcb.1c02371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitive in-cell distance measurements in proteins using pulsed-electron spin resonance (ESR) require reduction-resistant and cleavage-resistant spin labels. Among the reduction-resistant moieties, the hydrophilic trityl core known as OX063 is promising due to its long phase-memory relaxation time (Tm). This property leads to a sufficiently intense ESR signal for reliable distance measurements. Furthermore, the Tm of OX063 remains sufficiently long at higher temperatures, opening the possibility for measurements at temperatures above 50 K. In this work, we synthesized deuterated OX063 with a maleimide linker (mOX063-d24). We show that the combination of the hydrophilicity of the label and the maleimide linker enables high protein labeling that is cleavage-resistant in-cells. Distance measurements performed at 150 K using this label are more sensitive than the measurements at 80 K. The sensitivity gain is due to the significantly short longitudinal relaxation time (T1) at higher temperatures, which enables more data collection per unit of time. In addition to in vitro experiments, we perform distance measurements in Xenopus laevis oocytes. Interestingly, the Tm of mOX063-d24 is sufficiently long even in the crowded environment of the cell, leading to signals of appreciable intensity. Overall, mOX063-d24 provides highly sensitive distance measurements both in vitro and in-cells.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
9
|
Zhang X, Zhang Y, Tang S, Ma S, Shen Y, Chen Y, Tong Q, Li Y, Yang J. Hydrophobic Gate of Mechanosensitive Channel of Large Conductance in Lipid Bilayers Revealed by Solid-State NMR Spectroscopy. J Phys Chem B 2021; 125:2477-2490. [DOI: 10.1021/acs.jpcb.0c07487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xuning Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siyang Tang
- Children’s Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shaojie Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Yanke Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Tong
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuezhou Li
- Children’s Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
10
|
Gamble Jarvi A, Casto J, Saxena S. Buffer effects on site directed Cu 2+-labeling using the double histidine motif. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106848. [PMID: 33164758 DOI: 10.1016/j.jmr.2020.106848] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
The double histidine, or dHis, motif has emerged as a powerful spin labeling tool to determine the conformations and dynamics, subunit orientation, native metal binding site location, and other physical characteristics of proteins by Cu2+-based electron paramagnetic resonance. Here, we investigate the efficacy of this technique in five common buffer systems, and show that buffer choice can impact the loading of Cu2+-NTA into dHis sites, and more generally, the sensitivity of the overall technique. We also present a standardized and optimized examination of labeling of the dHis motif with Cu2+-NTA for EPR based distance measurements. We provide optimal loading procedures, using representative EPR and UV/Vis data for each step in the process. From this data, we find that maximal dHis loading can be achieved in under 30 min with low temperature sample incubation. Using only these optimal procedures, we see up to a 28% increase in fully labeled proteins compared to previously published results in N-ethylmorpholine. Using both this optimized procedure as well as a more optimal buffer, we can achieve up to 80% fully loaded proteins, which corresponds to a 64% increase compared to the prior data. These results provide insight and deeper understanding of the dHis Cu2+-NTA system, the variables that impact its efficacy, and present a method by which these issues may be mitigated for the most efficient labeling.
Collapse
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joshua Casto
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
de Vlugt JE, Xiao P, Munro R, Charchoglyan A, Brewer D, Al-Abdul-Wahid MS, Brown LS, Ladizhansky V. Identifying lipids tightly bound to an integral membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183345. [DOI: 10.1016/j.bbamem.2020.183345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/11/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
|
12
|
Schmidt T, Jeon J, Okuno Y, Chiliveri SC, Clore GM. Submillisecond Freezing Permits Cryoprotectant-Free EPR Double Electron-Electron Resonance Spectroscopy. Chemphyschem 2020; 21:1224-1229. [PMID: 32383308 DOI: 10.1002/cphc.202000312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/06/2020] [Indexed: 01/22/2023]
Abstract
Double electron-electron resonance (DEER) EPR spectroscopy is a powerful method for obtaining distance distributions between pairs of engineered nitroxide spin-labels in proteins and other biological macromolecules. These measurements require the use of cryogenic temperatures (77 K or less) to prolong the phase memory relaxation time (Tm ) sufficiently to enable detection of a DEER echo curve. Generally, a cryoprotectant such as glycerol is added to protein samples to facilitate glass formation and avoid protein clustering (which can result in a large decrease in Tm ) during relatively slow flash freezing in liquid N2 . However, cryoprotectants are osmolytes and can influence protein folding/unfolding equilibria, as well as species populations in weak multimeric systems. Here we show that submillisecond rapid freezing, achieved by high velocity spraying of the sample onto a rapidly spinning, liquid nitrogen cooled copper disc obviates the requirement for cryoprotectants and permits high quality DEER data to be obtained in absence of glycerol. We demonstrate this approach on five different protein systems: protein A, the metastable drkN SH3 domain, urea-unfolded drkN SH3, HIV-1 reverse transcriptase, and the transmembrane domain of HIV-1 gp41 in lipid bicelles.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Jaekyun Jeon
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Yusuke Okuno
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Sai C Chiliveri
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| |
Collapse
|
13
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
14
|
Georgieva ER, Borbat PP, Fanouraki C, Freed JH. High-yield production in E. coli and characterization of full-length functional p13 II protein from human T-cell leukemia virus type 1. Protein Expr Purif 2020; 173:105659. [PMID: 32360379 DOI: 10.1016/j.pep.2020.105659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
Human T-cell leukemia virus type 1 is an oncovirus that causes aggressive adult T-cell leukemia but is also responsible for severe neurodegenerative and endocrine disorders. Combatting HTLV-1 infections requires a detailed understanding of the viral mechanisms in the host. Therefore, in vitro studies of important virus-encoded proteins would be critical. Our focus herein is on the HTLV-1-encoded regulatory protein p13II, which interacts with the inner mitochondrial membrane, increasing its permeability to cations (predominantly potassium, K+). Thereby, this protein affects mitochondrial homeostasis. We report on our progress in developing specific protocols for heterologous expression of p13II in E. coli, and methods for its purification and characterization. We succeeded in producing large quantities of highly-pure full-length p13II, deemed to be its fully functional form. Importantly, our particular approach based on the fusion of ubiquitin to the p13II C-terminus was instrumental in increasing the persistently low expression of soluble p13II in its native form. We subsequently developed approaches for protein spin labeling and a conformation study using double electron-electron resonance (DEER) spectroscopy and a fluorescence-based cation uptake assay for p13II in liposomes. Our DEER results point to large protein conformation changes occurring upon transition from the soluble to the membrane-bound state. The functional assay on p13II-assisted transport of thallium (Tl+) through the membrane, wherein Tl+ substituted for K+, suggests transmembrane potential involvement in p13II function. Our study lays the foundation for expansion of in vitro functional and structural investigations on p13II and would aid in the development of structure-based protein inhibitors and markers.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA.
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA; ACERT Center for Advanced ESR Technology, Cornell University, Ithaca, NY, 14853, USA
| | - Christina Fanouraki
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA; ACERT Center for Advanced ESR Technology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Bogetti X, Ghosh S, Gamble Jarvi A, Wang J, Saxena S. Molecular Dynamics Simulations Based on Newly Developed Force Field Parameters for Cu 2+ Spin Labels Provide Insights into Double-Histidine-Based Double Electron-Electron Resonance. J Phys Chem B 2020; 124:2788-2797. [PMID: 32181671 DOI: 10.1021/acs.jpcb.0c00739] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electron paramagnetic resonance (EPR) in combination with the recently developed double-histidine (dHis)-based Cu2+ spin labeling has provided valuable insights into protein structure and conformational dynamics. To relate sparse distance constraints measured by EPR to protein fluctuations in solution, modeling techniques are needed. In this work, we have developed force field parameters for Cu2+-nitrilotriacetic and Cu2+-iminodiacetic acid spin labels. We employed molecular dynamics (MD) simulations to capture the atomic-level details of dHis-labeled protein fluctuations. The interspin distances extracted from 200 ns MD trajectories show good agreement with the experimental results. The MD simulations also illustrate the dramatic rigidity of the Cu2+ labels compared to the standard nitroxide spin label. Further, the relative orientations between spin-labeled sites were measured to provide insight into the use of double electron-electron resonance (DEER) methods for such labels. The relative mean angles, as well as the standard deviations of the relative angles, agree well in general with the spectral simulations published previously. The fluctuations of relative orientations help rationalize why orientation selectivity effects are minimal at X-band frequencies, but observable at the Q-band for such labels. In summary, the results show that by combining the experimental results with MD simulations precise information about protein conformations as well as flexibility can be obtained.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
Hamilton GL, Alper J, Sanabria H. Reporting on the future of integrative structural biology ORAU workshop. FRONT BIOSCI-LANDMRK 2020; 25:43-68. [PMID: 31585877 PMCID: PMC7323472 DOI: 10.2741/4794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Integrative and hybrid methods have the potential to bridge long-standing knowledge gaps in structural biology. These methods will have a prominent role in the future of the field as we make advances toward a complete, unified representation of biology that spans the molecular and cellular scales. The Department of Physics and Astronomy at Clemson University hosted The Future of Integrative Structural Biology workshop on April 29, 2017 and partially sponsored by partially sponsored by a program of the Oak Ridge Associated Universities (ORAU). The workshop brought experts from multiple structural biology disciplines together to discuss near-term steps toward the goal of a molecular atlas of the cell. The discussion focused on the types of structural data that should be represented, how this data should be represented, and how the time domain might be incorporated into such an atlas. The consensus was that an explorable, map-like Virtual Cell, containing both spatial and temporal data bridging the atomic and cellular length scales obtained by multiple experimental methods, represents the best path toward a complete atlas of the cell.
Collapse
Affiliation(s)
- George L Hamilton
- Physics and Astronomy, Clemson University, 216 Kinard Lab, Clemson, S.C. USA
| | - Joshua Alper
- Physics and Astronomy, Clemson University, 302B Kinard Lab, Clemson, S.C. 29634-0978. USA
| | - Hugo Sanabria
- Physics and Astronomy, Clemson University, 214 Kinard Lab, Clemson, S.C. 29634-0978. USA,
| |
Collapse
|
17
|
Kaur H, Grahl A, Hartmann JB, Hiller S. Sample Preparation and Technical Setup for NMR Spectroscopy with Integral Membrane Proteins. Methods Mol Biol 2020; 2127:373-396. [PMID: 32112334 DOI: 10.1007/978-1-0716-0373-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NMR spectroscopy is a method of choice to characterize structure, function, and dynamics of integral membrane proteins at atomic resolution. Here, we describe protocols for sample preparation and characterization by NMR spectroscopy of two integral membrane proteins with different architecture, the α-helical membrane protein MsbA and the β-barrel membrane protein BamA. The protocols describe recombinant expression in E. coli, protein refolding, purification, and reconstitution in suitable membrane mimetics, as well as key setup steps for basic NMR experiments. These include experiments on protein samples in the solid state under magic angle spinning (MAS) conditions and experiments on protein samples in aqueous solution. Since MsbA and BamA are typical examples of their respective architectural classes, the protocols presented here can also serve as a reference for other integral membrane proteins.
Collapse
Affiliation(s)
- Hundeep Kaur
- Biozentrum, University of Basel, Basel, Switzerland
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
18
|
Siemers M, Lazaratos M, Karathanou K, Guerra F, Brown LS, Bondar AN. Bridge: A Graph-Based Algorithm to Analyze Dynamic H-Bond Networks in Membrane Proteins. J Chem Theory Comput 2019; 15:6781-6798. [DOI: 10.1021/acs.jctc.9b00697] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Federico Guerra
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| |
Collapse
|
19
|
Solid-state NMR spectroscopy based atomistic view of a membrane protein unfolding pathway. Nat Commun 2019; 10:3867. [PMID: 31455771 PMCID: PMC6711998 DOI: 10.1038/s41467-019-11849-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 01/17/2023] Open
Abstract
Membrane protein folding, structure, and function strongly depend on a cell membrane environment, yet detailed characterization of folding within a lipid bilayer is challenging. Studies of reversible unfolding yield valuable information on the energetics of folding and on the hierarchy of interactions contributing to protein stability. Here, we devise a methodology that combines hydrogen-deuterium (H/D) exchange and solid-state NMR (SSNMR) to follow membrane protein unfolding in lipid membranes at atomic resolution through detecting changes in the protein water-accessible surface, and concurrently monitoring the reversibility of unfolding. We obtain atomistic description of the reversible part of a thermally induced unfolding pathway of a seven-helical photoreceptor. The pathway is visualized through SSNMR-detected snapshots of H/D exchange patterns as a function of temperature, revealing the unfolding intermediate and its stabilizing factors. Our approach is transferable to other membrane proteins, and opens additional ways to characterize their unfolding and stabilizing interactions with atomic resolution.
Collapse
|
20
|
Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, Ernst OP. X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Sci Rep 2019; 9:11283. [PMID: 31375689 PMCID: PMC6677831 DOI: 10.1038/s41598-019-47445-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
Gloeobacter rhodopsin (GR) is a cyanobacterial proton pump which can be potentially applied to optogenetics. We solved the crystal structure of GR and found that it has overall similarity to the homologous proton pump from Salinibacter ruber, xanthorhodopsin (XR). We identified distinct structural characteristics of GR’s hydrogen bonding network in the transmembrane domain as well as the displacement of extracellular sides of the transmembrane helices relative to those of XR. Employing Raman spectroscopy and flash-photolysis, we found that GR in the crystals exists in a state which displays retinal conformation and photochemical cycle similar to the functional form observed in lipids. Based on the crystal structure of GR, we selected a site for spin labeling to determine GR’s oligomerization state using double electron–electron resonance (DEER) spectroscopy and demonstrated the pH-dependent pentamer formation of GR. Determination of the structure of GR as well as its pentamerizing propensity enabled us to reveal the role of structural motifs (extended helices, 3-omega motif and flipped B-C loop) commonly found among light-driven bacterial pumps in oligomer formation. Here we propose a new concept to classify these pumps based on the relationship between their oligomerization propensities and these structural determinants.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Keiichi Inoue
- The Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan
| | - Leonid S Brown
- Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
21
|
Gauto DF, Estrozi LF, Schwieters CD, Effantin G, Macek P, Sounier R, Sivertsen AC, Schmidt E, Kerfah R, Mas G, Colletier JP, Güntert P, Favier A, Schoehn G, Schanda P, Boisbouvier J. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nat Commun 2019; 10:2697. [PMID: 31217444 PMCID: PMC6584647 DOI: 10.1038/s41467-019-10490-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Atomic-resolution structure determination is crucial for understanding protein function. Cryo-EM and NMR spectroscopy both provide structural information, but currently cryo-EM does not routinely give access to atomic-level structural data, and, generally, NMR structure determination is restricted to small (<30 kDa) proteins. We introduce an integrated structure determination approach that simultaneously uses NMR and EM data to overcome the limits of each of these methods. The approach enables structure determination of the 468 kDa large dodecameric aminopeptidase TET2 to a precision and accuracy below 1 Å by combining secondary-structure information obtained from near-complete magic-angle-spinning NMR assignments of the 39 kDa-large subunits, distance restraints from backbone amides and ILV methyl groups, and a 4.1 Å resolution EM map. The resulting structure exceeds current standards of NMR and EM structure determination in terms of molecular weight and precision. Importantly, the approach is successful even in cases where only medium-resolution cryo-EM data are available. NMR structure determination is challenging for proteins with a molecular weight above 30 kDa and atomic-resolution structure determination from cryo-EM data is currently not the rule. Here the authors describe an integrated structure determination approach that simultaneously uses NMR and EM data and allows them to determine the structure of the 468 kDa dodecameric aminopeptidase TET2 complex.
Collapse
Affiliation(s)
- Diego F Gauto
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Leandro F Estrozi
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France.
| | - Charles D Schwieters
- Laboratory of Imaging Sciences, Center for Information Technology, National Institutes of Health, 12 South Drive, MSC 5624, Bethesda, MD, 20892, USA
| | - Gregory Effantin
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Pavel Macek
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France.,NMR-Bio, 5 Place Robert Schuman, F-38025, Grenoble, France
| | - Remy Sounier
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France.,Institut de Génomique Fonctionnelle, CNRS UMR-5203, INSERM U1191, University of Montpellier, F-34000, Montpellier, France
| | - Astrid C Sivertsen
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Elena Schmidt
- Institute of Biophysical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Rime Kerfah
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France.,NMR-Bio, 5 Place Robert Schuman, F-38025, Grenoble, France
| | - Guillaume Mas
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France.,Biozentrum University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany.,Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Adrien Favier
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France.
| | - Guy Schoehn
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Paul Schanda
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France.
| | - Jerome Boisbouvier
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 71, Avenue des Martyrs, F-38044, Grenoble, France
| |
Collapse
|
22
|
Alaniva N, Saliba EP, Sesti EL, Judge PT, Barnes AB. Electron Decoupling with Chirped Microwave Pulses for Rapid Signal Acquisition and Electron Saturation Recovery. Angew Chem Int Ed Engl 2019; 58:7259-7262. [DOI: 10.1002/anie.201900139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas Alaniva
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
| | - Edward P. Saliba
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
| | - Erika L. Sesti
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
| | - Patrick T. Judge
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
- Department of Biochemistry, Biophysics, and Biology Washington University in St. Louis School of Medicine 660 S. Euclid Ave St Louis MO 63110 USA
| | - Alexander B. Barnes
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
| |
Collapse
|
23
|
Alaniva N, Saliba EP, Sesti EL, Judge PT, Barnes AB. Electron Decoupling with Chirped Microwave Pulses for Rapid Signal Acquisition and Electron Saturation Recovery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nicholas Alaniva
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
| | - Edward P. Saliba
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
| | - Erika L. Sesti
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
| | - Patrick T. Judge
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
- Department of Biochemistry, Biophysics, and Biology Washington University in St. Louis School of Medicine 660 S. Euclid Ave St Louis MO 63110 USA
| | - Alexander B. Barnes
- Department of Chemistry Washington University in St. Louis One Brookings Drive St. Louis MO 63130 USA
| |
Collapse
|
24
|
Idso MN, Baxter NR, Narayanan S, Chang E, Fisher J, Chmelka BF, Han S. Proteorhodopsin Function Is Primarily Mediated by Oligomerization in Different Micellar Surfactant Solutions. J Phys Chem B 2019; 123:4180-4192. [DOI: 10.1021/acs.jpcb.9b00922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Gamble Jarvi A, Cunningham TF, Saxena S. Efficient localization of a native metal ion within a protein by Cu2+-based EPR distance measurements. Phys Chem Chem Phys 2019; 21:10238-10243. [DOI: 10.1039/c8cp07143h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A native paramagnetic metal binding site in a protein is located with less than 2 Å resolution by a combination of double histidine (dHis) based Cu2+ labeling and long range distance measurements by EPR.
Collapse
Affiliation(s)
| | | | - Sunil Saxena
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
26
|
Milikisiyants S, Voinov MA, Marek A, Jafarabadi M, Liu J, Han R, Wang S, Smirnov AI. Enhancing sensitivity of Double Electron-Electron Resonance (DEER) by using Relaxation-Optimized Acquisition Length Distribution (RELOAD) scheme. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:115-126. [PMID: 30544015 PMCID: PMC6894391 DOI: 10.1016/j.jmr.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 05/05/2023]
Abstract
Over the past decades pulsed electron-electron double resonance (PELDOR), often called double electron-electron resonance (DEER), became one of the major spectroscopic tools for measurements of nanometer-scale distances and distance distributions in non-crystalline biological and chemical systems. The method is based on detecting the amplitude of the primary (3-pulse DEER) or refocused (4-pulse DEER) spin echo for the so-called "observer" spins when the other spins coupled to the former by a dipolar interaction are flipped by a "pump" pulse at another EPR frequency. While the timing of the pump pulse is varied in steps, the positions of the observer pulses are typically fixed. For such a detection scheme the total length of the observer pulse train and the electron spin memory time determine the amplitude of the detected echo signal. Usually, the distance range considerations in DEER experiments dictate the total length of the observer pulse train to exceed the phase memory time by a factor of few and this leads to a dramatic loss of the signal-to-noise ratio (SNR). While the acquisition of the DEER signal seems to be irrational under such conditions, it is currently the preferred way to conduct DEER because of an effective filtering out of all other unwanted interactions. Here we propose a novel albeit simple approach to improve DEER sensitivity and decrease data acquisition time by introducing the signal acquisition scheme based on RELaxation Optimized Acquisition (Length) Distribution (DEER-RELOAD). In DEER-RELOAD the dipolar phase evolution signal is acquired in multiple segments in which the observer pulses are fixed at the positions to optimize SNR just for that specific segment. The length of the segment is chosen to maximize the signal acquisition efficiency according the phase relaxation properties of the spin system. The total DEER trace is then obtained by "stitching" the multiple segments into a one continuous trace. The utility of the DEER-RELOAD acquisition scheme has been demonstrated on an example of the standard 4-pulse DEER sequence applied to two membrane protein complexes labeled with nitroxides. While theoretical gains from the DEER-RELOAD scheme increase with the number of stitched segments, in practice, even dividing the acquisition of the DEER trace into two segments may improve SNR by a factor of >3, as it has been demonstrated for one of these two membrane proteins.
Collapse
Affiliation(s)
- Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Maxim A Voinov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Antonin Marek
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Morteza Jafarabadi
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Jing Liu
- Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China
| | - Rong Han
- Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China
| | - Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China
| | - Alex I Smirnov
- Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China.
| |
Collapse
|
27
|
Hauenschild T, Hinderberger D. A Platform of Phenol-Based Nitroxide Radicals as an “EPR Toolbox” in Supramolecular and Click Chemistry. Chempluschem 2018; 84:43-51. [DOI: 10.1002/cplu.201800429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Till Hauenschild
- Martin Luther University Halle-Wittenberg; Institute of Chemistry Physical Chemistry - Complex Self-Organizing Systems; Von-Danckelmann-Platz 4 06120 Halle (Saale) Germany
| | - Dariush Hinderberger
- Martin Luther University Halle-Wittenberg; Institute of Chemistry Physical Chemistry - Complex Self-Organizing Systems; Von-Danckelmann-Platz 4 06120 Halle (Saale) Germany
| |
Collapse
|
28
|
Lam D, Zhuang J, Cohen LS, Arshava B, Naider FR, Tang M. Effects of chelator lipids, paramagnetic metal ions and trehalose on liposomes by solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:1-6. [PMID: 30096558 DOI: 10.1016/j.ssnmr.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The effects of various lipid bound paramagnetic metal ions on liposomes prepared in the presence of trehalose and chelator lipids are evaluated to observe site-specific signal changes on liposome samples with optimal resolution in solid-state NMR spectroscopy. We found that Mn2+, Gd3+ and Dy3+ have different influences on the lipid 13C sites depending on their penetration depths into the bilayer, which can be extracted as distance information. The trehalose-liposome mixture is efficiently packed into solid-state NMR rotors and provides optimal resolution at reasonable instrument temperatures (10-50 °C). The effectiveness and convenience of the trehalose preparation for studying a membrane protein in liposomes are demonstrated by a membrane sample with a model membrane peptide to show that trehalose is useful to prepare consistent and stable membrane protein liposome samples for solid-state NMR.
Collapse
Affiliation(s)
- Dennis Lam
- Department of Chemistry, College of Staten Island - Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Jianqin Zhuang
- Department of Chemistry, College of Staten Island, Staten Island, NY, 10314, USA
| | - Leah S Cohen
- Department of Chemistry, College of Staten Island, Staten Island, NY, 10314, USA
| | - Boris Arshava
- Department of Chemistry, College of Staten Island, Staten Island, NY, 10314, USA
| | - Fred R Naider
- Department of Chemistry, College of Staten Island - Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Ming Tang
- Department of Chemistry, College of Staten Island - Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
29
|
Milikisiyants S, Voinov MA, Smirnov AI. Refocused Out-Of-Phase (ROOPh) DEER: A pulse scheme for suppressing an unmodulated background in double electron-electron resonance experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:9-18. [PMID: 29800786 DOI: 10.1016/j.jmr.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 05/24/2023]
Abstract
EPR pulsed dipolar spectroscopy (PDS) is indispensable for measurements of nm-scale distances between electronic spins in biological and other systems. While several useful modifications and pulse sequences for PDS have been developed in recent years, DEER experiments utilizing pump and observer pulses at two different frequencies remain the most popular for practical applications. One of the major drawbacks of all the available DEER approaches is the presence of a significant unmodulated fraction in the detected signal that arises from an incomplete inversion of the coupled spins by the pump pulse. The latter fraction is perceived as one of the major sources of error for the reconstructed distance distributions. We describe an alternative detection scheme - a Refocused Out-Of-Phase DEER (ROOPh-DEER) - to acquire only the modulated fraction of the dipolar DEER signal. When Zeeman splitting is small compared to the temperature, the out-of-phase magnetization components cancel each other and are not observed in 4-pulse DEER experiment. In ROOPh-DEER these components are refocused by an additional pump pulse while the in-phase component containing an unmodulated background is filtered out by a pulse at the observed frequency applied right at the position of the refocused echo. Experimental implementation of the ROOPh-DEER detection scheme requires at least three additional pulses as was demonstrated on an example of a 7-pulse sequence. The application of 7-pulse ROOPh-DEER sequence to a model biradical yielded the interspin distance of 1.94 ± 0.07 nm identical to the one obtained with the conventional 4-pulse DEER, however, without the unmodulated background present as a dominant fraction in the latter signal.
Collapse
Affiliation(s)
- Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Maxim A Voinov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| |
Collapse
|
30
|
Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci Rep 2018; 8:8262. [PMID: 29844455 PMCID: PMC5974397 DOI: 10.1038/s41598-018-26606-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Oligomeric assembly is a common feature of membrane proteins and often relevant to their physiological functions. Determining the stoichiometry and the oligomeric state of membrane proteins in a lipid bilayer is generally challenging because of their large size, complexity, and structural alterations under experimental conditions. Here, we use high-speed atomic force microscopy (HS-AFM) to directly observe the oligomeric states in the lipid membrane of various microbial rhodopsins found within eubacteria to archaea. HS-AFM images show that eubacterial rhodopsins predominantly exist as pentamer forms, while archaeal rhodopsins are trimers in the lipid membrane. In addition, circular dichroism (CD) spectroscopy reveals that pentameric rhodopsins display inverted CD couplets compared to those of trimeric rhodopsins, indicating different types of exciton coupling of the retinal chromophore in each oligomer. The results clearly demonstrate that the stoichiometry of the fundamental oligomer of microbial rhodopsins strongly correlate with the phylogenetic tree, providing a new insight into the relationship between the oligomeric structure and function-structural evolution of microbial rhodopsins.
Collapse
|
31
|
Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein–protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein–protein interfaces, and substrate–enzyme interactions.
Collapse
|
32
|
The contribution of modern EPR to structural biology. Emerg Top Life Sci 2018; 2:9-18. [PMID: 33525779 PMCID: PMC7288997 DOI: 10.1042/etls20170143] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 02/08/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy combined with site-directed spin labelling is applicable to biomolecules and their complexes irrespective of system size and in a broad range of environments. Neither short-range nor long-range order is required to obtain structural restraints on accessibility of sites to water or oxygen, on secondary structure, and on distances between sites. Many of the experiments characterize a static ensemble obtained by shock-freezing. Compared with characterizing the dynamic ensemble at ambient temperature, analysis is simplified and information loss due to overlapping timescales of measurement and system dynamics is avoided. The necessity for labelling leads to sparse restraint sets that require integration with data from other methodologies for building models. The double electron–electron resonance experiment provides distance distributions in the nanometre range that carry information not only on the mean conformation but also on the width of the native ensemble. The distribution widths are often inconsistent with Anfinsen's concept that a sequence encodes a single native conformation defined at atomic resolution under physiological conditions.
Collapse
|
33
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|