1
|
Barozi V, Chakraborty S, Govender S, Morgan E, Ramahala R, Graham SC, Bishop NT, Tastan Bishop Ö. Revealing SARS-CoV-2 M pro mutation cold and hot spots: Dynamic residue network analysis meets machine learning. Comput Struct Biotechnol J 2024; 23:3800-3816. [PMID: 39525081 PMCID: PMC11550722 DOI: 10.1016/j.csbj.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the effect of evolutionary mutations of viruses and predicting future mutations is crucial for designing long-lasting and effective drugs. While understanding the impact of current mutations on protein drug targets is feasible, predicting future mutations due to natural evolution of viruses and environmental pressures remains challenging. Here, we leveraged existing mutation data during the evolution of the SARS-CoV-2 protein drug target main protease (Mpro) to test the predictive power of dynamic residue network (DRN) analysis in identifying mutation cold and hot spots. We conducted molecular dynamics simulations on the Mpro of SARS-CoV-2 (Wuhan strain) and calculated eight DRN metrics (averaged BC, CC, DC, EC, ECC, KC, L, PR), each of which identifies a unique network feature within the protein. The sets of residues with the highest and lowest values for each metric, comprising potential cold and hot spots, were compared to published biochemical analyses and per residue mutation frequencies observed across five SARS-CoV-2 lineages, encompassing a total of 191,878 sequences. Individual DRN metrics displayed only modest power to predict the mutation frequency of individual residues. However, integrating the eight DRN metrics with additional structural and sequence-derived metrics allowed us to develop machine learning models which significantly improved the prediction of residue mutation frequency. While further refinements should enhance accuracy, we demonstrated a robust method to understand pathogen evolution. This approach can also guide the development of long-lasting drugs by targeting functional residues located in and near active site, and allosteric sites, that are less prone to mutations.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Shrestha Chakraborty
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Shaylyn Govender
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Emily Morgan
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Rabelani Ramahala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Stephen C. Graham
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Nigel T. Bishop
- Department of Pure and Applied Mathematics, Rhodes University, Makhanda 6139, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| |
Collapse
|
2
|
Tee WV, Lim SJM, Berezovsky IN. Toward the Design of Allosteric Effectors: Gaining Comprehensive Control of Drug Properties and Actions. J Med Chem 2024; 67:17191-17206. [PMID: 39326868 PMCID: PMC11472305 DOI: 10.1021/acs.jmedchem.4c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
While the therapeutic potential of allosteric drugs is increasingly realized, the discovery of effectors is largely incidental. The rational design of allosteric effectors requires new state-of-the-art approaches to account for the distinct characteristics of allosteric ligands and their modes of action. We present a broadly applicable computational framework for obtaining allosteric site-effector pairs, providing targeted, highly specific, and tunable regulation to any functional site. We validated the framework using the main protease from SARS-CoV-2 and the K-RasG12D oncoprotein. High-throughput per-residue quantification of the energetics of allosteric signaling and effector binding revealed known drugs capable of inducing the required modulation upon binding. Starting from fragments of known well-characterized drugs, allosteric effectors and binding sites were designed and optimized simultaneously to achieve targeted and specific signaling to distinct functional sites, such as, for example, the switch regions of K-RasG12D. The generic framework proposed in this work will be instrumental in developing allosteric therapies aligned with a precision medicine approach.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Sylvester J. M. Lim
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Igor N. Berezovsky
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
- Department
of Biological Sciences (DBS), National University
of Singapore (NUS), 8
Medical Drive, Singapore 117579, Singapore
| |
Collapse
|
3
|
Scrima S, Lambrughi M, Tiberti M, Fadda E, Papaleo E. ASM variants in the spotlight: A structure-based atlas for unraveling pathogenic mechanisms in lysosomal acid sphingomyelinase. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167260. [PMID: 38782304 DOI: 10.1016/j.bbadis.2024.167260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Lysosomal acid sphingomyelinase (ASM), a critical enzyme in lipid metabolism encoded by the SMPD1 gene, plays a crucial role in sphingomyelin hydrolysis in lysosomes. ASM deficiency leads to acid sphingomyelinase deficiency, a rare genetic disorder with diverse clinical manifestations, and the protein can be found mutated in other diseases. We employed a structure-based framework to comprehensively understand the functional implications of ASM variants, integrating pathogenicity predictions with molecular insights derived from a molecular dynamics simulation in a lysosomal membrane environment. Our analysis, encompassing over 400 variants, establishes a structural atlas of missense variants of lysosomal ASM, associating mechanistic indicators with pathogenic potential. Our study highlights variants that influence structural stability or exert local and long-range effects at functional sites. To validate our predictions, we compared them to available experimental data on residual catalytic activity in 135 ASM variants. Notably, our findings also suggest applications of the resulting data for identifying cases suited for enzyme replacement therapy. This comprehensive approach enhances the understanding of ASM variants and provides valuable insights for potential therapeutic interventions.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, co. Kildare, Ireland
| | - Elena Papaleo
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
4
|
Tee WV, Berezovsky IN. Allosteric drugs: New principles and design approaches. Curr Opin Struct Biol 2024; 84:102758. [PMID: 38171188 DOI: 10.1016/j.sbi.2023.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Focusing on an important biomedical implication of allostery - design of allosteric drugs, we describe characteristics of allosteric sites, effectors, and their modes of actions distinguishing them from the orthosteric counterparts and calling for new principles and protocols in the quests for allosteric drugs. We show the importance of considering both binding affinity and allosteric signaling in establishing the structure-activity relationships (SARs) toward design of allosteric effectors, arguing that pairs of allosteric sites and their effector ligands - the site-effector pairs - should be generated and adjusted simultaneously in the framework of what we call directed design protocol. Key ideas and approaches for designing allosteric effectors including reverse perturbation, targeted and agnostic analysis are also discussed here. Several promising computational approaches are highlighted, along with the need for and potential advantages of utilizing generative models to facilitate discovery/design of new allosteric drugs.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671.
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| |
Collapse
|
5
|
Li M, Lan X, Lu X, Zhang J. A Structure-Based Allosteric Modulator Design Paradigm. HEALTH DATA SCIENCE 2023; 3:0094. [PMID: 38487194 PMCID: PMC10904074 DOI: 10.34133/hds.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 03/17/2024]
Abstract
Importance: Allosteric drugs bound to topologically distal allosteric sites hold a substantial promise in modulating therapeutic targets deemed undruggable at their orthosteric sites. Traditionally, allosteric modulator discovery has predominantly relied on serendipitous high-throughput screening. Nevertheless, the landscape has undergone a transformative shift due to recent advancements in our understanding of allosteric modulation mechanisms, coupled with a significant increase in the accessibility of allosteric structural data. These factors have extensively promoted the development of various computational methodologies, especially for machine-learning approaches, to guide the rational design of structure-based allosteric modulators. Highlights: We here presented a comprehensive structure-based allosteric modulator design paradigm encompassing 3 critical stages: drug target acquisition, allosteric binding site, and modulator discovery. The recent advances in computational methods in each stage are encapsulated. Furthermore, we delve into analyzing the successes and obstacles encountered in the rational design of allosteric modulators. Conclusion: The structure-based allosteric modulator design paradigm holds immense potential for the rational design of allosteric modulators. We hope that this review would heighten awareness of the use of structure-based computational methodologies in advancing the field of allosteric drug discovery.
Collapse
Affiliation(s)
- Mingyu Li
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobin Lan
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xun Lu
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Anwar M, Haseeb M, Choi S, Kim KP. P176S Mutation Rewires Electrostatic Interactions That Alter Maspin Functionality. ACS OMEGA 2023; 8:28258-28267. [PMID: 37576651 PMCID: PMC10413834 DOI: 10.1021/acsomega.3c01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/21/2023] [Indexed: 08/15/2023]
Abstract
Maspin is known to regress tumors by inhibiting angiogenesis; however, its roles have been reported to be context- and sequence-dependent. Various proteins and cofactors bind to maspin, possibly explaining its conflicting roles. Moreover, polymorphic forms of maspin have also been linked to tumor regression and survival; for instance, maspin with Ser at 176 (maspin-S176) promotes tumors, while maspin with Pro at 176 (maspin-P176) has opposing roles in cancer pathogenesis. With the help of long molecular dynamics simulations, a possible link between polymorphic forms and tumor progression has been established. First, maspin is dynamically stable with either amino acid at the 176 position. Second, differential contacts have been observed among various regions; third, these contacts have significantly altered the electrostatic energetics of various residues; finally, these altered electrostatics of maspin-S176 and maspin-P176 rewire the polar contacts that abolished the allosteric control of the protein. By combining these factors, the altered electrostatics substantially affect the localization and preference of maspin-binding partners, thus culminating in a different maspin-protein(cofactor)-interaction landscape that may have been manifested in previous conflicting reports. Here, the underlying reason has been highlighted and discussed, which may be helpful for better therapeutic manipulation.
Collapse
Affiliation(s)
- Muhammad
Ayaz Anwar
- Department
of Applied Chemistry, Institute of Natural Science, Global Center
for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic
of Korea
| | - Muhammad Haseeb
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Republic
of Korea
| | - Sangdun Choi
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Republic
of Korea
| | - Kwang Pyo Kim
- Department
of Applied Chemistry, Institute of Natural Science, Global Center
for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic
of Korea
- Department
of Biomedical Science and Technology, Kyung
Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
8
|
Tan ZW, Tee WV, Guarnera E, Berezovsky IN. AlloMAPS 2: allosteric fingerprints of the AlphaFold and Pfam-trRosetta predicted structures for engineering and design. Nucleic Acids Res 2022; 51:D345-D351. [PMID: 36169226 PMCID: PMC9825619 DOI: 10.1093/nar/gkac828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/29/2023] Open
Abstract
AlloMAPS 2 is an update of the Allosteric Mutation Analysis and Polymorphism of Signalling database, which contains data on allosteric communication obtained for predicted structures in the AlphaFold database (AFDB) and trRosetta-predicted Pfam domains. The data update contains Allosteric Signalling Maps (ASMs) and Allosteric Probing Maps (APMs) quantifying allosteric effects of mutations and of small probe binding, respectively. To ensure quality of the ASMs and APMs, we performed careful and accurate selection of protein sets containing high-quality predicted structures in both databases for each organism/structure, and the data is available for browsing and download. The data for remaining structures are available for download and should be used at user's discretion and responsibility. We believe these massive data can facilitate both diagnostics and drug design within the precision medicine paradigm. Specifically, it can be instrumental in the analysis of allosteric effects of pathological and rescue mutations, providing starting points for fragment-based design of allosteric effectors. The exhaustive character of allosteric signalling and probing fingerprints will be also useful in future developments of corresponding machine learning applications. The database is freely available at: http://allomaps.bii.a-star.edu.sg.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Igor N Berezovsky
- To whom correspondence should be addressed. Tel: +65 6478 8269; Fax: +65 6478 9047;
| |
Collapse
|
9
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
10
|
Barozi V, Edkins AL, Tastan Bishop Ö. Evolutionary progression of collective mutations in Omicron sub-lineages towards efficient RBD-hACE2: Allosteric communications between and within viral and human proteins. Comput Struct Biotechnol J 2022; 20:4562-4578. [PMID: 35989699 PMCID: PMC9384468 DOI: 10.1016/j.csbj.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
The interaction between the Spike (S) protein of SARS-CoV-2 and the human angiotensin converting enzyme 2 (hACE2) is essential for infection, and is a target for neutralizing antibodies. Consequently, selection of mutations in the S protein is expected to be driven by the impact on the interaction with hACE2 and antibody escape. Here, for the first time, we systematically characterized the collective effects of mutations in each of the Omicron sub-lineages (BA.1, BA.2, BA.3 and BA.4) on both the viral S protein receptor binding domain (RBD) and the hACE2 protein using post molecular dynamics studies and dynamic residue network (DRN) analysis. Our analysis suggested that Omicron sub-lineage mutations result in altered physicochemical properties that change conformational flexibility compared to the reference structure, and may contribute to antibody escape. We also observed changes in the hACE2 substrate binding groove in some sub-lineages. Notably, we identified unique allosteric communication paths in the reference protein complex formed by the DRN metrics betweenness centrality and eigencentrality hubs, originating from the RBD core traversing the receptor binding motif of the S protein and the N-terminal domain of the hACE2 to the active site. We showed allosteric changes in residue network paths in both the RBD and hACE2 proteins due to Omicron sub-lineage mutations. Taken together, these data suggest progressive evolution of the Omicron S protein RBD in sub-lineages towards a more efficient interaction with the hACE2 receptor which may account for the increased transmissibility of Omicron variants.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| | - Adrienne L. Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| |
Collapse
|
11
|
Berezovsky IN, Nussinov R. Multiscale Allostery: Basic Mechanisms and Versatility in Diagnostics and Drug Design. J Mol Biol 2022; 434:167751. [PMID: 35863488 DOI: 10.1016/j.jmb.2022.167751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboraory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
12
|
Batista da Rocha J, Othman H, Hazelhurst S. Molecular dynamics of G6PD variants from sub-Saharan Africa. Biochem Biophys Rep 2022; 30:101236. [PMID: 35313643 PMCID: PMC8933681 DOI: 10.1016/j.bbrep.2022.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Precision medicine uses genomic guidance to improve drug treatment safety and efficacy. Prior knowledge of genetic variant impact can enable such strategies, but current knowledge of African variants remains scarce. G6PD variants are linked to haemolytic adverse effects for a number of drugs commonly used in African populations. We have investigated a set of G6PD variants with structural bioinformatics techniques to further characterise variants with known effect, and gain insights into variants with unknown impact. We observed wide variations in patterns of root-mean-square deviation between wild-type and variant structures. Variants with known, highly deleterious impact show structural effects which may likely result in the destabilisation of the G6PD homodimer. The V68M and N126D variants (which are both common across African populations, and together form the A- haplotype) induce large conformational shifts in the catalytic NADP+ binding domain. We observed a greater impact for the haplotype than for each of the individual variants in these cases. A novel African variant (M207T) shows the potential to disrupt interactions within the protein core, urging further investigation. We explore how characterising the molecular impact of African G6PD variants can enable advanced strategies for precision medicine, as well as impact the use of novel therapeutics aiming to treat G6PD deficiency. This knowledge can assist in bridging current knowledge gaps, and aid to facilitate precision medicine applications in African populations. Assessment of African G6PD variation with structural bioinformatics. Molecular dynamics of 500 ns to explore molecular motions. Comparison of variants with known/unknown impact. Exploring mechanisms of impact. Knowledge building to enable G6PD precision medicine in Africa.
Collapse
|
13
|
Wah Tan Z, Tee WV, Berezovsky IN. Learning about allosteric drugs and ways to design them. J Mol Biol 2022; 434:167692. [PMID: 35738428 DOI: 10.1016/j.jmb.2022.167692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
While the accelerating quest for precision medicine requires new individually targeting and selective drugs, and the ability to work with so-called undruggable targets, the realm of allosteric drugs meeting this need remains largely uncharted. Generalizing the observations on two major drug targets with widely observed inherent allostery, GPCRs and kinases, we describe and discuss basic allosteric modes of action that are universally applicable in all types of structures and functions. Using examples of Class A GPCRs and CMGC protein kinases, we show how Allosteric Signalling and Probing Fingerprints can be used to identify potential allosteric sites and reveal effector-leads that may serve as a starting point for the development of allosteric drugs targeting these regulatory sites. A set of distinct characteristics of allosteric ligands was established, which highlights the versatility of their design and make them advantageous before their orthosteric counterparts in personalized medicine. We argue that rational design of allosteric drugs should begin with the search for latent sites or design of non-natural binding sites followed by fragment-based design of allosteric ligands and by the mutual adjustment of the site-ligand pair in order to achieve required effects. On the basis of the perturbative nature and reversibility of allosteric communication, we propose a generic protocol for computational design of allosteric effectors, enabling also the allosteric tuning of biologics, in obtaining allosteric control over protein functions.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| |
Collapse
|
14
|
Tan ZW, Tee WV, Samsudin F, Guarnera E, Bond PJ, Berezovsky IN. Allosteric perspective on the mutability and druggability of the SARS-CoV-2 Spike protein. Structure 2022; 30:590-607.e4. [PMID: 35063064 PMCID: PMC8772014 DOI: 10.1016/j.str.2021.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/03/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022]
Abstract
Recent developments in the SARS-CoV-2 pandemic point to its inevitable transformation into an endemic disease, urging both refinement of diagnostics for emerging variants of concern (VOCs) and design of variant-specific drugs in addition to vaccine adjustments. Exploring the structure and dynamics of the SARS-CoV-2 Spike protein, we argue that the high-mutability characteristic of RNA viruses coupled with the remarkable flexibility and dynamics of viral proteins result in a substantial involvement of allosteric mechanisms. While allosteric effects of mutations should be considered in predictions and diagnostics of new VOCs, allosteric drugs advantageously avoid escape mutations via non-competitive inhibition originating from alternative distal locations. The exhaustive allosteric signaling and probing maps presented herein provide a comprehensive picture of allostery in the spike protein, making it possible to locate potential mutations that could work as new VOC "drivers" and to determine binding patches that may be targeted by newly developed allosteric drugs.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Wei-Ven Tee
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore.
| |
Collapse
|
15
|
Tee WV, Wah Tan Z, Guarnera E, Berezovsky IN. Conservation and diversity in allosteric fingerprints of proteins for evolutionary-inspired engineering and design. J Mol Biol 2022; 434:167577. [PMID: 35395233 DOI: 10.1016/j.jmb.2022.167577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Hand-in-hand work of physics and evolution delivered protein universe with diversity of forms, sizes, and functions. Pervasiveness and advantageous traits of allostery made it an important component of the protein function regulation, calling for thorough investigation of its structural determinants and evolution. Learning directly from nature, we explored here allosteric communication in several major folds and repeat proteins, including α/β and β-barrels, β-propellers, Ig-like fold, ankyrin and α/β leucine-rich repeat proteins, which provide structural platforms for many different enzymatic and signalling functions. We obtained a picture of conserved allosteric communication characteristic in different fold types, modifications of the structure-driven signalling patterns via sequence-determined divergence to specific functions, as well as emergence and potential diversification of allosteric regulation in multi-domain proteins and oligomeric assemblies. Our observations will be instrumental in facilitating the engineering and de novo design of proteins with allosterically regulated functions, including development of therapeutic biologics. In particular, results described here may guide the identification of the optimal structural platforms (e.g. fold type, size, and oligomerization states) and the types of diversifications/perturbations, such as mutations, effector binding, and order-disorder transition. The tunable allosteric linkage across distant regions can be used as a pivotal component in the design/engineering of modular biological systems beyond the traditional scaffolding function.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.
| |
Collapse
|
16
|
Abrusán G, Ascher DB, Inouye M. Known allosteric proteins have central roles in genetic disease. PLoS Comput Biol 2022; 18:e1009806. [PMID: 35139069 PMCID: PMC10138267 DOI: 10.1371/journal.pcbi.1009806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/27/2023] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Allostery is a form of protein regulation, where ligands that bind sites located apart from the active site can modify the activity of the protein. The molecular mechanisms of allostery have been extensively studied, because allosteric sites are less conserved than active sites, and drugs targeting them are more specific than drugs binding the active sites. Here we quantify the importance of allostery in genetic disease. We show that 1) known allosteric proteins are central in disease networks, contribute to genetic disease and comorbidities much more than non-allosteric proteins, and there is an association between being allosteric and involvement in disease; 2) they are enriched in many major disease types like hematopoietic diseases, cardiovascular diseases, cancers, diabetes, or diseases of the central nervous system; 3) variants from cancer genome-wide association studies are enriched near allosteric proteins, indicating their importance to polygenic traits; and 4) the importance of allosteric proteins in disease is due, at least partly, to their central positions in protein-protein interaction networks, and less due to their dynamical properties.
Collapse
Affiliation(s)
- György Abrusán
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, School of Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - David B. Ascher
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Structural Biology and Bioinformatics, Department of Biochemistry, Bio21 Institute, University of Melbourne, Melbourne, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, School of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
17
|
Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021; 17:283-295. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hidden allosteric sites are not visible in apo-crystal structures, but they may be visible in holo-structures when a certain ligand binds and maintains the ligand intended conformation. Several computational and experimental techniques have been used to investigate these hidden sites but identifying them remains a challenge. AREAS COVERED This review provides a summary of the many theoretical approaches for predicting hidden allosteric sites in disease-related proteins. Furthermore, promising cases have been thoroughly examined to reveal the hidden allosteric site and its modulator. EXPERT OPINION In the recent past, with the development in scientific techniques and bioinformatics tools, the number of drug targets for complex human diseases has significantly increased but unfortunately most of these targets are undruggable due to several reasons. Alternative strategies such as finding cryptic (hidden) allosteric sites are an attractive approach for exploitation of the discovery of new targets. These hidden sites are difficult to recognize compared to allosteric sites, mainly due to a lack of visibility in the crystal structure. In our opinion, after many years of development, MD simulations are finally becoming successful for obtaining a detailed molecular description of drug-target interaction.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Sheik Amamuddy O, Afriyie Boateng R, Barozi V, Wavinya Nyamai D, Tastan Bishop Ö. Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 M pro and its evolutionary mutations as a case study. Comput Struct Biotechnol J 2021; 19:6431-6455. [PMID: 34849191 PMCID: PMC8613987 DOI: 10.1016/j.csbj.2021.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/15/2023] Open
Abstract
The rational search for allosteric modulators and the allosteric mechanisms of these modulators in the presence of mutations is a relatively unexplored field. Here, we established novel in silico approaches and applied them to SARS-CoV-2 main protease (Mpro) as a case study. First, we identified six potential allosteric modulators. Then, we focused on understanding the allosteric effects of these modulators on each of its protomers. We introduced a new combinatorial approach and dynamic residue network (DRN) analysis algorithms to examine patterns of change and conservation of critical nodes, according to five independent criteria of network centrality. We observed highly conserved network hubs for each averaged DRN metric on the basis of their existence in both protomers in the absence and presence of all ligands (persistent hubs). We also detected ligand specific signal changes. Using eigencentrality (EC) persistent hubs and ligand introduced hubs we identified a residue communication path connecting the allosteric binding site to the catalytic site. Finally, we examined the effects of the mutations on the behavior of the protein in the presence of selected potential allosteric modulators and investigated the ligand stability. One crucial outcome was to show that EC centrality hubs form an allosteric communication path between the allosteric ligand binding site to the active site going through the interface residues of domains I and II; and this path was either weakened or lost in the presence of some of the mutations. Overall, the results revealed crucial aspects that need to be considered in rational computational drug discovery.
Collapse
Affiliation(s)
| | | | - Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| |
Collapse
|
19
|
Ni D, Chai Z, Wang Y, Li M, Yu Z, Liu Y, Lu S, Zhang J. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duan Ni
- College of Pharmacy Ningxia Medical University Yinchuan China
- The Charles Perkins Centre University of Sydney Sydney New South Wales Australia
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai China
| | - Ying Wang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Mingyu Li
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | | | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shaoyong Lu
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jian Zhang
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| |
Collapse
|
20
|
Okeke CJ, Musyoka TM, Sheik Amamuddy O, Barozi V, Tastan Bishop Ö. Allosteric pockets and dynamic residue network hubs of falcipain 2 in mutations including those linked to artemisinin resistance. Comput Struct Biotechnol J 2021; 19:5647-5666. [PMID: 34745456 PMCID: PMC8545671 DOI: 10.1016/j.csbj.2021.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 10/29/2022] Open
Abstract
Continually emerging resistant strains of malarial parasites to current drugs present challenges. Understanding the underlying resistance mechanisms, especially those linked to allostery is, thus, highly crucial for drug design. This forms the main concern of the paper through a case study of falcipain 2 (FP-2) and its mutations, some of which are linked to artemisinin (ART) drug resistance. Here, we applied a variety of in silico approaches and tools that we developed recently, together with existing computational tools. This included novel essential dynamics and dynamic residue network (DRN) analysis algorithms. We identified six pockets demonstrating dynamic differences in the presence of some mutations. We observed striking allosteric effects in two mutant proteins. In the presence of M245I, a cryptic pocket was detected via a unique mechanism in which Pocket 2 fused with Pocket 6. In the presence of the A353T mutation, which is located at Pocket 2, the pocket became the most rigid among all protein systems analyzed. Pocket 6 was also highly stable in all cases, except in the presence of M245I mutation. The effect of ART linked mutations was more subtle, and the changes were at residue level. Importantly, we identified an allosteric communication path formed by four unique averaged BC hubs going from the mutated residue to the catalytic site and passing through the interface of three identified pockets. Collectively, we established and demonstrated that we have robust tools and a pipeline that can be applicable to the analysis of mutations.
Collapse
Affiliation(s)
| | | | - Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
21
|
Tee WV, Tan ZW, Lee K, Guarnera E, Berezovsky IN. Exploring the Allosteric Territory of Protein Function. J Phys Chem B 2021; 125:3763-3780. [PMID: 33844527 DOI: 10.1021/acs.jpcb.1c00540] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
While the pervasiveness of allostery in proteins is commonly accepted, we further show the generic nature of allosteric mechanisms by analyzing here transmembrane ion-channel viroporin 3a and RNA-dependent RNA polymerase (RdRp) from SARS-CoV-2 along with metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and fumarate hydratase (FH) implicated in cancers. Using the previously developed structure-based statistical mechanical model of allostery (SBSMMA), we share our experience in analyzing the allosteric signaling, predicting latent allosteric sites, inducing and tuning targeted allosteric response, and exploring the allosteric effects of mutations. This, yet incomplete list of phenomenology, forms a complex and unique allosteric territory of protein function, which should be thoroughly explored. We propose a generic computational framework, which not only allows one to obtain a comprehensive allosteric control over proteins but also provides an opportunity to approach the fragment-based design of allosteric effectors and drug candidates. The advantages of allosteric drugs over traditional orthosteric compounds, complemented by the emerging role of the allosteric effects of mutations in the expansion of the cancer mutational landscape and in the increased mutability of viral proteins, leave no choice besides further extensive studies of allosteric mechanisms and their biomedical implications.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117597, Singapore
| | - Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Keene Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117597, Singapore
| |
Collapse
|
22
|
Prabantu VM, Naveenkumar N, Srinivasan N. Influence of Disease-Causing Mutations on Protein Structural Networks. Front Mol Biosci 2021; 7:620554. [PMID: 33778000 PMCID: PMC7987782 DOI: 10.3389/fmolb.2020.620554] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 01/18/2023] Open
Abstract
The interactions between residues in a protein tertiary structure can be studied effectively using the approach of protein structure network (PSN). A PSN is a node-edge representation of the structure with nodes representing residues and interactions between residues represented by edges. In this study, we have employed weighted PSNs to understand the influence of disease-causing mutations on proteins of known 3D structures. We have used manually curated information on disease mutations from UniProtKB/Swiss-Prot and their corresponding protein structures of wildtype and disease variant from the protein data bank. The PSNs of the wildtype and disease-causing mutant are compared to analyse variation of global and local dissimilarity in the overall network and at specific sites. We study how a mutation at a given site can affect the structural network at a distant site which may be involved in the function of the protein. We have discussed specific examples of the disease cases where the protein structure undergoes limited structural divergence in their backbone but have large dissimilarity in their all atom networks and vice versa, wherein large conformational alterations are observed while retaining overall network. We analyse the effect of variation of network parameters that characterize alteration of function or stability.
Collapse
Affiliation(s)
| | - Nagarajan Naveenkumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,National Centre for Biological Sciences, TIFR, Bangalore, India.,Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
23
|
Abstract
Allosteric regulation in proteins is fundamental to many important biological processes. Allostery has been employed to control protein functions by regulating protein activity. Engineered allosteric regulation allows controlling protein activity in subsecond time scale and has a broad range of applications, from dissecting spatiotemporal dynamics in biochemical cascades to applications in biotechnology and medicine. Here, we review the concept of allostery in proteins and various approaches to identify allosteric sites and pathways. We then provide an overview of strategies and tools used in allosteric protein regulation and their utility in biological applications. We highlight various classes of proteins, where regulation is achieved through allostery. Finally, we analyze the current problems, critical challenges, and future prospective in achieving allosteric regulation in proteins.
Collapse
Affiliation(s)
| | - Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
24
|
Haspel N, Jang H, Nussinov R. Active and Inactive Cdc42 Differ in Their Insert Region Conformational Dynamics. Biophys J 2021; 120:306-318. [PMID: 33347888 PMCID: PMC7840443 DOI: 10.1016/j.bpj.2020.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
Cell division control protein 42 homolog (Cdc42) protein, a Ras superfamily GTPase, regulates cellular activities, including cancer progression. Using all-atom molecular dynamics (MD) simulations and essential dynamic analysis, we investigated the structure and dynamics of the catalytic domains of GDP-bound (inactive) and GTP-bound (active) Cdc42 in solution. We discovered substantial differences in the dynamics of the inactive and active forms, particularly in the "insert region" (residues 122-135), which plays a role in Cdc42 activation and binding to effectors. The insert region has larger conformational flexibility in the GDP-bound Cdc42 than in the GTP-bound Cdc42. The G2 loop and switch I at the effector lobe of the catalytic domain exhibit large conformational changes in both the GDP- and the GTP-bound systems, but in the GTP-bound Cdc42, the switch I interactions with GTP are retained. Oncogenic mutations were identified in the Ras superfamily. In Cdc42, the G12V and Q61L mutations decrease the GTPase activity. We simulated these mutations in both GDP- and GTP-bound Cdc42. Although the overall structural organization is quite similar between the wild type and the mutants, there are small differences in the conformational dynamics, especially in the two switch regions. Taken together, the G12V and Q61L mutations may play a role similar to their K-Ras counterparts in nucleotide binding and activation. The conformational differences, which are mainly in the insert region and, to a lesser extent, in the switch regions flanking the nucleotide binding site, can shed light on binding and activation. We propose that the differences are due to a network of hydrogen bonds that gets disrupted when Cdc42 is bound to GDP, a disruption that does not exist in other Rho GTPases. The differences in the dynamics between the two Cdc42 states suggest that the inactive conformation has reduced ability to bind to effectors.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Tan ZW, Guarnera E, Tee WV, Berezovsky IN. AlloSigMA 2: paving the way to designing allosteric effectors and to exploring allosteric effects of mutations. Nucleic Acids Res 2020; 48:W116-W124. [PMID: 32392302 PMCID: PMC7319554 DOI: 10.1093/nar/gkaa338] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
The AlloSigMA 2 server provides an interactive platform for exploring the allosteric signaling caused by ligand binding and/or mutations, for analyzing the allosteric effects of mutations and for detecting potential cancer drivers and pathogenic nsSNPs. It can also be used for searching latent allosteric sites and for computationally designing allosteric effectors for these sites with required agonist/antagonist activity. The server is based on the implementation of the Structure-Based Statistical Mechanical Model of Allostery (SBSMMA), which allows one to evaluate the allosteric free energy as a result of the perturbation at per-residue resolution. The Allosteric Signaling Map (ASM) providing a comprehensive residue-by-residue allosteric control over the protein activity can be obtained for any structure of interest. The Allosteric Probing Map (APM), in turn, allows one to perform the fragment-based-like computational design experiment aimed at finding leads for potential allosteric effectors. The server can be instrumental in elucidating of allosteric mechanisms and actions of allosteric mutations, and in the efforts on design of new elements of allosteric control. The server is freely available at: http://allosigma.bii.a-star.edu.sg.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Wei-Ven Tee
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore
| |
Collapse
|
26
|
Carofiglio F, Trisciuzzi D, Gambacorta N, Leonetti F, Stefanachi A, Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020; 25:E4210. [PMID: 32937901 PMCID: PMC7570842 DOI: 10.3390/molecules25184210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The fusion oncoprotein Bcr-Abl is an aberrant tyrosine kinase responsible for chronic myeloid leukemia and acute lymphoblastic leukemia. The auto-inhibition regulatory module observed in the progenitor kinase c-Abl is lost in the aberrant Bcr-Abl, because of the lack of the N-myristoylated cap able to bind the myristoyl binding pocket also conserved in the Bcr-Abl kinase domain. A way to overcome the occurrence of resistance phenomena frequently observed for Bcr-Abl orthosteric drugs is the rational design of allosteric ligands approaching the so-called myristoyl binding pocket. The discovery of these allosteric inhibitors although very difficult and extremely challenging, represents a valuable option to minimize drug resistance, mostly due to the occurrence of mutations more frequently affecting orthosteric pockets, and to enhance target selectivity with lower off-target effects. In this perspective, we will elucidate at a molecular level the structural bases behind the Bcr-Abl allosteric control and will show how artificial intelligence can be effective to drive the automated de novo design towards off-patent regions of the chemical space.
Collapse
Affiliation(s)
- Francesca Carofiglio
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
- Molecular Horizon srl, Via Montelino 32, 06084 Bettona, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Francesco Leonetti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Angela Stefanachi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| |
Collapse
|
27
|
Tee WV, Guarnera E, Berezovsky IN. Disorder driven allosteric control of protein activity. Curr Res Struct Biol 2020; 2:191-203. [PMID: 34235479 PMCID: PMC8244471 DOI: 10.1016/j.crstbi.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Studies of protein allostery increasingly reveal an involvement of the back and forth order-disorder transitions in this mechanism of protein activity regulation. Here, we investigate the allosteric mechanisms mediated by structural disorder using the structure-based statistical mechanical model of allostery (SBSMMA) that we have previously developed. We show that SBSMMA accounts for the energetics and causality of allosteric communication underlying dimerization of the BirA biotin repressor, activation of the sortase A enzyme, and inhibition of the Rac1 GTPase. Using the SBSMMA, we also show that introducing structural order or disorder in various regions of esterases can originate tunable allosteric modulation of the catalytic triad. On the basis of obtained results, we propose that operating with the order-disorder continuum allows one to establish an allosteric control scale for achieving desired modulation of the protein activity. Back and forth order-disorder transitions can induce allosteric signaling. Allosteric signaling originated by order/disorder follow universal rules. Allosteric control scale facilitates engineering of the protein activity regulation.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive 117597, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix 138671, Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive 117597, Singapore
| |
Collapse
|
28
|
Zinc-mediated conformational preselection mechanism in the allosteric control of DNA binding to the zinc transcriptional regulator (ZitR). Sci Rep 2020; 10:13276. [PMID: 32764589 PMCID: PMC7413533 DOI: 10.1038/s41598-020-70381-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The zinc transcriptional regulator (ZitR) functions as a metalloregulator that fine tunes transcriptional regulation through zinc-dependent DNA binding. However, the molecular mechanism of zinc-driven allosteric control of the DNA binding to ZitR remains elusive. Here, we performed enhanced sampling accelerated molecular dynamics simulations to figure out the mechanism, revealing the role of protein dynamics in the zinc-induced allosteric control of DNA binding to ZitR. The results suggest that zinc-free ZitR samples distinct conformational states, only a handful of which are compatible with DNA binding. Remarkably, zinc binding reduces the conformational plasticity of the DNA-binding domain of ZitR, promoting the population shift in the ZitR conformational ensemble towards the DNA binding-competent conformation. Further co-binding of DNA to the zinc–ZitR complex stabilizes this competent conformation. These findings suggest that ZitR–DNA interactions are allosterically regulated in a zinc-mediated conformational preselection manner, highlighting the importance of conformational dynamics in the regulation of transcription factor family.
Collapse
|
29
|
Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies. Chem Sci 2020; 11:5855-5865. [PMID: 32953006 PMCID: PMC7472334 DOI: 10.1039/d0sc01676d] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The search is on for effective specific inhibitors for PI3Kα mutants. PI3Kα, a critical lipid kinase, has two subunits, catalytic and inhibitory. PIK3CA, the gene that encodes the p110α catalytic subunit is a highly mutated protein in cancer. Dysregulation of PI3Kα signalling is commonly associated with tumorigenesis and drug resistance. Despite its vast importance, only recently the FDA approved the first drug (alpelisib by Novartis) for breast cancer. A second (GDC0077), classified as PI3Kα isoform-specific, is undergoing clinical trials. Not surprisingly, these ATP-competitive drugs commonly elicit severe concentration-dependent side effects. Here we briefly review PI3Kα mutations, focus on PI3K drug repertoire and propose new, to-date unexplored PI3Kα therapeutic strategies. These include (1) an allosteric and orthosteric inhibitor combination and (2) taking advantage of allosteric rescue mutations to guide drug discovery.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
- Department of Human Molecular Genetics and Biochemistry , Sackler School of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| |
Collapse
|
30
|
Allosteric drugs and mutations: chances, challenges, and necessity. Curr Opin Struct Biol 2020; 62:149-157. [DOI: 10.1016/j.sbi.2020.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
|
31
|
Gosu V, Won K, Oh JD, Shin D. Conformational Changes Induced by S34Y and R98C Variants in the Death Domain of Myd88. Front Mol Biosci 2020; 7:27. [PMID: 32266286 PMCID: PMC7106778 DOI: 10.3389/fmolb.2020.00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Myeloid differentiating factor 88 (Myd88) is a universal adaptor protein that plays a critical role in innate immunity by mediating TLR downstream signaling. Myd88 death domain (DD) forms an oligomeric complex by association with other DD-containing proteins such as IRAK4. Despite its universal role, polymorphisms in Myd88 can result in several diseases. Previous studies have suggested that, out of several non-synonymous single-nucleotide polymorphisms (nsSNPs), the variants S34Y and R98C in the DD of Myd88 disrupt the formation of the Myddosome complex. Therefore, we performed molecular dynamics (MD) simulations on wild-type (Myd88WT) and mutant (Myd88S34Y, Myd88R98C) DDs to evaluate the subtle conformational changes induced by these mutations. Our results suggest that the S34Y variant induces large structural transitions compared to the R98C variant as evidenced by residual flexibility at the variable loop regions, particularly in the H1-H2 loop, and variations in the collective modes of motion observed for wild-type and mutant Myd88 DDs. The residue interaction network strongly suggests a distortion in the interaction pattern at the location of the mutated residue between the wild type and mutants. Moreover, betweenness centrality values indicate that variations in the distribution of functionally important residues may be reflected by distinct residue signal transductions in both wild-type and mutant Myd88 DDs, which may influence the interaction with other DDs in TLR downstream signaling.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, South Korea
| | - KyeongHye Won
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, South Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, South Korea
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju-si, South Korea
| |
Collapse
|
32
|
Zhang N, Chen Y, Lu H, Zhao F, Alvarez RV, Goncearenco A, Panchenko AR, Li M. MutaBind2: Predicting the Impacts of Single and Multiple Mutations on Protein-Protein Interactions. iScience 2020; 23:100939. [PMID: 32169820 PMCID: PMC7068639 DOI: 10.1016/j.isci.2020.100939] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 01/17/2023] Open
Abstract
Missense mutations may affect proteostasis by destabilizing or over-stabilizing protein complexes and changing the pathway flux. Predicting the effects of stabilizing mutations on protein-protein interactions is notoriously difficult because existing experimental sets are skewed toward mutations reducing protein-protein binding affinity and many computational methods fail to correctly evaluate their effects. To address this issue, we developed a method MutaBind2, which estimates the impacts of single as well as multiple mutations on protein-protein interactions. MutaBind2 employs only seven features, and the most important of them describe interactions of proteins with the solvent, evolutionary conservation of the site, and thermodynamic stability of the complex and each monomer. This approach shows a distinct improvement especially in evaluating the effects of mutations increasing binding affinity. MutaBind2 can be used for finding disease driver mutations, designing stable protein complexes, and discovering new protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Ning Zhang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yuting Chen
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Haoyu Lu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Feiyang Zhao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Roberto Vera Alvarez
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Minghui Li
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
33
|
Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker GM, Tastan Bishop Ö. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 2020; 21:E847. [PMID: 32013012 PMCID: PMC7036869 DOI: 10.3390/ijms21030847] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding molecular mechanisms underlying the complexity of allosteric regulationin proteins has attracted considerable attention in drug discovery due to the benefits and versatilityof allosteric modulators in providing desirable selectivity against protein targets while minimizingtoxicity and other side effects. The proliferation of novel computational approaches for predictingligand-protein interactions and binding using dynamic and network-centric perspectives has ledto new insights into allosteric mechanisms and facilitated computer-based discovery of allostericdrugs. Although no absolute method of experimental and in silico allosteric drug/site discoveryexists, current methods are still being improved. As such, the critical analysis and integration ofestablished approaches into robust, reproducible, and customizable computational pipelines withexperimental feedback could make allosteric drug discovery more efficient and reliable. In this article,we review computational approaches for allosteric drug discovery and discuss how these tools can beutilized to develop consensus workflows for in silico identification of allosteric sites and modulatorswith some applications to pathogen resistance and precision medicine. The emerging realization thatallosteric modulators can exploit distinct regulatory mechanisms and can provide access to targetedmodulation of protein activities could open opportunities for probing biological processes and insilico design of drug combinations with improved therapeutic indices and a broad range of activities.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Colleen Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| |
Collapse
|
34
|
Nussinov R, Tsai CJ, Jang H. Why Are Some Driver Mutations Rare? Trends Pharmacol Sci 2019; 40:919-929. [PMID: 31699406 DOI: 10.1016/j.tips.2019.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Understanding why driver mutations that promote cancer are sometimes rare is important for precision medicine since it would help in their identification. Driver mutations are largely discovered through their frequencies. Thus, rare mutations often escape detection. Unlike high-frequency drivers, low-frequency drivers can be tissue specific; rare drivers have extremely low frequencies. Here, we discuss rare drivers and strategies to discover them. We suggest that allosteric driver mutations shift the protein ensemble from the inactive to the active state. Rare allosteric drivers are statistically rare since, to switch the protein functional state, they cooperate with additional mutations, and these are not considered in the patient cancer-specific protein sequence analysis. A complete landscape of mutations that drive cancer will reveal tumor-specific therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
35
|
Emergence of allosteric drug-resistance mutations: new challenges for allosteric drug discovery. Drug Discov Today 2019; 25:177-184. [PMID: 31634592 DOI: 10.1016/j.drudis.2019.10.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/28/2019] [Accepted: 10/11/2019] [Indexed: 01/31/2023]
Abstract
Allosteric drugs have several significant advantages over traditional orthosteric drugs, encompassing higher selectivity and lower toxicity. Although allosteric drugs have potential advantages as therapeutic agents to treat human diseases, allosteric drug-resistance mutations still occur, rendering these drugs ineffective. Here, we review the emergence of allosteric drug-resistance mutations with an emphasis on examples covering clinically important therapeutic targets, including Breakpoint cluster region-Abelson tyrosine kinase (Bcr-Abl), Akt kinase [also called Protein Kinase B (PKB)], isocitrate dehydrogenase (IDH), MAPK/ERK kinase (MEK), and SRC homology 2 domain-containing phosphatase 2 (SHP2). We also discuss challenges associated with tackling allosteric drug resistance and the possible strategies to overcome this issue.
Collapse
|