1
|
Saha R, Vázquez-Salazar A, Nandy A, Chen IA. Fitness Landscapes and Evolution of Catalytic RNA. Annu Rev Biophys 2024; 53:109-125. [PMID: 39013026 DOI: 10.1146/annurev-biophys-030822-025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Aditya Nandy
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
- The James Franck Institute, The University of Chicago, Chicago, Illinois, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Stringer M, Cubuk J, Incicco JJ, Roy D, Hall KB, Stuchell-Brereton MD, Soranno A. Excluded Volume and Weak Interactions in Crowded Solutions Modulate Conformations and RNA Binding of an Intrinsically Disordered Tail. J Phys Chem B 2023; 127:5837-5849. [PMID: 37348142 PMCID: PMC10331728 DOI: 10.1021/acs.jpcb.3c02356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Indexed: 06/24/2023]
Abstract
The cellular milieu is a solution crowded with a significant concentration of different components (proteins, nucleic acids, metabolites, etc.). Such a crowded environment affects protein conformations, dynamics, and interactions. Intrinsically disordered proteins and regions are particularly sensitive to these effects. Here, we investigate the impact on an intrinsically disordered tail that flanks a folded domain, the N-terminal domain, and the RNA-binding domain of the SARS-CoV-2 nucleocapsid protein. We mimic the crowded environment of the cell using polyethylene glycol (PEG) and study its impact on protein conformations using single-molecule Förster resonance energy transfer. We found that high-molecular-weight PEG induces a collapse of the disordered N-terminal tail, whereas low-molecular-weight PEG induces a chain expansion. Our data can be explained by accounting for two opposing contributions: favorable interactions between the protein and crowder molecules and screening of excluded volume interactions. We further characterized the interaction between protein and RNA in the presence of crowding agents. While for all PEG molecules tested, we observed an increase in the binding affinity, the trend is not monotonic as a function of the degree of PEG polymerization. This points to the role of nonspecific protein-PEG interactions on binding in addition to the entropic effects due to crowding. To separate the enthalpic and entropic components of the effects, we investigated the temperature dependence of the association constants in the absence and presence of crowders. Finally, we compared the effects of crowding across mutations in the disordered region and found that the threefold difference in association constants for two naturally occurring variants of the SARS-CoV-2 nucleocapsid protein is reduced to almost identical affinities in the presence of crowders. Overall, our data provide new insights into understanding and modeling the contribution of crowding effects on disordered regions, including the impact of interactions between proteins and crowders and their interplay when binding a ligand.
Collapse
Affiliation(s)
- Madison
A. Stringer
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Jasmine Cubuk
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - J. Jeremías Incicco
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
| | - Debjit Roy
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Kathleen B. Hall
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
| | - Melissa D. Stuchell-Brereton
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Andrea Soranno
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Kusova AM, Rakipov IT, Zuev YF. Effects of Homogeneous and Heterogeneous Crowding on Translational Diffusion of Rigid Bovine Serum Albumin and Disordered Alfa-Casein. Int J Mol Sci 2023; 24:11148. [PMID: 37446325 DOI: 10.3390/ijms241311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular environment includes proteins, sugars, and nucleic acids interacting in restricted media. In the cytoplasm, the excluded volume effect takes up to 40% of the volume available for occupation by macromolecules. In this work, we tested several approaches modeling crowded solutions for protein diffusion. We experimentally showed how the protein diffusion deviates from conventional Brownian motion in artificial conditions modeling the alteration of medium viscosity and rigid spatial obstacles. The studied tracer proteins were globular bovine serum albumin and intrinsically disordered α-casein. Using the pulsed field gradient NMR, we investigated the translational diffusion of protein probes of different structures in homogeneous (glycerol) and heterogeneous (PEG 300/PEG 6000/PEG 40,000) solutions as a function of crowder concentration. Our results showed fundamentally different effects of homogeneous and heterogeneous crowded environments on protein self-diffusion. In addition, the applied "tracer on lattice" model showed that smaller crowding obstacles (PEG 300 and PEG 6000) create a dense net of restrictions noticeably hindering diffusing protein probes, whereas the large-sized PEG 40,000 creates a "less restricted" environment for the diffusive motion of protein molecules.
Collapse
Affiliation(s)
- Aleksandra M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia
| | - Ilnaz T Rakipov
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
4
|
André AAM, Yewdall NA, Spruijt E. Crowding-induced phase separation and gelling by co-condensation of PEG in NPM1-rRNA condensates. Biophys J 2023; 122:397-407. [PMID: 36463407 PMCID: PMC9892608 DOI: 10.1016/j.bpj.2022.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The crowdedness of the cell calls for adequate intracellular organization. Biomolecular condensates, formed by liquid-liquid phase separation of intrinsically disordered proteins and nucleic acids, are important organizers of cellular fluids. To underpin the molecular mechanisms of protein condensation, cell-free studies are often used where the role of crowding is not investigated in detail. Here, we investigate the effects of macromolecular crowding on the formation and material properties of a model heterotypic biomolecular condensate, consisting of nucleophosmin (NPM1) and ribosomal RNA (rRNA). We studied the effect of the macromolecular crowding agent poly(ethylene glycol) (PEG), which is often considered an inert crowding agent. We observed that PEG could induce both homotypic and heterotypic phase separation of NPM1 and NPM1-rRNA, respectively. Crowding increases the condensed concentration of NPM1 and decreases its equilibrium dilute phase concentration, although no significant change in the concentration of rRNA in the dilute phase was observed. Interestingly, the crowder itself is concentrated in the condensates, suggesting that co-condensation rather than excluded volume interactions underlie the enhanced phase separation by PEG. Fluorescence recovery after photobleaching measurements indicated that both NPM1 and rRNA become immobile at high PEG concentrations, indicative of a liquid-to-gel transition. Together, these results provide more insight into the role of synthetic crowding agents in phase separation and demonstrate that condensate properties determined in vitro depend strongly on the addition of crowding agents.
Collapse
Affiliation(s)
- Alain A M André
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - N Amy Yewdall
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Morimoto R, Horita M, Yamaguchi D, Nakai H, Nakano SI. Evaluation of Weak Interactions of Proteins and Organic Cations with DNA Duplex Structures. Biophys J 2022; 121:2873-2881. [PMID: 35791875 PMCID: PMC9388550 DOI: 10.1016/j.bpj.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022] Open
Abstract
Molecular interactions and reactions in living cells occur with high background concentrations of organic compounds including proteins. Uncharged water-soluble polymers are commonly used cosolutes in studies on molecular crowding, and most studies argue about the effects of intracellular crowding based on results obtained using polymer cosolutes. Further investigations using protein crowders and organic cations are important in understanding the effects of cellular environments on nucleic acids with negatively charged surfaces. We assessed the effects of using model globular proteins, serum proteins, histone proteins, structurally flexible polypeptides, di- and polyamines, and uncharged polymers. Thermal stability analysis of DNA oligonucleotide structures revealed that unlike conventional polymer cosolutes, basic globular proteins (lysozyme and cytochrome c) at high concentrations stabilized long internal and bulge loop structures but not fully matched duplexes. The selective stabilization of long loop structures suggests preferential binding to unpaired nucleotides in loops through weak electrostatic interactions. Furthermore, the ability of the proteins to stabilize the loop structures was enhanced under macromolecular crowding conditions. Remarkably, the effects of basic proteins on the stability of fully matched duplexes were dissimilar to those of basic amino-acid-rich polypeptides and polyamines. This study provides new insights into the interaction of nucleic acid structures with organic cations.
Collapse
|
6
|
Yadav R, Widom JR, Chauvier A, Walter NG. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat Commun 2022; 13:207. [PMID: 35017489 PMCID: PMC8752731 DOI: 10.1038/s41467-021-27827-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
The archetypical transcriptional crcB fluoride riboswitch from Bacillus cereus is an intricately structured non-coding RNA element enhancing gene expression in response to toxic levels of fluoride. Here, we used single molecule FRET to uncover three dynamically interconverting conformations appearing along the transcription process: two distinct undocked states and one pseudoknotted docked state. We find that the fluoride anion specifically snap-locks the magnesium-induced, dynamically docked state. The long-range, nesting, single base pair A40-U48 acts as the main linchpin, rather than the multiple base pairs comprising the pseudoknot. We observe that the proximally paused RNA polymerase further fine-tunes the free energy to promote riboswitch docking. Finally, we show that fluoride binding at short transcript lengths is an early step toward partitioning folding into the docked conformation. These results reveal how the anionic fluoride ion cooperates with the magnesium-associated RNA to govern regulation of downstream genes needed for fluoride detoxification of the cell.
Collapse
Affiliation(s)
- Rajeev Yadav
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA
| | - Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Dey A, Monroy-Eklund A, Klotz K, Saha A, Davis J, Li B, Laederach A, Chakrabarti K. In vivo architecture of the telomerase RNA catalytic core in Trypanosoma brucei. Nucleic Acids Res 2021; 49:12445-12466. [PMID: 34850114 PMCID: PMC8643685 DOI: 10.1093/nar/gkab1042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
Telomerase is a unique ribonucleoprotein (RNP) reverse transcriptase that utilizes its cognate RNA molecule as a template for telomere DNA repeat synthesis. Telomerase contains the reverse transcriptase protein, TERT and the template RNA, TR, as its core components. The 5'-half of TR forms a highly conserved catalytic core comprising of the template region and adjacent domains necessary for telomere synthesis. However, how telomerase RNA folding takes place in vivo has not been fully understood due to low abundance of the native RNP. Here, using unicellular pathogen Trypanosoma brucei as a model, we reveal important regional folding information of the native telomerase RNA core domains, i.e. TR template, template boundary element, template proximal helix and Helix IV (eCR4-CR5) domain. For this purpose, we uniquely combined in-cell probing with targeted high-throughput RNA sequencing and mutational mapping under three conditions: in vivo (in WT and TERT-/- cells), in an immunopurified catalytically active telomerase RNP complex and ex vivo (deproteinized). We discover that TR forms at least two different conformers with distinct folding topologies in the insect and mammalian developmental stages of T. brucei. Also, TERT does not significantly affect the RNA folding in vivo, suggesting that the telomerase RNA in T. brucei exists in a conformationally preorganized stable structure. Our observed differences in RNA (TR) folding at two distinct developmental stages of T. brucei suggest that important conformational changes are a key component of T. brucei development.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Anais Monroy-Eklund
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kaitlin Klotz
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Justin Davis
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kausik Chakrabarti
- To whom correspondence should be addressed. Tel: +1 704 687 1882; Fax: +1 704 687 1488;
| |
Collapse
|
8
|
Kim R, Radhakrishnan ML. Macromolecular crowding effects on electrostatic binding affinity: Fundamental insights from theoretical, idealized models. J Chem Phys 2021; 154:225101. [PMID: 34241219 DOI: 10.1063/5.0042082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The crowded cellular environment can affect biomolecular binding energetics, with specific effects depending on the properties of the binding partners and the local environment. Often, crowding effects on binding are studied on particular complexes, which provide system-specific insights but may not provide comprehensive trends or a generalized framework to better understand how crowding affects energetics involved in molecular recognition. Here, we use theoretical, idealized molecules whose physical properties can be systematically varied along with samplings of crowder placements to understand how electrostatic binding energetics are altered through crowding and how these effects depend on the charge distribution, shape, and size of the binding partners or crowders. We focus on electrostatic binding energetics using a continuum electrostatic framework to understand effects due to depletion of a polar, aqueous solvent in a crowded environment. We find that crowding effects can depend predictably on a system's charge distribution, with coupling between the crowder size and the geometry of the partners' binding interface in determining crowder effects. We also explore the effect of crowder charge on binding interactions as a function of the monopoles of the system components. Finally, we find that modeling crowding via a lowered solvent dielectric constant cannot account for certain electrostatic crowding effects due to the finite size, shape, or placement of system components. This study, which comprehensively examines solvent depletion effects due to crowding, complements work focusing on other crowding aspects to help build a holistic understanding of environmental impacts on molecular recognition.
Collapse
Affiliation(s)
- Rachel Kim
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, USA
| | | |
Collapse
|
9
|
Lai YC, Liu Z, Chen IA. Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation. Proc Natl Acad Sci U S A 2021; 118:e2025054118. [PMID: 34001592 PMCID: PMC8166191 DOI: 10.1073/pnas.2025054118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.
Collapse
Affiliation(s)
- Yei-Chen Lai
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Ziwei Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
10
|
Abstract
RNA enzymes or ribozymes catalyze some of the most important reactions in biology and are thought to have played a central role in the origin and evolution of life on earth. Catalytic function in RNA has evolved in crowded cellular environments that are different from dilute solutions in which most in vitro assays are performed. The presence of molecules such as amino acids, polypeptides, alcohols, and sugars in the cell introduces forces that modify the kinetics and thermodynamics of ribozyme-catalyzed reactions. Synthetic molecules are routinely used in in vitro studies to better approximate the properties of biomolecules under in vivo conditions. This review discusses the various forces that operate within simulated crowded solutions in the context of RNA structure, folding, and catalysis. It also explores ideas about how crowding could have been beneficial to the evolution of functional RNAs and the development of primitive cellular systems in a prebiotic milieu.
Collapse
Affiliation(s)
- Saurja DasGupta
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| |
Collapse
|
11
|
Jalihal AP, Pitchiaya S, Xiao L, Bawa P, Jiang X, Bedi K, Parolia A, Cieslik M, Ljungman M, Chinnaiyan AM, Walter NG. Multivalent Proteins Rapidly and Reversibly Phase-Separate upon Osmotic Cell Volume Change. Mol Cell 2020; 79:978-990.e5. [PMID: 32857953 PMCID: PMC7502480 DOI: 10.1016/j.molcel.2020.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/11/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Processing bodies (PBs) and stress granules (SGs) are prominent examples of subcellular, membraneless compartments that are observed under physiological and stress conditions, respectively. We observe that the trimeric PB protein DCP1A rapidly (within ∼10 s) phase-separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue (over ∼100 s) with minimal effect on cell viability even after multiple cycles of osmotic perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly by homo-multimeric (valency ≥ 2) proteins across several cell types. Notably, HOPS sequesters pre-mRNA cleavage factor components from actively transcribing genomic loci, providing a mechanism for hyperosmolarity-induced global impairment of transcription termination. Our data suggest that the multimeric proteome rapidly responds to changes in hydration and molecular crowding, revealing an unexpected mode of globally programmed phase separation and sequestration.
Collapse
Affiliation(s)
- Ameya P Jalihal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Cell and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-1055, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-1055, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pushpinder Bawa
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-1055, USA
| | - Xia Jiang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-1055, USA
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-1055, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-1055, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-1055, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
13
|
Walter NG. Biological Pathway Specificity in the Cell-Does Molecular Diversity Matter? Bioessays 2019; 41:e1800244. [PMID: 31245864 PMCID: PMC6684156 DOI: 10.1002/bies.201800244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Indexed: 01/07/2023]
Abstract
Biology arises from the crowded molecular environment of the cell, rendering it a challenge to understand biological pathways based on the reductionist, low-concentration in vitro conditions generally employed for mechanistic studies. Recent evidence suggests that low-affinity interactions between cellular biopolymers abound, with still poorly defined effects on the complex interaction networks that lead to the emergent properties and plasticity of life. Mass-action considerations are used here to underscore that the sheer number of weak interactions expected from the complex mixture of cellular components significantly shapes biological pathway specificity. In particular, on-pathway-i.e., "functional"-become those interactions thermodynamically and kinetically stable enough to survive the incessant onslaught of the many off-pathway ("nonfunctional") interactions. Consequently, to better understand the molecular biology of the cell a further paradigm shift is needed toward mechanistic experimental and computational approaches that probe intracellular diversity and complexity more directly. Also see the video abstract here https://youtu.be/T19X_zYaBzg.
Collapse
|
14
|
Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat Commun 2019; 10:2453. [PMID: 31165735 PMCID: PMC6549165 DOI: 10.1038/s41467-019-10356-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/14/2023] Open
Abstract
RNA chaperones are proteins that aid in the folding of nucleic acids, but remarkably, many of these proteins are intrinsically disordered. How can these proteins function without a well-defined three-dimensional structure? Here, we address this question by studying the hepatitis C virus core protein, a chaperone that promotes viral genome dimerization. Using single-molecule fluorescence spectroscopy, we find that this positively charged disordered protein facilitates the formation of compact nucleic acid conformations by acting as a flexible macromolecular counterion that locally screens repulsive electrostatic interactions with an efficiency equivalent to molar salt concentrations. The resulting compaction can bias unfolded nucleic acids towards folding, resulting in faster folding kinetics. This potentially widespread mechanism is supported by molecular simulations that rationalize the experimental findings by describing the chaperone as an unstructured polyelectrolyte. RNA chaperones, such as the hepatitic C virus (HCV) core protein, are proteins that aid in the folding of nucleic acids. Here authors use single‐molecule spectroscopy and simulation to show that the HCV core protein acts as a flexible macromolecular counterion which facilitates nucleic acid folding.
Collapse
|
15
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Turoverov KK. The unfolding of iRFP713 in a crowded milieu. PeerJ 2019; 7:e6707. [PMID: 30993043 PMCID: PMC6459179 DOI: 10.7717/peerj.6707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/02/2019] [Indexed: 01/07/2023] Open
Abstract
The exploring of biological processes in vitro under conditions of macromolecular crowding is a way to achieve an understanding of how these processes occur in vivo. In this work, we study the unfolding of the fluorescent probe iRFP713 in crowded environment in vitro. Previously, we showed that the unfolding of the dimeric iRFP713 is accompanied by the formation of a compact monomer and an intermediate state of the protein. In the intermediate state, the macromolecules of iRFP713 have hydrophobic clusters exposed to the surface of the protein and are prone to aggregation. Concentrated solutions of polyethylene glycol (PEG-8000), Dextran-40 and Dextran-70 with a molecular mass of 8000, 40000 and 70000 Da, respectively, were used to model the conditions for macromolecular crowding. A limited available space provided by all the crowding agents used favors to the enhanced aggregation of iRFP713 in the intermediate state at the concentration of guanidine hydrochloride (GdnHCl), at which the charge of protein surface is neutralized by the guanidine cations. This is in line with the theory of the excluded volume. In concentrated solutions of the crowding agents (240–300 mg/ml), the stabilization of the structure of iRFP713 in the intermediate state is observed. PEG-8000 also enhances the stability of iRFP713 in the monomeric compact state, whereas in concentrated solutions of Dextran-40 and Dextran-70 the resistance of the protein in the monomeric state against GdnHCl-induced unfolding decreases. The obtained data argues for the excluded volume effect being not the only factor that contributes the behavior of biological molecules in a crowded milieu. Crowding agents do not affect the structure of the native dimer of iRFP713, which excludes the direct interactions between the target protein and the crowding agents. PEGs of different molecular mass and Dextran-40/Dextran-70 are known to influence the solvent properties of water. The solvent dipolarity/polarizability and basicity/acidity in aqueous solutions of these crowding agents vary in different ways. The change of the solvent properties in aqueous solutions of crowding agents might impact the functioning of a target protein.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| |
Collapse
|
16
|
Blanco C, Janzen E, Pressman A, Saha R, Chen IA. Molecular Fitness Landscapes from High-Coverage Sequence Profiling. Annu Rev Biophys 2019; 48:1-18. [PMID: 30601678 DOI: 10.1146/annurev-biophys-052118-115333] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The function of fitness (or molecular activity) in the space of all possible sequences is known as the fitness landscape. Evolution is a random walk on the fitness landscape, with a bias toward climbing hills. Mapping the topography of real fitness landscapes is fundamental to understanding evolution, but previous efforts were hampered by the difficulty of obtaining large, quantitative data sets. The accessibility of high-throughput sequencing (HTS) has transformed this study, enabling large-scale enumeration of fitness for many mutants and even complete sequence spaces in some cases. We review the progress of high-throughput studies in mapping molecular fitness landscapes, both in vitro and in vivo, as well as opportunities for future research. Such studies are rapidly growing in number. HTS is expected to have a profound effect on the understanding of real molecular fitness landscapes.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , ,
| | - Evan Janzen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , , .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Abe Pressman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , , .,Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Ranajay Saha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , ,
| | - Irene A Chen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
17
|
Widom JR, Nedialkov YA, Rai V, Hayes RL, Brooks CL, Artsimovitch I, Walter NG. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing. Mol Cell 2018; 72:541-552.e6. [PMID: 30388413 PMCID: PMC6565381 DOI: 10.1016/j.molcel.2018.08.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
Numerous classes of riboswitches have been found to regulate bacterial gene expression in response to physiological cues, offering new paths to antibacterial drugs. As common studies of isolated riboswitches lack the functional context of the transcription machinery, we here combine single-molecule, biochemical, and simulation approaches to investigate the coupling between co-transcriptional folding of the pseudoknot-structured preQ1 riboswitch and RNA polymerase (RNAP) pausing. We show that pausing at a site immediately downstream of the riboswitch requires a ligand-free pseudoknot in the nascent RNA, a precisely spaced sequence resembling the pause consensus, and electrostatic and steric interactions with the RNAP exit channel. While interactions with RNAP stabilize the native fold of the riboswitch, binding of the ligand signals RNAP release from the pause. Our results demonstrate that the nascent riboswitch and its ligand actively modulate the function of RNAP and vice versa, a paradigm likely to apply to other cellular RNA transcripts.
Collapse
Affiliation(s)
- Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuri A Nedialkov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Victoria Rai
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan L Hayes
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles L Brooks
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Ray S, Chauvier A, Walter NG. Kinetics coming into focus: single-molecule microscopy of riboswitch dynamics. RNA Biol 2018; 16:1077-1085. [PMID: 30328748 DOI: 10.1080/15476286.2018.1536594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Riboswitches are dynamic RNA motifs that are mostly embedded in the 5'-untranslated regions of bacterial mRNAs, where they regulate gene expression transcriptionally or translationally by undergoing conformational changes upon binding of a small metabolite or ion. Due to the small size of typical ligands, relatively little free energy is available from ligand binding to overcome the often high energetic barrier of reshaping RNA structure. Instead, most riboswitches appear to take advantage of the directional and hierarchical folding of RNA by employing the ligand as a structural 'linchpin' to adjust the kinetic partitioning between alternate folds. In this model, even small, local structural and kinetic effects of ligand binding can cascade into global RNA conformational changes affecting gene expression. Single-molecule (SM) microscopy tools are uniquely suited to study such kinetically controlled RNA folding since they avoid the ensemble averaging of bulk techniques that loses sight of unsynchronized, transient, and/or multi-state kinetic behavior. This review summarizes how SM methods have begun to unravel riboswitch-mediated gene regulation.
Collapse
Affiliation(s)
- Sujay Ray
- a Single Molecule Analysis Group, Department of Chemistry, University of Michigan , Ann Arbor , MI , USA
| | - Adrien Chauvier
- a Single Molecule Analysis Group, Department of Chemistry, University of Michigan , Ann Arbor , MI , USA
| | - Nils G Walter
- a Single Molecule Analysis Group, Department of Chemistry, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
19
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Zhang Y, Ha T, Marqusee S. Editorial Overview: Single-Molecule Approaches up to Difficult Challenges in Folding and Dynamics. J Mol Biol 2018; 430:405-408. [PMID: 29288633 PMCID: PMC5858691 DOI: 10.1016/j.jmb.2017.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, United States.
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States; Department of Biophysics, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States; Department of Biomedical Engineering, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States.
| | - Susan Marqusee
- Department of Molecular & Cell Biology, Institute for Quantitative Biosciences (QB3)-Berkeley, University of California, Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|