1
|
Luo X, Zou Q. Identifying the "stripe" transcription factors and cooperative binding related to DNA methylation. Commun Biol 2024; 7:1265. [PMID: 39367138 PMCID: PMC11452537 DOI: 10.1038/s42003-024-06992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
DNA methylation plays a critical role in gene regulation by modulating the DNA binding of transcription factors (TFs). This study integrates TFs' ChIP-seq profiles with WGBS profiles to investigate how DNA methylation affects protein interactions. Statistical methods and a 5-letter DNA motif calling model have been developed to characterize DNA sequences bound by proteins, while considering the effects of DNA modifications. By employing these methods, 79 significant universal "stripe" TFs and cofactors (USFs), 2360 co-binding protein pairs, and distinct protein modules associated with various DNA methylation states have been identified. The USFs hint a regulatory hierarchy within these protein interactions. Proteins preferentially bind to non-CpG sites in methylated regions, indicating binding affinity is not solely CpG-dependent. Proteins involved in methylation-specific USFs and cobinding pairs play essential roles in promoting and sustaining DNA methylation through interacting with DNMTs or inhibiting TET binding. These findings underscore the interplay between protein binding and methylation, offering insights into epigenetic regulation in cellular biology.
Collapse
Affiliation(s)
- Ximei Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
2
|
Trewhella J, Jeffries CM, Whitten AE. 2023 update of template tables for reporting biomolecular structural modelling of small-angle scattering data. Acta Crystallogr D Struct Biol 2023; 79:122-132. [PMID: 36762858 PMCID: PMC9912924 DOI: 10.1107/s2059798322012141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 02/10/2023] Open
Abstract
In 2017, guidelines were published for reporting structural modelling of small-angle scattering (SAS) data from biomolecules in solution that exemplified best-practice documentation of experiments and analysis. Since then, there has been significant progress in SAS data and model archiving, and the IUCr journal editors announced that the IUCr biology journals will require the deposition of SAS data used in biomolecular structure solution into a public archive, as well as adherence to the 2017 reporting guidelines. In this context, the reporting template tables accompanying the 2017 publication guidelines have been reviewed with a focus on making them both easier to use and more general. With input from the SAS community via the IUCr Commission on SAS and attendees of the triennial 2022 SAS meeting (SAS2022, Campinas, Brazil), an updated reporting template table has been developed that includes standard descriptions for proteins, glycosylated proteins, DNA and RNA, with some reorganization of the data to improve readability and interpretation. In addition, a specialized template has been developed for reporting SAS contrast-variation (SAS-cv) data and models that incorporates the additional reporting requirements from the 2017 guidelines for these more complicated experiments. To demonstrate their utility, examples of reporting with these new templates are provided for a SAS study of a DNA-protein complex and a SAS-cv experiment on a protein complex. The examples demonstrate how the tabulated information promotes transparent reporting that, in combination with the recommended figures and additional information best presented in the main text, enables the reader of the work to readily draw their own conclusions regarding the quality of the data and the validity of the models presented.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| |
Collapse
|
3
|
Czjzek M. Towards the standardized presentation and publication of small-angle scattering data from biomolecules in solution. Acta Crystallogr D Struct Biol 2023; 79:98-99. [PMID: 36762855 DOI: 10.1107/s2059798323001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Mirjam Czjzek
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne France
| |
Collapse
|
4
|
The remodeling of Z-DNA in the mammalian germ line. Biochem Soc Trans 2022; 50:1875-1884. [PMID: 36454621 PMCID: PMC9788570 DOI: 10.1042/bst20221015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
We recently discovered a novel biological process, the scheduled remodeling of Z-DNA structures in the developing fetal mouse male germ cells [Nat. Cell Biol. 24, 1141-1153]. This process affects purine/pyrimidine dinucleotide repeat (PPR) rich sequences, which can form stable left-handed Z-DNA structures. The protein that carries out this function is identified as ZBTB43, member of a large family of ZBTB proteins. Z-DNA remodeling by ZBTB43 not only coincides with global remodeling of DNA methylation and chromatin events in the male germ line, but it also is a prerequisite for de novo DNA methylation. When ZBTB43 changes DNA structure from the left-handed zigzag shaped Z-DNA to the regular smooth right-handed B-DNA, it also generates a suitable substrate for the de novo DNA methyltransferase, DNMT3A. By instructing de novo DNA methylation at PPRs in prospermatogonia, ZBTB43 safeguards epigenomic integrity of the male gamete. PPRs are fragile sequences, sites of large deletions and rearrangements in mammalian cells, and this fragility is thought to be due to Z-DNA structure formation rather than the sequence itself. This idea is now supported by the in vivo finding that DNA double strand breaks accumulate in mutant prospermatogonia which lack ZBTB43-dependent Z-DNA remodeling. If unrepaired, double stranded DNA breaks can lead to germ line mutations. Therefore, by preventing such breaks ZBTB43 is critical for guarding genome stability between generations. Here, we discuss the significance and implications of these findings in more detail.
Collapse
|
5
|
Marchal C, Defossez PA, Miotto B. Context-dependent CpG methylation directs cell-specific binding of transcription factor ZBTB38. Epigenetics 2022; 17:2122-2143. [PMID: 36000449 DOI: 10.1080/15592294.2022.2111135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
DNA methylation on CpGs regulates transcription in mammals, both by decreasing the binding of methylation-repelled factors and by increasing the binding of methylation-attracted factors. Among the latter, zinc finger proteins have the potential to bind methylated CpGs in a sequence-specific context. The protein ZBTB38 is unique in that it has two independent sets of zinc fingers, which recognize two different methylated consensus sequences in vitro. Here, we identify the binding sites of ZBTB38 in a human cell line, and show that they contain the two methylated consensus sequences identified in vitro. In addition, we show that the distribution of ZBTB38 sites is highly unusual: while 10% of the ZBTB38 sites are also bound by CTCF, the other 90% of sites reside in closed chromatin and are not bound by any of the other factors mapped in our model cell line. Finally, a third of ZBTB38 sites are found upstream of long and active CpG islands. Our work therefore validates ZBTB38 as a methyl-DNA binder in vivo and identifies its unique distribution in the genome.
Collapse
Affiliation(s)
- Claire Marchal
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
6
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Xu Y, Zhang M, Zhang Q, Yu X, Sun Z, He Y, Guo W. Role of Main RNA Methylation in Hepatocellular Carcinoma: N6-Methyladenosine, 5-Methylcytosine, and N1-Methyladenosine. Front Cell Dev Biol 2021; 9:767668. [PMID: 34917614 PMCID: PMC8671007 DOI: 10.3389/fcell.2021.767668] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
RNA methylation is considered a significant epigenetic modification, a process that does not alter gene sequence but may play a necessary role in multiple biological processes, such as gene expression, genome editing, and cellular differentiation. With advances in RNA detection, various forms of RNA methylation can be found, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C). Emerging reports confirm that dysregulation of RNA methylation gives rise to a variety of human diseases, particularly hepatocellular carcinoma. We will summarize essential regulators of RNA methylation and biological functions of these modifications in coding and noncoding RNAs. In conclusion, we highlight complex molecular mechanisms of m6A, m5C, and m1A associated with hepatocellular carcinoma and hope this review might provide therapeutic potent of RNA methylation to clinical research.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
8
|
Merino AM, Kim H, Miller JS, Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. J Leukoc Biol 2020; 108:1361-1368. [PMID: 32726880 DOI: 10.1002/jlb.4mr0620-091r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Immune exhaustion in T cells significantly impacts their ability to control malignancies and infections, and its discovery has led to revolutionary therapies for cancer in the form of checkpoint blockade. NK cells, like T cells, are lymphocytes that recognize virally infected and malignantly transformed cells. However, it remains unclear if NK cells are similarly susceptible to exhaustion. In this review, the aims are to summarize what is currently known and to identify key areas of variability that skew the scientific literature on NK cell exhaustion. A lack of consensus on the defining features of NK cell dysfunctional states such as senescence, suppression, and exhaustion has made a comparison between studies difficult. There are also significant differences in the biology of NK cell subsets with long-lived, adaptive NK cells sharing an epigenetic signature closer to memory CD8+ T cells than to conventional NK cells. Very different checkpoint receptor expression and effector functions have been shown in adaptive versus conventional NK cells chronically exposed to activating signals. Adaptive NK cells develop in individuals with cytomegalovirus (CMV) infection and well over half of the human population worldwide is CMV seropositive by adulthood. Despite this high prevalence, most studies do not account or control for this population. This may contribute to some of the variability reported in the literature on checkpoint receptor expression on NK cells. In this review, the protective role that exhaustion plays in T cells will also be discussed and the evidence for a similar phenomenon in NK cells will be examined.
Collapse
Affiliation(s)
- Aimee M Merino
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hansol Kim
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Molecular and Clinical Relevance of ZBTB38 Expression Levels in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12051106. [PMID: 32365491 PMCID: PMC7281456 DOI: 10.3390/cancers12051106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men. A number of genomic and clinical studies have led to a better understanding of prostate cancer biology. Still, the care of patients as well as the prediction of disease aggressiveness, recurrence and outcome remain challenging. Here, we showed that expression of the gene ZBTB38 is associated with poor prognosis in localised prostate cancer and could help discriminate aggressive localised prostate tumours from those who can benefit only from observation. Analysis of different prostate cancer cohorts indicates that low expression levels of ZBTB38 associate with increased levels of chromosomal abnormalities and more aggressive pathological features, including higher rate of biochemical recurrence of the disease. Importantly, gene expression profiling of these tumours, complemented with cellular assays on prostate cancer cell lines, unveiled that tumours with low levels of ZBTB38 expression might be targeted by doxorubicin, a compound generating reactive oxygen species. Our study shows that ZBTB38 is involved in prostate cancer pathogenesis and may represent a useful marker to identify high risk and highly rearranged localised prostate cancer susceptible to doxorubicin.
Collapse
|
10
|
Gräwert TW, Svergun DI. Structural Modeling Using Solution Small-Angle X-ray Scattering (SAXS). J Mol Biol 2020; 432:3078-3092. [PMID: 32035901 DOI: 10.1016/j.jmb.2020.01.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Small-angle X-ray scattering (SAXS) offers a way to examine the overall shape and oligomerization state of biological macromolecules under quasi native conditions in solution. In the past decades, SAXS has become a standard tool for structure biologists due to the availability of high brilliance X-ray sources and the development of data analysis/interpretation methods. Sample handling robots and software pipelines have significantly reduced the time necessary to conduct SAXS experiments. Presently, most synchrotrons feature beamlines dedicated to biological SAXS, and the SAXS-derived models are deposited into dedicated and accessible databases. The size of macromolecules that may be analyzed ranges from small peptides or snippets of nucleic acids to gigadalton large complexes or even entire viruses. Compared to other structural methods, sample preparation is straightforward, and the risk of inducing preparation artefacts is minimal. Very importantly, SAXS is a method of choice to study flexible systems like unfolded or disordered proteins, providing the structural ensembles compatible with the data. Although it may be utilized stand-alone, SAXS profits a lot from available experimental or predicted high-resolution data and information from complementary biophysical methods. Here, we show the basic principles of SAXS and review latest developments in the fields of hybrid modeling and flexible systems.
Collapse
Affiliation(s)
- Tobias W Gräwert
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Dmitri I Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany.
| |
Collapse
|
11
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Kikhney AG, Borges CR, Molodenskiy DS, Jeffries CM, Svergun DI. SASBDB: Towards an automatically curated and validated repository for biological scattering data. Protein Sci 2019; 29:66-75. [PMID: 31576635 DOI: 10.1002/pro.3731] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/03/2023]
Abstract
Small-angle scattering (SAS) of X-rays and neutrons is a fundamental tool to study the nanostructural properties, and in particular, biological macromolecules in solution. In structural biology, SAS recently transformed from a specialization into a general technique leading to a dramatic increase in the number of publications reporting structural models. The growing amount of data recorded and published has led to an urgent need for a global SAS repository that includes both primary data and models. In response to this, a small-angle scattering biological data bank (SASBDB) was designed in 2014 and is available for public access at www.sasbdb.org. SASBDB is a comprehensive, free and searchable repository of SAS experimental data and models deposited together with the relevant experimental conditions, sample details and instrument characteristics. SASBDB is rapidly growing, and presently has over 1,000 entries containing more than 1,600 models. We describe here the overall organization and procedures of SASBDB paying most attention to user-relevant information during submission. Perspectives of further developments, in particular, with OneDep system of the Protein Data Bank, and also widening of SASBDB including new types of data/models are discussed.
Collapse
Affiliation(s)
- Alexey G Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Clemente R Borges
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | | | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| |
Collapse
|
13
|
Merino A, Zhang B, Dougherty P, Luo X, Wang J, Blazar BR, Miller JS, Cichocki F. Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. J Clin Invest 2019; 129:3770-3785. [PMID: 31211698 DOI: 10.1172/jci125916] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A population of Natural Killer (NK) cells expressing the activating receptor NKG2C and the maturation marker CD57 expands in response to human cytomegalovirus (HCMV) infection. CD3-CD56dimCD57+NKG2C+ NK cells are similar to CD8+ memory T cells with rapid and robust effector function upon re-stimulation, persistence, and epigenetic remodeling of the IFNG locus. Chronic antigen stimulation drives CD8+ memory T cell proliferation while also inducing genome-wide epigenetic reprograming and dysfunction. We hypothesized that chronic stimulation could similarly induce epigenetic reprograming and dysfunction in NK cells. Here we show that chronic stimulation of adaptive NK cells through NKG2C using plate-bound agonistic antibodies in combination with IL-15 drove robust proliferation and activation of CD3-CD56dimCD57+NKG2C+ NK cells while simultaneously inducing high expression of the checkpoint inhibitory receptors LAG-3 and PD-1. Marked induction of checkpoint inhibitory receptors was also observed on the surface of adaptive NK cells co-cultured with HCMV-infected endothelial cells. Chronically stimulated adaptive NK cells were dysfunctional when challenged with tumor targets. These cells exhibited a pattern of epigenetic reprograming, with genome-wide alterations in DNA methylation. Our study has important implications for cancer immunotherapy and suggest that exhausted NK cells could be targeted with inhibitory checkpoint receptor blockade.
Collapse
Affiliation(s)
- Aimee Merino
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bin Zhang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Philip Dougherty
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xianghua Luo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinhua Wang
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Knowles EEM, Mathias SR, Mollon J, Rodrigue A, Koenis MMG, Dyer TD, Goring HHH, Curran JE, Olvera RL, Duggirala R, Almasy L, Blangero J, Glahn DC. A QTL on chromosome 3q23 influences processing speed in humans. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12530. [PMID: 30379395 PMCID: PMC6458095 DOI: 10.1111/gbb.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/24/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Processing speed is a psychological construct that refers to the speed with which an individual can perform any cognitive operation. Processing speed correlates strongly with general cognitive ability, declines sharply with age and is impaired across a number of neurological and psychiatric disorders. Thus, identifying genes that influence processing speed will likely improve understanding of the genetics of intelligence, biological aging and the etiologies of numerous disorders. Previous genetics studies of processing speed have relied on simple phenotypes (eg, mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture of processing speed by using a multidimensional model applied to a battery of cognitive tasks. Linkage and QTL-specific association analyses were performed on the factors from this model. The randomly ascertained sample comprised 1291 Mexican-American individuals from extended pedigrees. We found that performance on all three distinct processing-speed factors (Psychomotor Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. We identified a genome-wide significant quantitative trait locus (QTL) on chromosome 3q23 for Psychomotor Speed (LOD = 4.83). Within this locus, we identified a plausible and interesting candidate gene for Psychomotor Speed (Z = 2.90, P = 1.86 × 10-03 ).
Collapse
Affiliation(s)
- Emma E. M. Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel R. Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Josephine Mollon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Amanda Rodrigue
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marinka M. G. Koenis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas D. Dyer
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Harald H. H. Goring
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Rene L. Olvera
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Laura Almasy
- Department of Genetics at University of Pennsylvania and Department of Biomedical and Health Informatics at Children’s Hospital of Philadelphia, PA, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - David C. Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
15
|
Crowley EL, Rafferty SP. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr Purif 2019; 157:70-85. [PMID: 30708035 DOI: 10.1016/j.pep.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
NMR is an important method in the structural and functional characterization of proteins, but such experiments typically require isotopic labelling because of the low natural abundance of the nuclei of interest. Isotope-labelled protein for NMR experiments is typically obtained from IPTG-inducible bacterial expression systems in a minimal media that contains labelled carbon or nitrogen sources. Optimization of expression conditions is crucial yet challenging; large amounts of labelled protein are desired, yet protein yields are lower in minimal media, while the labelled precursors are expensive. Faced with these challenges there is a growing body of literature that apply innovative methods of induction to optimize the yield of isotope-labelled protein. A promising technique is lactose-driven auto-induction as it mitigates user intervention and can lead to higher protein yields. This review assesses the current advances and limitations surrounding the ability of researchers to isotope label proteins using auto-induction, and it identifies key components for optimization.
Collapse
Affiliation(s)
- Erika L Crowley
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| | - Steven P Rafferty
- Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| |
Collapse
|
16
|
de Dieuleveult M, Miotto B. DNA Methylation and Chromatin: Role(s) of Methyl-CpG-Binding Protein ZBTB38. Epigenet Insights 2018; 11:2516865718811117. [PMID: 30480223 PMCID: PMC6243405 DOI: 10.1177/2516865718811117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
DNA methylation plays an essential role in the control of gene expression during early stages of development as well as in disease. Although many transcription factors are sensitive to this modification of the DNA, we still do not clearly understand how it contributes to the establishment of proper gene expression patterns. We discuss here the recent findings regarding the biological and molecular function(s) of the transcription factor ZBTB38 that binds methylated DNA sequences in vitro and in cells. We speculate how these findings may help understand the role of DNA methylation and DNA methylation–sensitive transcription factors in mammalian cells.
Collapse
Affiliation(s)
- Maud de Dieuleveult
- Institut Cochin, INSERM U1016, Paris, France.,CNRS UMR8104, Paris, France.,Department of Development, Reproduction and Cancer, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Miotto
- Institut Cochin, INSERM U1016, Paris, France.,CNRS UMR8104, Paris, France.,Department of Development, Reproduction and Cancer, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Thompson JJ, Kaur R, Sosa CP, Lee JH, Kashiwagi K, Zhou D, Robertson KD. ZBTB24 is a transcriptional regulator that coordinates with DNMT3B to control DNA methylation. Nucleic Acids Res 2018; 46:10034-10051. [PMID: 30085123 PMCID: PMC6212772 DOI: 10.1093/nar/gky682] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
The interplay between transcription factors and epigenetic writers like the DNA methyltransferases (DNMTs), and the role of this interplay in gene expression, is being increasingly appreciated. ZBTB24, a poorly characterized zinc-finger protein, or the de novo methyltransferase DNMT3B, when mutated, cause Immunodeficiency, Centromere Instability, and Facial anomalies (ICF) syndrome, suggesting an underlying mechanistic link. Chromatin immunoprecipitation coupled with loss-of-function approaches in model systems revealed common loci bound by ZBTB24 and DNMT3B, where they function to regulate gene body methylation. Genes coordinately regulated by ZBTB24 and DNMT3B are enriched for molecular mechanisms essential for cellular homeostasis, highlighting the importance of the ZBTB24-DNMT3B interplay in maintaining epigenetic patterns required for normal cellular function. We identify a ZBTB24 DNA binding motif, which is contained within the promoters of most of its transcriptional targets, including CDCA7, AXIN2, and OSTC. Direct binding of ZBTB24 at the promoters of these genes targets them for transcriptional activation. ZBTB24 binding at the promoters of RNF169 and CAMKMT, however, targets them for transcriptional repression. The involvement of ZBTB24 targets in diverse cellular programs, including the VDR/RXR and interferon regulatory pathways, suggest that ZBTB24's role as a transcriptional regulator is not restricted to immune cells.
Collapse
Affiliation(s)
- Joyce J Thompson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
| | - Rupinder Kaur
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
| | - Carlos P Sosa
- Clinical Genome Sequencing Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Stabile12-58, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Epigenomics Translational Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Katsunobu Kashiwagi
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Dan Zhou
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
- Epigenomics Translational Program, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Hudson NO, Whitby FG, Buck-Koehntop BA. Structural insights into methylated DNA recognition by the C-terminal zinc fingers of the DNA reader protein ZBTB38. J Biol Chem 2018; 293:19835-19843. [PMID: 30355731 DOI: 10.1074/jbc.ra118.005147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/16/2018] [Indexed: 02/05/2023] Open
Abstract
Methyl-CpG-binding proteins (MBPs) are selective readers of DNA methylation that play an essential role in mediating cellular transcription processes in both normal and diseased cells. This physiological function of MBPs has generated significant interest in understanding the mechanisms by which these proteins read and interpret DNA methylation signals. Zinc finger and BTB domain-containing 38 (ZBTB38) represents one member of the zinc finger (ZF) family of MBPs. We recently demonstrated that the C-terminal ZFs of ZBTB38 exhibit methyl-selective DNA binding within the ((A/G)TmCG(G/A)(mC/T)(G/A)) context both in vitro and within cells. Here we report the crystal structure of the first four C-terminal ZBTB38 ZFs (ZFs 6-9) in complex with the previously identified methylated consensus sequence at 1.75 Å resolution. From the structure, methyl-selective binding is preferentially localized at the 5' mCpG site of the bound DNA, which is facilitated through a series of base-specific interactions from residues within the α-helices of ZF7 and ZF8. ZF6 and ZF9 primarily stabilize ZF7 and ZF8 to facilitate the core base-specific interactions. Further structural and biochemical analyses, including solution NMR spectroscopy and electrophoretic mobility gel shift assays, revealed that the C-terminal ZFs of ZBTB38 utilize an alternative mode of mCpG recognition from the ZF MBPs structurally evaluated to date. Combined, these findings provide insight into the mechanism by which this ZF domain of ZBTB38 selectively recognizes methylated CpG sites and expands our understanding of how ZF-containing proteins can interpret this essential epigenetic mark.
Collapse
Affiliation(s)
| | - Frank G Whitby
- Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | | |
Collapse
|
19
|
Marchal C, de Dieuleveult M, Saint-Ruf C, Guinot N, Ferry L, Olalla Saad ST, Lazarini M, Defossez PA, Miotto B. Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation. Oncogenesis 2018; 7:82. [PMID: 30310057 PMCID: PMC6182000 DOI: 10.1038/s41389-018-0092-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
DNA methyltransferase inhibitor (DNMTi) treatments have been used for patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and have shown promising beneficial effects in some other types of cancers. Here, we demonstrate that the transcriptional repressor ZBTB38 is a critical regulator of the cellular response to DNMTi. Treatments with 5-azacytidine, or its derivatives decitabine and zebularine, lead to down-regulation of ZBTB38 protein expression in cancer cells, in parallel with cellular damage. The depletion of ZBTB38 by RNA interference enhances the toxicity of DNMTi in cell lines from leukemia and from various solid tumor types. Further we observed that inactivation of ZBTB38 causes the up-regulation of CDKN1C mRNA, a previously described indirect target of DNMTi. We show that CDKN1C is a key actor of DNMTi toxicity in cells lacking ZBTB38. Finally, in patients with MDS a high level of CDKN1C mRNA expression before treatment correlates with a better clinical response to a drug regimen combining 5-azacytidine and histone deacetylase inhibitors. Collectively, our results suggest that the ZBTB38 protein is a target of DNMTi and that its depletion potentiates the toxicity of DNMT inhibitors in cancer cells, providing new opportunities to enhance the response to DNMT inhibitor therapies in patients with MDS and other cancers.
Collapse
Affiliation(s)
- Claire Marchal
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4295, USA
| | - Maud de Dieuleveult
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude Saint-Ruf
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadège Guinot
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laure Ferry
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013, Paris, France
| | - Sara T Olalla Saad
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Mariana Lazarini
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Pierre-Antoine Defossez
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013, Paris, France
| | - Benoit Miotto
- INSERM, U1016, Institut Cochin, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
20
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
21
|
Miotto B, Marchal C, Adelmant G, Guinot N, Xie P, Marto JA, Zhang L, Defossez PA. Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells. Nucleic Acids Res 2018; 46:4392-4404. [PMID: 29490077 PMCID: PMC5961141 DOI: 10.1093/nar/gky149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/05/2018] [Accepted: 02/16/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) are a byproduct of cell metabolism, and can also arise from environmental sources, such as toxins or radiation. Depending on dose and context, ROS have both beneficial and deleterious roles in mammalian development and disease, therefore it is crucial to understand how these molecules are generated, sensed, and detoxified. The question of how oxidative stress connects to the epigenome, in particular, is important yet incompletely understood. Here we show that an epigenetic regulator, the methyl-CpG-binding protein ZBTB38, limits the basal cellular production of ROS, is induced by ROS, and is required to mount a proper response to oxidative stress. Molecularly, these functions depend on a deubiquitinase, USP9X, which interacts with ZBTB38, deubiquitinates it, and stabilizes it. We find that USP9X is itself stabilized by oxidative stress, and is required together with ZBTB38 to limit the basal generation of ROS, as well as the toxicity of an acute oxidative stress. Our data uncover a new nuclear target of USP9X, show that the USP9X/ZBTB38 axis limits, senses and detoxifies ROS, and provide a molecular link between oxidative stress and the epigenome.
Collapse
Affiliation(s)
- Benoit Miotto
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
- Institut Cochin, Sorbonne Paris Cité, 75014 Paris, France
| | - Claire Marchal
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
- Institut Cochin, Sorbonne Paris Cité, 75014 Paris, France
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nadège Guinot
- Institut Cochin, Sorbonne Paris Cité, 75014 Paris, France
| | - Ping Xie
- State Key Laboratory of Proteomics, National Center of Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Pierre-Antoine Defossez
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| |
Collapse
|