1
|
Maffo-Woulefack R, Ali AM, Laroussi H, Cappèle J, Romero-Saavedra F, Ramia N, Robert E, Mathiot S, Soler N, Roussel Y, Fronzes R, Huebner J, Didierjean C, Favier F, Leblond-Bourget N, Douzi B. Elucidating assembly and function of VirB8 cell wall subunits refines the DNA translocation model in Gram-positive T4SSs. SCIENCE ADVANCES 2025; 11:eadq5975. [PMID: 39841841 PMCID: PMC11753425 DOI: 10.1126/sciadv.adq5975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Bacterial type IV secretion systems (T4SSs) are widespread nanomachines specialized in the transport across the cell envelope of various types of molecules including mobile genetic elements during conjugation. Despite their prevalence in Gram-positive bacteria, including relevant pathogens, their assembly and functioning remain unknown. This study addresses these gaps by investigating VirB8 proteins, known to be central components of conjugative T4SSs in Gram-positive bacteria. However, the functional packing and precise role of VirB8 in T4SSs biology remain undefined. Our findings elucidate the nature of VirB8 proteins as cell wall components, where they multimerize and exhibit a conserved assembly pattern, distinct from VirB8 in Gram-negative bacteria. We also demonstrate that VirB8 proteins interact with other T4SS subunits and DNA, indicating their pivotal role in the building of the DNA translocation channel across the cell wall. We lastly propose a distinct architecture for conjugative T4SSs in Gram-positive bacteria compared to their Gram-negative counterparts, possibly attributed to the differences in the cell wall structure.
Collapse
Affiliation(s)
| | | | - Haifa Laroussi
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Julien Cappèle
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig-Maximillians University, Munich, Germany
| | - Nancy Ramia
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Emilie Robert
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | | | - Nicolas Soler
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Yvonne Roussel
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig-Maximillians University, Munich, Germany
| | | | | | | | | |
Collapse
|
2
|
Zoued A, Duneau JP, Cascales E. Bacterial One- and Two-Hybrid Assays to Monitor Transmembrane Helix Interactions. Methods Mol Biol 2024; 2715:259-271. [PMID: 37930534 DOI: 10.1007/978-1-0716-3445-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In transenvelope multiprotein machines such as bacterial secretion systems, protein-protein interactions not only occur between soluble domains but might also be mediated by helix-helix contacts in the inner membrane. Several assays have been therefore developed to test homotypic and heterotypic interactions between transmembrane α-helices in their native membrane environment. Here, we provide detailed protocols for two genetic assays, TOXCAT and GALLEX, which are based on the reconstitution of dimeric regulators allowing the control of expression of reporter genes.
Collapse
Affiliation(s)
- Abdelrahim Zoued
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ, CNRS, Marseille, France
- Centre International de Recherche en Infectiologie, UMR5308, Université Claude Bernard Lyon 1 - INSERM - CNRS, Lyon, France
| | - Jean-Pierre Duneau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ, CNRS, Marseille, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ, CNRS, Marseille, France.
| |
Collapse
|
3
|
Taillefer B, Giraud JF, Cascales E. No fitness cost entailed by type VI secretion system synthesis, assembly, contraction, or disassembly in enteroaggregative Escherichia coli. J Bacteriol 2023; 205:e0035723. [PMID: 37971272 PMCID: PMC10729742 DOI: 10.1128/jb.00357-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-loaded needle. Due to its size and mechanism of action, the T6SS was intuitively thought to be energetically costly. Here, using a combination of mutants and growth measurements in liquid medium, on plates, and in competition experiments, we show that the T6SS does not entail a growth cost to enteroaggregative Escherichia coli.
Collapse
Affiliation(s)
- Boris Taillefer
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Aix Marseille Univ, CNRS, Marseille, France
| | - Julien F. Giraud
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Aix Marseille Univ, CNRS, Marseille, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM), Aix Marseille Univ, CNRS, Marseille, France
| |
Collapse
|
4
|
Two Signal Recognition Particle Sequences Are Present in the Amino-Terminal Domain of the C-Tailed Protein SciP. J Bacteriol 2020; 203:JB.00312-20. [PMID: 33020223 DOI: 10.1128/jb.00312-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023] Open
Abstract
During their synthesis, the C-tailed membrane proteins expose the membrane-spanning segment late from the ribosome and consequently can insert into the membrane only posttranslationally. However, the C-tailed type 6 secretion system (T6SS) component SciP uses the bacterial signal recognition particle (SRP) system for membrane targeting, which operates cotranslationally. Analysis of possible sequence regions in the amino-terminal part of the protein revealed two candidates that were then tested for whether they function as SRP signal peptides. Both sequences were tested positive as synthetic peptides for binding to SRP. In addition, purified ribosomes with stalled nascent chains exposing either sequence were capable of binding to SRP and SRP-FtsY complexes with high affinity. Together, the data suggest that both peptides can serve as an SRP signal sequence promoting an early membrane targeting of SciP during its synthesis. Like observed for multispanning membrane proteins, the two cytoplasmic SRP signal sequences of SciP may also facilitate a retargeting event, making the targeting more efficient.IMPORTANCE C-tail proteins are anchored in the inner membrane with a transmembrane segment at the C terminus in an N-in/C-out topology. Due to this topology, membrane insertion occurs only posttranslationally. Nevertheless, the C-tail-anchored protein SciP is targeted cotranslationally by SRP. We report here that two amino-terminal hydrophobic stretches in SciP are individually recognized by SRP and target the nascent protein to FtsY. The presence of two signal sequences may enable a retargeting mechanism, as already observed for multispanning membrane proteins, to make the posttranslational insertion of SciP by YidC more efficient.
Collapse
|
5
|
Structural Characterization of TssL from Acinetobacter baumannii: a Key Component of the Type VI Secretion System. J Bacteriol 2020; 202:JB.00210-20. [PMID: 32571965 DOI: 10.1128/jb.00210-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
The type VI secretion system (T6SS) is a complex molecular nanomachine used by Gram-negative bacteria to deliver diverse effectors into adjacent cells. A membrane complex (MC) anchors this transport system to the bacterial cell wall. One of the proteins forming the MC is TssL, a cytoplasmic protein bound to the inner membrane through a single transmembrane helix. Here, we report the structure of the cytoplasmic N-terminal region of TssL from Acinetobacter baumannii, a bacterium encoding in a single locus a secretion system that is a special case among other T6SSs. The protein structure, consisting of two antiparallel alpha-helical bundles connected by a short loop, reveals several interesting particularities compared with homologous proteins from other organisms. In addition, we demonstrate the structural significance of residues Asp98 and Glu99, which are strongly conserved among T6SS-encoding Gram-negative bacteria. Mutations in these two residues strongly impact protein dynamics, expression, and functionality. Our results improve our understanding of the T6SS of A. baumannii, which remains largely understudied compared with that of other pathogens.IMPORTANCE Several Acinetobacter species carry one functional type VI secretion system (T6SS). The T6SS is encoded in a single locus containing 16 conserved genes, most of which code for proteins essential to T6SS activity. One of these key components is TssL, a cytoplasmic protein bound to the inner membrane. Despite its importance and its particular characteristics, the structure of T6SS in A. baumannii remains understudied. Here, we present structural, in silico, and in vivo studies of TssL, highlighting the importance of two well-conserved residues and improving our understanding of this secretion system in this bacterium.
Collapse
|
6
|
Rao R, Diharce J, Dugué B, Ostuni MA, Cadet F, Etchebest C. Versatile Dimerisation Process of Translocator Protein (TSPO) Revealed by an Extensive Sampling Based on a Coarse-Grained Dynamics Study. J Chem Inf Model 2020; 60:3944-3957. [DOI: 10.1021/acs.jcim.0c00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rajas Rao
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Julien Diharce
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Bérénice Dugué
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Mariano A. Ostuni
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Frédéric Cadet
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
- PEACCEL, Artificial Intelligence Department, 6 Square Albin Cachot, Box 42, 75013 Paris, France
| | - Catherine Etchebest
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| |
Collapse
|
7
|
Santin YG, Doan T, Journet L, Cascales E. Cell Width Dictates Type VI Secretion Tail Length. Curr Biol 2019; 29:3707-3713.e3. [DOI: 10.1016/j.cub.2019.08.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 01/22/2023]
|
8
|
Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. Structure and Activity of the Type VI Secretion System. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0031-2019. [PMID: 31298206 PMCID: PMC10957189 DOI: 10.1128/microbiolspec.psib-0031-2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 12/16/2022] Open
Abstract
The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells. The injection apparatus is composed of a baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by the spike complex, is propelled outside of the cell by the contraction of the sheath. The injection system is anchored to the cell envelope and oriented towards the cell exterior by a trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or on the spike complex and can target prokaryotic and/or eukaryotic cells. Here we summarize the structure, assembly, and mechanism of action of the T6SS. We also review the function of effectors and their mode of recruitment and delivery.
Collapse
Affiliation(s)
- Yassine Cherrak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
- Y.C. and N.F. contributed equally to this review
| | - Nicolas Flaugnatti
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
- Y.C. and N.F. contributed equally to this review
- Present address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Durand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| |
Collapse
|
9
|
Role and Recruitment of the TagL Peptidoglycan-Binding Protein during Type VI Secretion System Biogenesis. J Bacteriol 2019; 201:JB.00173-19. [PMID: 30910811 DOI: 10.1128/jb.00173-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022] Open
Abstract
The type VI secretion system (T6SS) is an injection apparatus that uses a springlike mechanism for effector delivery. The contractile tail is composed of a needle tipped by a sharpened spike and wrapped by the sheath that polymerizes in an extended conformation on the assembly platform, or baseplate. Contraction of the sheath propels the needle and effectors associated with it into target cells. The passage of the needle through the cell envelope of the attacker is ensured by a dedicated trans-envelope channel complex. This membrane complex (MC) comprises the TssJ lipoprotein and the TssL and TssM inner membrane proteins. MC assembly is a hierarchized mechanism in which the different subunits are recruited in a specific order: TssJ, TssM, and then TssL. Once assembled, the MC serves as a docking station for the baseplate. In enteroaggregative Escherichia coli, the MC is accessorized by TagL, a peptidoglycan-binding (PGB) inner membrane-anchored protein. Here, we show that the PGB domain is the only functional domain of TagL and that the N-terminal transmembrane region mediates contact with the TssL transmembrane helix. Finally, we conduct fluorescence microscopy experiments to position TagL in the T6SS biogenesis pathway, demonstrating that TagL is recruited to the membrane complex downstream of TssL and is not required for baseplate docking.IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these weapons, called the type VI secretion system (T6SS), could be compared to a nano-spear gun using a springlike mechanism for effector injection. By targeting bacteria and eukaryotic cells, the T6SS reshapes bacterial communities and hijacks host cell defenses. In enteroaggregative Escherichia coli, the T6SS is a multiprotein machine that comprises a cytoplasmic tail and a peptidoglycan-anchored trans-envelope channel. In this work, we show that TagL comprises an N-terminal domain that mediates contact with the channel and a peptidoglycan-binding domain that binds the cell wall. We then determine at which stage of T6SS biogenesis TagL is recruited and how TagL absence impacts the assembly pathway.
Collapse
|
10
|
Rapisarda C, Cherrak Y, Kooger R, Schmidt V, Pellarin R, Logger L, Cascales E, Pilhofer M, Durand E, Fronzes R. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. EMBO J 2019; 38:e100886. [PMID: 30877094 PMCID: PMC6517824 DOI: 10.15252/embj.2018100886] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/19/2022] Open
Abstract
Bacteria have evolved macromolecular machineries that secrete effectors and toxins to survive and thrive in diverse environments. The type VI secretion system (T6SS) is a contractile machine that is related to Myoviridae phages. It is composed of a phage tail-like structure inserted in the bacterial cell envelope by a membrane complex (MC) comprising the TssJ, TssL and TssM proteins. We previously reported the low-resolution negative-stain electron microscopy structure of the enteroaggregative Escherichia coli MC and proposed a rotational 5-fold symmetry with a TssJ:TssL:TssM stoichiometry of 2:2:2. Here, cryo-electron tomography analyses of the T6SS MC confirm the 5-fold symmetry in situ and identify the regions of the structure that insert into the bacterial membranes. A high-resolution model obtained by single-particle cryo-electron microscopy highlights new features: five additional copies of TssJ, yielding a TssJ:TssL:TssM stoichiometry of 3:2:2, an 11-residue loop in TssM, protruding inside the lumen of the MC and constituting a functionally important periplasmic gate, and hinge regions. Based on these data, we propose an updated model on MC structure and dynamics during T6SS assembly and function.
Collapse
Affiliation(s)
- Chiara Rapisarda
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| | - Yassine Cherrak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, Aix-Marseille Université - CNRS, Marseille, France
| | - Romain Kooger
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Victoria Schmidt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, Aix-Marseille Université - CNRS, Marseille, France
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756, Paris, France
| | - Laureen Logger
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, Aix-Marseille Université - CNRS, Marseille, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, Aix-Marseille Université - CNRS, Marseille, France
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Eric Durand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), UMR7255, INSERM, Marseille, France
| | - Rémi Fronzes
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| |
Collapse
|
11
|
Rojas-Rengifo DF, Ulloa-Guerrero CP, Joppich M, Haas R, Del Pilar Delgado M, Jaramillo C, Jiménez-Soto LF. Tryptophan usage by Helicobacter pylori differs among strains. Sci Rep 2019; 9:873. [PMID: 30696868 PMCID: PMC6351589 DOI: 10.1038/s41598-018-37263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/19/2018] [Indexed: 11/14/2022] Open
Abstract
Because of its association with severe gastric pathologies, including gastric cancer, Helicobacter pylori has been subject of research for more than 30 years. Its capacity to adapt and survive in the human stomach can be attributed to its genetic flexibility. Its natural competence and its capacity to turn genes on and off allows H. pylori to adapt rapidly to the changing conditions of its host. Because of its genetic variability, it is difficult to establish the uniqueness of each strain obtained from a human host. The methods considered to-date to deliver the best result for differentiation of strains are Rapid Amplification of Polymorphic DNA (RAPD), Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS) analysis. While RAPD analysis is cost-effective, it requires a stable genome for its reliability. MLST and WGS are optimal for strain identification, however, they require analysis of data at the bioinformatics level. Using the StainFree method, which modifies tryptophan residues on proteins using 2, 2, 2, - trichloroethanol (TCE), we observed a strain specific pattern of tryptophan in 1D acrylamide gels. In order to establish the effectiveness of tryptophan fingerprinting for strain identification, we compared the graphic analysis of tryptophan-labelled bands in the gel images with MLST results. Based on this, we find that tryptophan banding patterns can be used as an alternative method for the differentiation of H. pylori strains. Furthermore, investigating the origin for these differences, we found that H. pylori strains alters the number and/or position of tryptophan present in several proteins at the genetic code level, with most exchanges taking place in membrane- and cation-binding proteins, which could be part of a novel response of H. pylori to host adaptation.
Collapse
Affiliation(s)
- Diana F Rojas-Rengifo
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia.,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Cindy P Ulloa-Guerrero
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia.,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Markus Joppich
- Lehr- und Forschungseinheit Bioinformatik. Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstr. 17, D-80333, Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Maria Del Pilar Delgado
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia
| | - Carlos Jaramillo
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia
| | - Luisa F Jiménez-Soto
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany. .,Ludwig-Maximillians University, Munich, Germany.
| |
Collapse
|
12
|
Zhang XY, Zhao TY, Li YY, Xiang HY, Dong SW, Zhang ZY, Wang Y, Li DW, Yu JL, Han CG. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection. Front Microbiol 2018; 9:613. [PMID: 29670592 PMCID: PMC5893644 DOI: 10.3389/fmicb.2018.00613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/16/2018] [Indexed: 01/09/2023] Open
Abstract
ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus, is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV) mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U) at position 3406, resulting in P3aP18L, abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3aP18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3aP18L were able to self-interact in vivo, however, the mutant P3aP18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2), restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cheng-Gui Han
- State Key Laboratory for Agrobiotechnology–Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| |
Collapse
|