1
|
Kamps J, Yuste-Checa P, Mamashli F, Schmitz M, Herrera MG, da Silva Correia SM, Gogte K, Bader V, Zerr I, Hartl FU, Bracher A, Winklhofer KF, Tatzelt J. Regulated Proteolysis Induces Aberrant Phase Transition of Biomolecular Condensates into Aggregates: A Protective Role for the Chaperone Clusterin. J Mol Biol 2024; 436:168839. [PMID: 39476948 DOI: 10.1016/j.jmb.2024.168839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/10/2024]
Abstract
Several proteins associated with neurodegenerative diseases, such as the mammalian prion protein (PrP), undergo liquid-liquid phase separation (LLPS), which led to the hypothesis that condensates represent precursors in the formation of neurotoxic protein aggregates. However, the mechanisms that trigger aberrant phase separation are incompletely understood. In prion diseases, protease-resistant and infectious amyloid fibrils are composed of N-terminally truncated PrP, termed C2-PrP. C2-PrP is generated by regulated proteolysis (β-cleavage) of the cellular prion protein (PrPC) specifically upon prion infection, suggesting that C2-PrP is a misfolding-prone substrate for the propagation of prions. Here we developed a novel assay to investigate the role of both LLPS and β-cleavage in the formation of C2-PrP aggregates. We show that β-cleavage induces the formation of C2-PrP aggregates, but only when full-length PrP had formed biomolecular condensates via LLPS before proteolysis. In contrast, C2-PrP remains soluble after β-cleavage of non-phase-separated PrP. To investigate whether extracellular molecular chaperones modulate LLPS of PrP and/or misfolding of C2-PrP, we focused on Clusterin. Clusterin does not inhibit LLPS of full-length PrP, however, it prevents aggregation of C2-PrP after β-cleavage of phase-separated PrP. Furthermore, Clusterin interferes with the in vitro amplification of infectious human prions isolated from Creutzfeldt-Jakob disease patients. Our study revealed that regulated proteolysis triggers aberrant phase transition of biomolecular condensates into aggregates and identified Clusterin as a component of the extracellular quality control pathway to prevent the formation and propagation of pathogenic PrP conformers.
Collapse
Affiliation(s)
- Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Patricia Yuste-Checa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Fatemeh Mamashli
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Maria Georgina Herrera
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | | | - Kalpshree Gogte
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany.
| |
Collapse
|
2
|
Kamps J, Bader V, Winklhofer KF, Tatzelt J. Liquid-liquid phase separation of the prion protein is regulated by the octarepeat domain independently of histidines and copper. J Biol Chem 2024; 300:107310. [PMID: 38657863 PMCID: PMC11126799 DOI: 10.1016/j.jbc.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.
Collapse
Affiliation(s)
- Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany
| | - Verian Bader
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany.
| |
Collapse
|
3
|
Tao J, Zeng Y, Dai B, Liu Y, Pan X, Wang LQ, Chen J, Zhou Y, Lu Z, Xie L, Liang Y. Excess PrP C inhibits muscle cell differentiation via miRNA-enhanced liquid-liquid phase separation implicated in myopathy. Nat Commun 2023; 14:8131. [PMID: 38065962 PMCID: PMC10709375 DOI: 10.1038/s41467-023-43826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The cellular prion protein (PrPC) is required for skeletal muscle function. Here, we report that a higher level of PrPC accumulates in the cytoplasm of the skeletal muscle of six myopathy patients compared to controls. PrPC inhibits skeletal muscle cell autophagy, and blocks myoblast differentiation. PrPC selectively binds to a subset of miRNAs during myoblast differentiation, and the colocalization of PrPC and miR-214-3p was observed in the skeletal muscle of six myopathy patients with excessive PrPC. We demonstrate that PrPC is overexpressed in skeletal muscle cells under pathological conditions, inhibits muscle cell differentiation by physically interacting with a subset of miRNAs, and selectively recruits these miRNAs into its phase-separated condensate in living myoblasts, which in turn enhances liquid-liquid phase separation of PrPC, promotes pathological aggregation of PrP, and results in the inhibition of autophagy-related protein 5-dependent autophagy and muscle bundle formation in myopathy patients characterized by incomplete muscle regeneration.
Collapse
Affiliation(s)
- Jing Tao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanping Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bin Dai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yin Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohan Pan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Li XN, Gao Y, Li Y, Yin JX, Yi CW, Yuan HY, Huang JJ, Wang LQ, Chen J, Liang Y. Arg177 and Asp159 from dog prion protein slow liquid-liquid phase separation and inhibit amyloid formation of human prion protein. J Biol Chem 2023; 299:105329. [PMID: 37805139 PMCID: PMC10641668 DOI: 10.1016/j.jbc.2023.105329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/09/2023] Open
Abstract
Prion diseases are a group of transmissible neurodegenerative diseases primarily caused by the conformational conversion of prion protein (PrP) from α-helix-dominant cellular prion protein (PrPC) to β-sheet-rich pathological aggregated form of PrPSc in many mammalian species. Dogs exhibit resistance to prion diseases, but the mechanism behind the phenomenon remains poorly understood. Compared with human PrP and mouse PrP, dog PrP has two unique amino acid residues, Arg177 and Asp159. Because PrPC contains a low-complexity and intrinsically disordered region in its N-terminal domain, it undergoes liquid-liquid phase separation (LLPS) in vitro and forms protein condensates. However, little is known about whether these two unique residues modulate the formation of PrPC condensates. Here, using confocal microscopy, fluorescence recovery after photobleaching assays, thioflavin T binding assays, and transmission electron microscopy, we report that Arg177 and Asp159 from the dog PrP slow the LLPS of full-length human PrPC, shifting the equilibrium phase boundary to higher protein concentrations and inhibit amyloid formation of the human protein. In sharp contrast, His177 and Asn159 from the human PrP enhance the LLPS of full-length dog PrPC, shifting the equilibrium phase boundary to lower protein concentrations, and promote fibril formation of the canid protein. Collectively, these results demonstrate how LLPS and amyloid formation of PrP are inhibited by a single residue Arg177 or Asp159 associated with prion disease resistance, and how LLPS and fibril formation of PrP are promoted by a single residue His177 or Asn159. Therefore, Arg177/His177 and Asp159/Asn159 are key residues in modulating PrPC liquid-phase condensation.
Collapse
Affiliation(s)
- Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jin-Xu Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan-Wei Yi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jun-Jie Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
5
|
Arshad H, Patel Z, Amano G, Li LY, Al-Azzawi ZAM, Supattapone S, Schmitt-Ulms G, Watts JC. A single protective polymorphism in the prion protein blocks cross-species prion replication in cultured cells. J Neurochem 2023; 165:230-245. [PMID: 36511154 DOI: 10.1111/jnc.15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The bank vole (BV) prion protein (PrP) can function as a universal acceptor of prions. However, the molecular details of BVPrP's promiscuity for replicating a diverse range of prion strains remain obscure. To develop a cultured cell paradigm capable of interrogating the unique properties of BVPrP, we generated monoclonal lines of CAD5 cells lacking endogenous PrP but stably expressing either hamster (Ha), mouse (Mo), or BVPrP (M109 or I109 polymorphic variants) and then challenged them with various strains of mouse or hamster prions. Cells expressing BVPrP were susceptible to both mouse and hamster prions, whereas cells expressing MoPrP or HaPrP could only be infected with species-matched prions. Propagation of mouse and hamster prions in cells expressing BVPrP resulted in strain adaptation in several instances, as evidenced by alterations in conformational stability, glycosylation, susceptibility to anti-prion small molecules, and the inability of BVPrP-adapted mouse prion strains to infect cells expressing MoPrP. Interestingly, cells expressing BVPrP containing the G127V prion gene variant, identified in individuals resistant to kuru, were unable to become infected with prions. Moreover, the G127V polymorphic variant impeded the spontaneous aggregation of recombinant BVPrP. These results demonstrate that BVPrP can facilitate cross-species prion replication in cultured cells and that a single amino acid change can override the prion-permissive nature of BVPrP. This cellular paradigm will be useful for dissecting the molecular features of BVPrP that allow it to function as a universal prion acceptor.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Le Yao Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
He P, Yang G, Zhu D, Kong H, Corrales-Ureña YR, Colombi Ciacchi L, Wei G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J Nanobiotechnology 2022; 20:483. [PMID: 36384717 PMCID: PMC9670580 DOI: 10.1186/s12951-022-01691-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nanomaterial-based phototherapy has become an important research direction for cancer therapy, but it still to face some obstacles, such as the toxic side effects and low target specificity. The biomimetic synthesis of nanomaterials using biomolecules is a potential strategy to improve photothermal therapy (PTT) and photodynamic therapy (PDT) techniques due to their endowed biocompatibility, degradability, low toxicity, and specific targeting. This review presents recent advances in the biomolecule-mimetic synthesis of functional nanomaterials for PTT and PDT of cancers. First, we introduce four biomimetic synthesis methods via some case studies and discuss the advantages of each method. Then, we introduce the synthesis of nanomaterials using some biomolecules such as DNA, RNA, protein, peptide, polydopamine, and others, and discuss in detail how to regulate the structure and functions of the obtained biomimetic nanomaterials. Finally, potential applications of biomimetic nanomaterials for both PTT and PDT of cancers are demonstrated and discussed. We believe that this work is valuable for readers to understand the mechanisms of biomimetic synthesis and nanomaterial-based phototherapy techniques, and will contribute to bridging nanotechnology and biomedicine to realize novel highly effective cancer therapies.
Collapse
Affiliation(s)
- Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yendry Regina Corrales-Ureña
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany.
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
7
|
Gao YY, Zhong T, Wang LQ, Zhang N, Zeng Y, Hu JY, Dang HB, Chen J, Liang Y. Zinc enhances liquid-liquid phase separation of Tau protein and aggravates mitochondrial damages in cells. Int J Biol Macromol 2022; 209:703-715. [PMID: 35405154 DOI: 10.1016/j.ijbiomac.2022.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023]
Abstract
Intraneuronal neurofibrillary tangles composed of Tau aggregates have been widely accepted as an important pathological hallmark of Alzheimer's disease. Liquid-liquid phase separation (LLPS) of Tau can lead to its aggregation, and Tau aggregation can then be enhanced by zinc. However, it is unclear whether zinc modulates the formation of Tau stress granules in cells. We herein report that zinc promotes the formation of stress granules containing a pathological mutant ΔK280 of full-length human Tau. Furthermore, zinc promotes LLPS of ΔK280 of full-length Tau, shifting the equilibrium phase boundary to a lower protein concentration, and modulates the liquid nature of droplets formed by this pathological mutation. Zinc also promotes pathological phosphorylation of ΔK280 in neuronal cells, and aggravates mitochondrial damage and elevates reactive oxygen species production induced by Tau aggregation. Importantly, we show that treatment of cells with zinc increases the interaction between full-length Tau and G3BP1 inside stress granules to promote the formation of Tau filaments and increase Tau toxicity in neuronal cells. Collectively, these results demonstrate how Tau condensation and mitochondrial damages induced by Tau aggregation are enhanced by zinc to deteriorate the pathogenesis of Alzheimer's disease, bridging the gap between Tau LLPS and aggregation in neuronal cells.
Collapse
Affiliation(s)
- Ying-Ying Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Tao Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Na Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yan Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Ji-Ying Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Hai-Bin Dang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
8
|
Remarkable difference of phospholipid molecular chirality in regulating PrP aggregation and cell responses. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
do Amaral MJ, Freire MHO, Almeida MS, Pinheiro AS, Cordeiro Y. Phase separation of the mammalian prion protein: physiological and pathological perspectives. J Neurochem 2022. [PMID: 35149997 DOI: 10.1111/jnc.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Abnormal phase transitions have been implicated in the occurrence of proteinopathies. Disordered proteins with nucleic acid binding ability drive the formation of reversible micron-sized condensates capable of controlling nucleic acid processing/transport. This mechanism, achieved via liquid-liquid phase separation (LLPS), underlies the formation of long-studied membraneless organelles (e.g., nucleolus) and various transient condensates formed by driver proteins. The prion protein (PrP) is not a classical nucleic acid-binding protein. However, it binds nucleic acids with high affinity, undergoes nucleocytoplasmic shuttling, contains a long intrinsically disordered region rich in glycines and evenly spaced aromatic residues, among other biochemical/biophysical properties of bona fide drivers of phase transitions. Because of this, our group and others have characterized LLPS of recombinant PrP. In vitro phase separation of PrP is modulated by nucleic acid aptamers, and, depending on the aptamer conformation, the liquid droplets evolve to solid-like species. Herein we discuss recent studies and previous evidence supporting PrP phase transitions. We focus on the central role of LLPS related to PrP physiology and pathology, with a special emphasis on the interaction of PrP with different ligands, such as proteins and nucleic acids, which can play a role in prion disease pathogenesis. Finally, we comment on therapeutic strategies directed at the nonfunctional phase separation that could potentially tackle prion diseases or other protein misfolding disorders.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation. J Mol Biol 2021; 434:167368. [PMID: 34808226 DOI: 10.1016/j.jmb.2021.167368] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
Conformational conversion of the α-helix-rich cellular prion protein into the misfolded, β-rich, aggregated, scrapie form underlies the molecular basis of prion diseases that represent a class of invariably fatal, untreatable, and transmissible neurodegenerative diseases. However, despite the extensive and rigorous research, there is a significant gap in the understanding of molecular mechanisms that contribute to prion pathogenesis. In this review, we describe the historical perspective of the development of the prion concept and the current state of knowledge of prion biology including structural, molecular, and cellular aspects of the prion protein. We then summarize the putative functional role of the N-terminal intrinsically disordered segment of the prion protein. We next describe the ongoing efforts in elucidating the prion phase behavior and the emerging role of liquid-liquid phase separation that can have potential functional relevance and can offer an alternate non-canonical pathway involving conformational conversion into a disease-associated form. We also attempt to shed light on the evolutionary perspective of the prion protein highlighting the potential role of intrinsic disorder in prion protein biology and summarize a few important questions associated with the phase transitions of the prion protein. Delving deeper into these key aspects can pave the way for a detailed understanding of the critical molecular determinants of the prion phase transition and its relevance to physiology and neurodegenerative diseases.
Collapse
|
12
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
13
|
Polido SA, Kamps J, Tatzelt J. Biological Functions of the Intrinsically Disordered N-Terminal Domain of the Prion Protein: A Possible Role of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:1201. [PMID: 34439867 PMCID: PMC8391301 DOI: 10.3390/biom11081201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The mammalian prion protein (PrPC) is composed of a large intrinsically disordered N-terminal and a structured C-terminal domain, containing three alpha-helical regions and a short, two-stranded beta-sheet. Traditionally, the activity of a protein was linked to the ability of the polypeptide chain to adopt a stable secondary/tertiary structure. This concept has been extended when it became evident that intrinsically disordered domains (IDDs) can participate in a broad range of defined physiological activities and play a major functional role in several protein classes including transcription factors, scaffold proteins, and signaling molecules. This ability of IDDs to engage in a variety of supramolecular complexes may explain the large number of PrPC-interacting proteins described. Here, we summarize diverse physiological and pathophysiological activities that have been described for the unstructured N-terminal domain of PrPC. In particular, we focus on subdomains that have been conserved in evolution.
Collapse
Affiliation(s)
- Stella A. Polido
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
14
|
Shaldzhyan AA, Zabrodskaya YA, Baranovskaya IL, Sergeeva MV, Gorshkov AN, Savin II, Shishlyannikov SM, Ramsay ES, Protasov AV, Kukhareva AP, Egorov VV. Old dog, new tricks: Influenza A virus NS1 and in vitro fibrillogenesis. Biochimie 2021; 190:50-56. [PMID: 34273416 DOI: 10.1016/j.biochi.2021.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
The influenza NS1 protein is involved in suppression of the host immune response. Recently, there is growing evidence that prion-like protein aggregation plays an important role in cellular signaling and immune responses. In this work, we obtained a recombinant, influenza A NS1 protein and showed that it is able to form amyloid-like fibrils in vitro. Using proteolysis and subsequent mass spectrometry, we showed that regions resistant to protease hydrolysis highly differ between the native NS1 form (NS1-N) and fibrillar form (NS1-F); this indicates that significant structural changes occur during fibril formation. We also found a protein fragment that is capable of inducing the process of fibrillogenesis at 37 °C. The discovery of the ability of NS1 to form amyloid-like fibrils may be relevant to uncovering relationships between influenza A infection and modulation of the immune response.
Collapse
Affiliation(s)
- A A Shaldzhyan
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia; Petersburg Nuclear Physics Institute Named By B. P. Konstantinov of the National Research Center "Kurchatov Institute", 188300, mkr. Orlova Roshcha 1, Gatchina, Russia
| | - Y A Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia; Petersburg Nuclear Physics Institute Named By B. P. Konstantinov of the National Research Center "Kurchatov Institute", 188300, mkr. Orlova Roshcha 1, Gatchina, Russia; National Research Centre Kurchatov Institute, 123182, Akademika Kurchatova Sq. 1, Moscow, Russia; Peter the Great St. Petersburg Polytechnic University, 194064, Polyteknicheskaya 29, St. Petersburg, Russia.
| | - I L Baranovskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia; Peter the Great St. Petersburg Polytechnic University, 194064, Polyteknicheskaya 29, St. Petersburg, Russia
| | - M V Sergeeva
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia
| | - A N Gorshkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia
| | - I I Savin
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia
| | - S M Shishlyannikov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia; All-Russia Research Institute for Food Additives - Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, 191014, Liteyny Av. 55, St. Petersburg, Russia
| | - E S Ramsay
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia
| | - A V Protasov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia; Peter the Great St. Petersburg Polytechnic University, 194064, Polyteknicheskaya 29, St. Petersburg, Russia
| | - A P Kukhareva
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia
| | - V V Egorov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov 15/17, St. Petersburg, Russia; Petersburg Nuclear Physics Institute Named By B. P. Konstantinov of the National Research Center "Kurchatov Institute", 188300, mkr. Orlova Roshcha 1, Gatchina, Russia; National Research Centre Kurchatov Institute, 123182, Akademika Kurchatova Sq. 1, Moscow, Russia; Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 197376, Akademika Pavlova 12, St. Petersburg, Russia
| |
Collapse
|
15
|
Kamps J, Lin YH, Oliva R, Bader V, Winter R, Winklhofer KF, Tatzelt J. The N-terminal domain of the prion protein is required and sufficient for liquid-liquid phase separation: A crucial role of the Aβ-binding domain. J Biol Chem 2021; 297:100860. [PMID: 34102212 PMCID: PMC8254114 DOI: 10.1016/j.jbc.2021.100860] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Formation of biomolecular condensates through liquid–liquid phase separation (LLPS) has been described for several pathogenic proteins linked to neurodegenerative diseases and is discussed as an early step in the formation of protein aggregates with neurotoxic properties. In prion diseases, neurodegeneration and formation of infectious prions is caused by aberrant folding of the cellular prion protein (PrPC). PrPC is characterized by a large intrinsically disordered N-terminal domain and a structured C-terminal globular domain. A significant fraction of mature PrPC is proteolytically processed in vivo into an entirely unstructured fragment, designated N1, and the corresponding C-terminal fragment C1 harboring the globular domain. Notably, N1 contains a polybasic motif that serves as a binding site for neurotoxic Aβ oligomers. PrP can undergo LLPS; however, nothing is known how phase separation of PrP is triggered on a molecular scale. Here, we show that the intrinsically disordered N1 domain is necessary and sufficient for LLPS of PrP. Similar to full-length PrP, the N1 fragment formed highly dynamic liquid-like droplets. Remarkably, a slightly shorter unstructured fragment, designated N2, which lacks the Aβ-binding domain and is generated under stress conditions, failed to form liquid-like droplets and instead formed amorphous assemblies of irregular structures. Through a mutational analysis, we identified three positively charged lysines in the postoctarepeat region as essential drivers of condensate formation, presumably largely via cation–π interactions. These findings provide insights into the molecular basis of LLPS of the mammalian prion protein and reveal a crucial role of the Aβ-binding domain in this process.
Collapse
Affiliation(s)
- Janine Kamps
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Yu-Hsuan Lin
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Rosario Oliva
- Division of Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Roland Winter
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany; Division of Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany; Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
16
|
Participation of Amyloid and Tau Protein in Post-Ischemic Neurodegeneration of the Hippocampus of a Nature Identical to Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052460. [PMID: 33671097 PMCID: PMC7957532 DOI: 10.3390/ijms22052460] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023] Open
Abstract
Recent evidence suggests that amyloid and tau protein are of vital importance in post-ischemic death of CA1 pyramidal neurons of the hippocampus. In this review, we summarize protein alterations associated with Alzheimer's disease and their gene expression (amyloid protein precursor and tau protein) after cerebral ischemia, as well as their roles in post-ischemic hippocampus neurodegeneration. In recent years, multiple studies aimed to elucidate the post-ischemic processes in the development of hippocampus neurodegeneration. Their findings have revealed the dysregulation of genes for amyloid protein precursor, β-secretase, presenilin 1 and 2, tau protein, autophagy, mitophagy, and apoptosis identical in nature to Alzheimer's disease. Herein, we present the latest data showing that amyloid and tau protein associated with Alzheimer's disease and their genes play a key role in post-ischemic neurodegeneration of the hippocampus with subsequent development of dementia. Therefore, understanding the underlying process for the development of post-ischemic CA1 area neurodegeneration in the hippocampus in conjunction with Alzheimer's disease-related proteins and genes will provide the most important therapeutic development goals to date.
Collapse
|
17
|
M Passos Y, J do Amaral M, C Ferreira N, Macedo B, Chaves JAP, E de Oliveira V, P B Gomes M, L Silva J, Cordeiro Y. The interplay between a GC-rich oligonucleotide and copper ions on prion protein conformational and phase transitions. Int J Biol Macromol 2021; 173:34-43. [PMID: 33476618 DOI: 10.1016/j.ijbiomac.2021.01.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023]
Abstract
The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids. Using recombinant PrP, we investigate the effects of Cu(II) (at 6 M equivalents) and a previously described PrP-binding GC-rich DNA (equimolarly to protein) on PrP conformation, oligomerization, and phase transitions using a range of biophysical techniques. Raman spectroscopy data reveals the formation of the ternary complex. Microscopy suggests that phase separation is mainly driven by DNA, whereas Cu(II) has no influence. Our results show that DNA can be an adjuvant, leading to the structural conversion of PrP, even in the presence of an endogenous ligand, copper. These results provide new insights into the role of Cu(II) and NA on the phase separation, structural conversion, and aggregation of PrP, which are critical events leading to neurodegeneration.
Collapse
Affiliation(s)
- Yulli M Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Mariana J do Amaral
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Natalia C Ferreira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil; Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, MT, USA
| | - Bruno Macedo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Juliana A P Chaves
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Vanessa E de Oliveira
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rio das Ostras 28890-000, RJ, Brazil
| | - Mariana P B Gomes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil.
| |
Collapse
|