1
|
Sommer B, Jaeger-Honz S. From Gene to Whole Cell: Modeling, Visualization, and Analysis. Methods Mol Biol 2025; 2859:65-92. [PMID: 39436597 DOI: 10.1007/978-1-0716-4152-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Proteogenomics combines proteomic and genetic data to gain new insights in molecular mechanisms. Here, we extend this approach toward structural biology from a tool perspective. The chapter starts with tools which can be used to explore genetic information and then enrich those with proteomic data. Based on the corresponding identifiers, three-dimensional structures of proteins are identified and used to embed them in their molecular environment, here the surrounding membrane. This membrane is then mapped onto the surface of an interpretative three-dimensional cell model. Then, the embedded protein and the cell environment are associated with a metabolic pathway, again based on the identifiers provided by biomedical databases. Accompanying the different chapters, related work is discussed which can alternatively be used. Finally, an outlook toward immersive analytics is given.
Collapse
Affiliation(s)
- Bjorn Sommer
- Innovation Design Engineering, School of Design, Royal College of Art, London, UK.
| | - Sabrina Jaeger-Honz
- Life Science Informatics, Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Tripathy M, Srivastava A. Non-affine deformation analysis and 3D packing defects: A new way to probe membrane heterogeneity in molecular simulations. Methods Enzymol 2024; 701:541-577. [PMID: 39025582 DOI: 10.1016/bs.mie.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here, we discuss a new framework developed over the last 5 years in our group to probe nanoscale membrane heterogeneity. The framework is based on the idea of characterizing lateral heterogeneity through non-affine deformation (NAD) measurements, transverse heterogeneity through three dimensional (3D) lipid packing defects, and using these approaches to formalize the seemingly trivial correlation between lateral organization and lipid packing in biological membranes. We find that measurements from NAD analysis, a prescription which is borrowed from Physics of glasses and granular material, can faithfully distinguish between liquid-ordered and disordered phases in membranes at molecular length scales and, can also be used to identify phase boundaries with high precision. Concomitantly, 3D-packing defects can not only distinguish between the two co-existing fluid phases based on their molecular scale packing (or membrane free volume), but also provide a route to connect the membrane domains to their functionality, such as exploring the molecular origins of inter-leaflet domain registration and peptide partitioning. The correlation between lateral membrane order and transverse packing presents novel molecular design-level features that can explain functions such as protein/peptide partitioning and small-molecule permeation dynamics in complex and heterogeneous membranes with high-fidelity. The framework allows us to explore the nature of lateral organization and molecular packing as a manifestation of intricate molecular interactions among a chemically rich variety of lipids and other molecules in a membrane with complex membrane composition and asymmetry across leaflets.
Collapse
Affiliation(s)
- Madhusmita Tripathy
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany.
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Karnataka, India.
| |
Collapse
|
3
|
Santander EA, Bravo G, Chang-Halabi Y, Olguín-Orellana GJ, Naulin PA, Barrera MJ, Montenegro FA, Barrera NP. The Adsorption of P2X2 Receptors Interacting with IgG Antibodies Revealed by Combined AFM Imaging and Mechanical Simulation. Int J Mol Sci 2023; 25:336. [PMID: 38203505 PMCID: PMC10778698 DOI: 10.3390/ijms25010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The adsorption of proteins onto surfaces significantly impacts biomaterials, medical devices, and biological processes. This study aims to provide insights into the irreversible adsorption process of multiprotein complexes, particularly focusing on the interaction between anti-His6 IgG antibodies and the His6-tagged P2X2 receptor. Traditional approaches to understanding protein adsorption have centered around kinetic and thermodynamic models, often examining individual proteins and surface coverage, typically through Molecular Dynamics (MD) simulations. In this research, we introduce a computational approach employing Autodesk Maya 3D software for the investigation of multiprotein complexes' adsorption behavior. Utilizing Atomic Force Microscopy (AFM) imaging and Maya 3D-based mechanical simulations, our study yields real-time structural and kinetic observations. Our combined experimental and computational findings reveal that the P2X2 receptor-IgG antibody complex likely undergoes absorption in an 'extended' configuration. Whereas the P2X2 receptor is less adsorbed once is complexed to the IgG antibody compared to its individual state, the opposite is observed for the antibody. This insight enhances our understanding of the role of protein-protein interactions in the process of protein adsorption.
Collapse
Affiliation(s)
- Eduardo A. Santander
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Graciela Bravo
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Yuan Chang-Halabi
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Gabriel J. Olguín-Orellana
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Pamela A. Naulin
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Mario J. Barrera
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Felipe A. Montenegro
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Nelson P. Barrera
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| |
Collapse
|
4
|
Lanrezac A, Baaden M. UNILIPID, a Methodology for Energetically Accurate Prediction of Protein Insertion into Implicit Membranes of Arbitrary Shape. MEMBRANES 2023; 13:362. [PMID: 36984749 PMCID: PMC10054542 DOI: 10.3390/membranes13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
The insertion of proteins into membranes is crucial for understanding their function in many biological processes. In this work, we present UNILIPID, a universal implicit lipid-protein description as a methodology for dealing with implicit membranes. UNILIPID is independent of the scale of representation and can be applied at the level of all atoms, coarse-grained particles down to the level of a single bead per amino acid. We provide example implementations for these scales and demonstrate the versatility of our approach by accurately reflecting the free energy of transfer for each amino acid. In addition to single membranes, we describe the analytical implementation of double membranes and show that UNILIPID is well suited for modeling at multiple scales. We generalize to membranes of arbitrary shape. With UNILIPID, we provide a methodological framework for a simple and general parameterization tuned to reproduce a selected reference hydrophobicity scale. The software we provide along with the methodological description is optimized for specific user features such as real-time response, live visual analysis, and virtual reality experiences.
Collapse
|
5
|
Watkins SL. Current Trends and Changes in Use of Membrane Molecular Dynamics Simulations within Academia and the Pharmaceutical Industry. MEMBRANES 2023; 13:148. [PMID: 36837651 PMCID: PMC9961006 DOI: 10.3390/membranes13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
There has been an almost exponential increase in the use of molecular dynamics simulations in basic research and industry over the last 5 years, with almost a doubling in the number of publications each year. Many of these are focused on neurological membranes, and biological membranes in general, applied to the medical industry. A smaller portion have utilized membrane simulations to answer more basic questions related to the function of specific proteins, chemicals or biological processes. This review covers some newer studies, alongside studies from the last two decades, to determine changes in the field. Some of these are basic, while others are more profound, such as multi-component embedded membrane machinery. It is clear that many facets of the discipline remain the same, while the focus on and uses of the technology are broadening in scope and utilization as a general research tool. Analysis of recent literature provides an overview of the current methodologies, covers some of the recent trends or advances and tries to make predictions of the overall path membrane molecular dynamics will follow in the coming years. In general, the overview presented is geared towards the general scientific community, who may wish to introduce the use of these methodologies in light of these changes, making molecular dynamic simulations more feasible for general scientific or medical research.
Collapse
Affiliation(s)
- Stephan L Watkins
- Plant Pathology and CRGB, Oregon State University, 2701 SW Campus Way, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Probing the Interaction Between Supercarrier RBC Membrane and Nanoparticles for Optimal Drug Delivery. J Mol Biol 2023; 435:167539. [PMID: 35292348 DOI: 10.1016/j.jmb.2022.167539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Red blood cell (RBC) membrane-hitchhiking nanoparticles (NPs) have been an increasingly popular supercarrier for targeted drug delivery. However, the kinetic details of the shear-induced NP detachment process from RBC in blood flow remain unclear. Here, we perform detailed computational simulations of the traversal dynamics of an RBC-NP composite supercarrier with tunable properties. We show that the detachment of NPs from RBC occurs in a shear-dependent manner which is consistent with previous experiment results. We quantify the NP detachment rate in the microcapillary flow, and our simulation results suggest that there may be an optimal adhesion strength span of 25-40 μJ/m2 for rigid spherical NPs to improve the supercarrier performance and targeting efficiency. In addition, we find that the stiffness and the shape of NPs alter the detachment efficiency by changing the RBC-NP contact areas. Together, these findings provide unique insights into the shear-dependent NP release from the RBC surface, facilitating the clinical utility of RBC-NP composite supercarriers in targeted and localized drug delivery with high precision and efficiency.
Collapse
|
7
|
Corey RA, Baaden M, Chavent M. A brief history of visualizing membrane systems in molecular dynamics simulations. FRONTIERS IN BIOINFORMATICS 2023; 3:1149744. [PMID: 37213533 PMCID: PMC10196259 DOI: 10.3389/fbinf.2023.1149744] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/13/2023] [Indexed: 05/23/2023] Open
Abstract
Understanding lipid dynamics and function, from the level of single, isolated molecules to large assemblies, is more than ever an intensive area of research. The interactions of lipids with other molecules, particularly membrane proteins, are now extensively studied. With advances in the development of force fields for molecular dynamics simulations (MD) and increases in computational resources, the creation of realistic and complex membrane systems is now common. In this perspective, we will review four decades of the history of molecular dynamics simulations applied to membranes and lipids through the prism of molecular graphics.
Collapse
Affiliation(s)
- R. A. Corey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - M. Baaden
- Centre Nationale de la Recherche Scientifique, Laboratoire de Biochimie Théorique, Université Paris Cité, Paris, France
| | - M. Chavent
- Institut de Pharmacologie et Biologie Structurale, CNRS, Université de Toulouse, Toulouse, France
- *Correspondence: M. Chavent,
| |
Collapse
|
8
|
Chen LY. Quantitative characterization of the path of glucose diffusion facilitated by human glucose transporter 1. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183975. [PMID: 35654150 DOI: 10.1016/j.bbamem.2022.183975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Glucose transporter GLUT1 is ubiquitously expressed in the human body from the red cells to the blood-brain barrier to the skeletal muscles. It is physiologically relevant to understand how GLUT1 facilitates diffusion of glucose across the cell membrane. It is also pathologically relevant because GLUT1 deficiency causes neurological disorders and anemia and because GLUT1 overexpression fuels the abnormal growth of cancer cells. This article presents a quantitative investigation of GLUT1 based on all-atom molecular-dynamics (MD) simulations of the transporter embedded in lipid bilayers of asymmetric inner-and-outer-leaflet lipid compositions, subject to asymmetric intra-and-extra-cellular environments. This is in contrast with the current literature of MD studies that have not considered both of the aforementioned asymmetries of the cell membrane. The equilibrium (unbiased) dynamics of GLUT1 shows that it can facilitate glucose diffusion across the cell membrane without undergoing large-scale conformational motions. The Gibbs free-energy profile, which is still lacking in the current literature of GLUT1, quantitatively characterizes the diffusion path of glucose from the periplasm, through an extracellular gate of GLUT1, on to the binding site, and off to the cytoplasm. This transport mechanism is validated by the experimental data that GLUT1 has low water-permeability, uptake-efflux symmetry, and 10 kcal/mol Arrhenius activation barrier around 37 °C.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
9
|
Spalvieri D, Mauviel AM, Lambert M, Férey N, Sacquin-Mora S, Chavent M, Baaden M. Design - a new way to look at old molecules. J Integr Bioinform 2022; 19:jib-2022-0020. [PMID: 35776840 PMCID: PMC9377703 DOI: 10.1515/jib-2022-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
We discuss how design enriches molecular science, particularly structural biology and bioinformatics. We present two use cases, one in academic practice and the other to design for outreach. The first case targets the representation of ion channels and their dynamic properties. In the second, we document a transition process from a research environment to general-purpose designs. Several testimonials from practitioners are given. By describing the design process of abstracted shapes, exploded views of molecular structures, motion-averaged slices, 360-degree panoramic projections, and experiments with lit sphere shading, we document how designers help make scientific data accessible without betraying its meaning, and how a creative mind adds value over purely data-driven visualizations. A similar conclusion was drawn for public outreach, as we found that comic-book-style drawings are better suited for communicating science to a broad audience.
Collapse
Affiliation(s)
- Davide Spalvieri
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, Paris, France
| | - Anne-Marine Mauviel
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, Paris, France
| | | | - Nicolas Férey
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, Paris, France
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91405, Orsay, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, Paris, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, Paris, France
| |
Collapse
|
10
|
Egea PF. Moving Lipids, by the Numbers. CONTACT 2022; 5. [PMID: 36128030 PMCID: PMC9484574 DOI: 10.1177/25152564221103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
11
|
Hall D, Foster AS. Practical considerations for feature assignment in high-speed AFM of live cell membranes. Biophys Physicobiol 2022; 19:1-21. [PMID: 35797405 PMCID: PMC9173863 DOI: 10.2142/biophysico.bppb-v19.0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University
| | | |
Collapse
|
12
|
Ueno Y, Muraoka S, Sato T. Skeletal animation for visualizing dynamic shapes of macromolecules. J Integr Bioinform 2020. [DOI: 10.1515/jib-2018-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractWe apply a skeletal animation technique developed for general computer graphics animation to display the dynamic shape of protein molecules. Polygon-based models for macromolecules such as atomic representations, surface models, and protein ribbon models are deformed by the motion of skeletal bones that provide coarse-grained descriptions of detailed computer graphics models. Using the animation software Blender, we developed methods to generate the skeletal bones for molecules. Our example of the superposition of normal modes demonstrates the thermal fluctuating motion obtained from normal mode analysis. The method is also applied to display the motions of protein molecules using trajectory coordinates of a molecular dynamics simulation. We found that a standard motion capture file was practical and useful for describing the motion of the molecule using available computer graphics tools.
Collapse
Affiliation(s)
- Yutaka Ueno
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Shinya Muraoka
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Tetsuo Sato
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki, Maebashi, Gunma 371-0052, Japan
| |
Collapse
|
13
|
Sommer B. The CELLmicrocosmos Tools: A Small History of Java-Based Cell and Membrane Modelling Open Source Software Development. J Integr Bioinform 2019; 16:/j/jib.ahead-of-print/jib-2019-0057/jib-2019-0057.xml. [PMID: 31560649 PMCID: PMC6798854 DOI: 10.1515/jib-2019-0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
For more than one decade, CELLmicrocosmos tools are being developed. Here, we discus some of the technical and administrative hurdles to keep a software suite running so many years. The tools were being developed during a number of student projects and theses, whereas main developers refactored and maintained the code over the years. The focus of this publication is laid on two Java-based Open Source Software frameworks. Firstly, the CellExplorer with the PathwayIntegration combines the mesoscopic and the functional level by mapping biological networks onto cell components using database integration. Secondly, the MembraneEditor enables users to generate membranes of different lipid and protein compositions using the PDB format. Technicalities will be discussed as well as the historical development of these tools with a special focus on group-based development. In this way, university-associated developers of Integrative Bioinformatics applications should be inspired to go similar ways. All tools discussed in this publication can be downloaded and installed from https://www.CELLmicrocosmos.org.
Collapse
Affiliation(s)
- Bjorn Sommer
- Royal College of Art, School of Design, Innovation Design Engineering, London SW7 2EU, UK
| |
Collapse
|
14
|
Wong WC, Juo JY, Lin CH, Liao YH, Cheng CY, Hsieh CL. Characterization of Single-Protein Dynamics in Polymer-Cushioned Lipid Bilayers Derived from Cell Plasma Membranes. J Phys Chem B 2019; 123:6492-6504. [DOI: 10.1021/acs.jpcb.9b03789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wai Cheng Wong
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Jz-Yuan Juo
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Chih-Hsiang Lin
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Yi-Hung Liao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Ching-Ya Cheng
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|