1
|
Janovič T, Perez GI, Schmidt JC. TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630076. [PMID: 39763972 PMCID: PMC11703185 DOI: 10.1101/2024.12.23.630076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes in vitro. However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined. To quantitatively analyze the shelterin function in living cells we generated a panel of cancer cell lines expressing HaloTagged shelterin proteins from their endogenous loci. We systematically determined the total cellular abundance and telomeric copy number of each shelterin subunit, demonstrating that the shelterin proteins are present at telomeres in equal numbers. In addition, we used single-molecule live-cell imaging to analyze the dynamics of shelterin protein association with telomeres. Our results demonstrate that TRF1-TIN2-TPP1-POT1 and TRF2-RAP1 form distinct subcomplexes that occupy non-overlapping binding sites on telomeric chromatin. TRF1-TIN2-TPP1-POT1 tightly associates with chromatin, while TRF2-RAP1 binding to telomeres is more dynamic, allowing it to recruit a variety of co-factors to chromatin to protect chromosome ends from DNA repair factors. In total, our work provides critical mechanistic insight into how the shelterin proteins carry out multiple essential functions in telomere maintenance and significantly advances our understanding of macromolecular structure of telomeric chromatin.
Collapse
Affiliation(s)
- Tomáš Janovič
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
2
|
Liu M, Pan H, Kaur P, Wang LJ, Jin M, Detwiler AC, Opresko PL, Tao YJ, Wang H, Riehn R. Assembly path dependence of telomeric DNA compaction by TRF1, TIN2, and SA1. Biophys J 2023; 122:1822-1832. [PMID: 37081787 PMCID: PMC10209029 DOI: 10.1016/j.bpj.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023] Open
Abstract
Telomeres, complexes of DNA and proteins, protect ends of linear chromosomes. In humans, the two shelterin proteins TRF1 and TIN2, along with cohesin subunit SA1, were proposed to mediate telomere cohesion. Although the ability of the TRF1-TIN2 and TRF1-SA1 systems to compact telomeric DNA by DNA-DNA bridging has been reported, the function of the full ternary TRF1-TIN2-SA1 system has not been explored in detail. Here, we quantify the compaction of nanochannel-stretched DNA by the ternary system, as well as its constituents, and obtain estimates of the relative impact of its constituents and their interactions. We find that TRF1, TIN2, and SA1 work synergistically to cause a compaction of the DNA substrate, and that maximal compaction occurs if all three proteins are present. By altering the sequence with which DNA substrates are exposed to proteins, we establish that compaction by TRF1 and TIN2 can proceed through binding of TRF1 to DNA, followed by compaction as TIN2 recognizes the previously bound TRF1. We further establish that SA1 alone can also lead to a compaction, and that compaction in a combined system of all three proteins can be understood as an additive effect of TRF1-TIN2 and SA1-based compaction. Atomic force microscopy of intermolecular aggregation confirms that a combination of TRF1, TIN2, and SA1 together drive strong intermolecular aggregation as it would be required during chromosome cohesion.
Collapse
Affiliation(s)
- Ming Liu
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Hai Pan
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Parminder Kaur
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Lucia J Wang
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Miao Jin
- Department of BioSciences, Rice University, Houston, Texas
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas
| | - Hong Wang
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Robert Riehn
- Department of Physics, NC State University, Raleigh, North Carolina.
| |
Collapse
|
3
|
Storchova R, Palek M, Palkova N, Veverka P, Brom T, Hofr C, Macurek L. Phosphorylation of TRF2 promotes its interaction with TIN2 and regulates DNA damage response at telomeres. Nucleic Acids Res 2023; 51:1154-1172. [PMID: 36651296 PMCID: PMC9943673 DOI: 10.1093/nar/gkac1269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Protein phosphatase magnesium-dependent 1 delta (PPM1D) terminates the cell cycle checkpoint by dephosphorylating the tumour suppressor protein p53. By targeting additional substrates at chromatin, PPM1D contributes to the control of DNA damage response and DNA repair. Using proximity biotinylation followed by proteomic analysis, we identified a novel interaction between PPM1D and the shelterin complex that protects telomeric DNA. In addition, confocal microscopy revealed that endogenous PPM1D localises at telomeres. Further, we found that ATR phosphorylated TRF2 at S410 after induction of DNA double strand breaks at telomeres and this modification increased after inhibition or loss of PPM1D. TRF2 phosphorylation stimulated its interaction with TIN2 both in vitro and at telomeres. Conversely, induced expression of PPM1D impaired localisation of TIN2 and TPP1 at telomeres. Finally, recruitment of the DNA repair factor 53BP1 to the telomeric breaks was strongly reduced after inhibition of PPM1D and was rescued by the expression of TRF2-S410A mutant. Our results suggest that TRF2 phosphorylation promotes the association of TIN2 within the shelterin complex and regulates DNA repair at telomeres.
Collapse
Affiliation(s)
- Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Natalie Palkova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Pavel Veverka
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Tomas Brom
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| |
Collapse
|
4
|
Veverka P, Brom T, Janovič T, Stojaspal M, Pinkas M, Nováček J, Hofr C. Electron microscopy reveals toroidal shape of master neuronal cell differentiator REST - RE1-silencing transcription factor. Comput Struct Biotechnol J 2022; 21:731-741. [PMID: 36698979 PMCID: PMC9860152 DOI: 10.1016/j.csbj.2022.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The RE1-Silencing Transcription factor (REST) is essential for neuronal differentiation. Here, we report the first 18.5-angstrom electron microscopy structure of human REST. The refined electron map suggests that REST forms a torus that can accommodate DNA double-helix in the central hole. Additionally, we quantitatively described REST binding to the canonical DNA sequence of the neuron-restrictive silencer element. We developed protocols for the expression and purification of full-length REST and the shortened variant REST-N62 produced by alternative splicing. We tested the mutual interaction of full-length REST and the splicing variant REST-N62. Revealed structure-function relationships of master neuronal repressor REST will allow finding new biological ways of prevention and treatment of neurodegenerative disorders and diseases.
Collapse
Key Words
- CD, circular dichroism
- CoIP, coimmunoprecipitation
- DLS, dynamic light scattering
- Differentiation
- EM
- EM, electron microscopy
- Electron microscopy
- IDRs, intrinsically disordered regions
- NRSE, neuron-restrictive silencer element
- NRSF
- NRSF, neuron-restrictive silencer factor
- Neuron-restrictive silencer factor
- Neuronal
- PCNA, proliferating cell nuclear antigen
- RD1/2, repressor domain 1/2
- RE1, repressor element-1
- RE1-silencing transcription factor
- REST
- REST, RE1-silencing transcription factor
- REST-FL, full-length REST
- REST-N62
- REST-N62, splicing isoform of REST, also known as REST4 or REST4-S3
- REST4
- ZF, zinc finger
- aa, amino acid(s)
- bp, base pair(s)
- kDa, kilodaltons
Collapse
Affiliation(s)
- Pavel Veverka
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Tomáš Brom
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Tomáš Janovič
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Martin Stojaspal
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | | | - Jiří Nováček
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Ctirad Hofr
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
- Corresponding author.
| |
Collapse
|
5
|
Global phosphoproteomics pinpoints uncharted Gcn2-mediated mechanisms of translational control. Mol Cell 2021; 81:1879-1889.e6. [PMID: 33743194 DOI: 10.1016/j.molcel.2021.02.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
The conserved Gcn2 protein kinase mediates cellular adaptations to amino acid limitation through translational control of gene expression that is exclusively executed by phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α). Using quantitative phosphoproteomics, however, we discovered that Gcn2 targets auxiliary effectors to modulate translation. Accordingly, Gcn2 also phosphorylates the β-subunit of the trimeric eIF2 G protein complex to promote its association with eIF5, which prevents spontaneous nucleotide exchange on eIF2 and thereby restricts the recycling of the initiator methionyl-tRNA-bound eIF2-GDP ternary complex in amino-acid-starved cells. This mechanism contributes to the inhibition of translation initiation in parallel to the sequestration of the nucleotide exchange factor eIF2B by phosphorylated eIF2α. Gcn2 further phosphorylates Gcn20 to antagonize, in an inhibitory feedback loop, the formation of the Gcn2-stimulatory Gcn1-Gcn20 complex. Thus, Gcn2 plays a substantially more intricate role in controlling translation initiation than hitherto appreciated.
Collapse
|
6
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
7
|
Quantitative Biology of Human Shelterin and Telomerase: Searching for the Weakest Point. Int J Mol Sci 2019; 20:ijms20133186. [PMID: 31261825 PMCID: PMC6651453 DOI: 10.3390/ijms20133186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The repetitive telomeric DNA at chromosome ends is protected from unwanted repair by telomere-associated proteins, which form the shelterin complex in mammals. Recent works have provided new insights into the mechanisms of how human shelterin assembles and recruits telomerase to telomeres. Inhibition of telomerase activity and telomerase recruitment to chromosome ends is a promising target for anticancer therapy. Here, we summarize results of quantitative assessments and newly emerged structural information along with the status of the most promising approaches to telomerase inhibition in cancer cells. We focus on the mechanism of shelterin assembly and the mechanisms of how shelterin affects telomerase recruitment to telomeres, addressing the conceptual dilemma of how shelterin allows telomerase action and regulates other essential processes. We evaluate how the identified critical interactions of telomerase and shelterin might be elucidated in future research of new anticancer strategies.
Collapse
|