1
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
2
|
do Amaral MJ, Passos YM, Almeida MS, Pinheiro AS, Cordeiro Y. In Vitro Characterization of Protein:Nucleic Acid Liquid-Liquid Phase Separation by Microscopy Methods and Nanoparticle Tracking Analysis. Methods Mol Biol 2023; 2551:605-631. [PMID: 36310228 DOI: 10.1007/978-1-0716-2597-2_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Uncontrolled assembly/disassembly of physiologically formed liquid condensates is linked to irreversible aggregation. Hence, the quest for understanding protein-misfolding disease mechanism might lie in the studies of protein:nucleic acid coacervation. Several proteins with intrinsically disordered regions as well as nucleic acids undergo phase separation in the cellular context, and this process is key to physiological signaling and is related to pathologies. Phase separation is reproducible in vitro by mixing the target recombinant protein with specific nucleic acids at various stoichiometric ratios and then examined by microscopy and nanotracking methods presented herein. We describe protocols to qualitatively assess hallmarks of protein-rich condensates, characterize their structure using intrinsic and extrinsic dyes, quantify them, and analyze their morphology over time. Analysis by nanoparticle tracking provides information on the concentration and diameter of high-order protein oligomers formed in the presence of nucleic acid. Using the model protein (globular domain of recombinant murine PrP) and DNA aptamers (high-affinity oligonucleotides with 25 nucleotides in length), we provide examples of a systematic screening of liquid-liquid phase separation in vitro.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Yulli M Passos
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcius S Almeida
- Protein Advanced Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Badaczewska-Dawid AE, Uversky VN, Potoyan DA. BIAPSS: A Comprehensive Physicochemical Analyzer of Proteins Undergoing Liquid-Liquid Phase Separation. Int J Mol Sci 2022; 23:6204. [PMID: 35682883 PMCID: PMC9181037 DOI: 10.3390/ijms23116204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
The liquid-liquid phase separation (LLPS) of biomolecules is a phenomenon which is nowadays recognized as the driving force for the biogenesis of numerous functional membraneless organelles and cellular bodies. The interplay between the protein primary sequence and phase separation remains poorly understood, despite intensive research. To uncover the sequence-encoded signals of protein capable of undergoing LLPS, we developed a novel web platform named BIAPSS (Bioinformatics Analysis of LLPS Sequences). This web server provides on-the-fly analysis, visualization, and interpretation of the physicochemical and structural features for the superset of curated LLPS proteins.
Collapse
Affiliation(s)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Caruso IP, Dos Santos Almeida V, do Amaral MJ, de Andrade GC, de Araújo GR, de Araújo TS, de Azevedo JM, Barbosa GM, Bartkevihi L, Bezerra PR, Dos Santos Cabral KM, de Lourenço IO, Malizia-Motta CLF, de Luna Marques A, Mebus-Antunes NC, Neves-Martins TC, de Sá JM, Sanches K, Santana-Silva MC, Vasconcelos AA, da Silva Almeida M, de Amorim GC, Anobom CD, Da Poian AT, Gomes-Neto F, Pinheiro AS, Almeida FCL. Insights into the specificity for the interaction of the promiscuous SARS-CoV-2 nucleocapsid protein N-terminal domain with deoxyribonucleic acids. Int J Biol Macromol 2022; 203:466-480. [PMID: 35077748 PMCID: PMC8783401 DOI: 10.1016/j.ijbiomac.2022.01.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to β-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.
Collapse
Affiliation(s)
- Icaro Putinhon Caruso
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil.
| | - Vitor Dos Santos Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gabriela Rocha de Araújo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Talita Stelling de Araújo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Jéssica Moreira de Azevedo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Glauce Moreno Barbosa
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Leonardo Bartkevihi
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Peter Reis Bezerra
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Katia Maria Dos Santos Cabral
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Isabella Otênio de Lourenço
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Clara L F Malizia-Motta
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Aline de Luna Marques
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Nathane Cunha Mebus-Antunes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Thais Cristtina Neves-Martins
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Jéssica Maróstica de Sá
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Karoline Sanches
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcos Caique Santana-Silva
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Ariana Azevedo Vasconcelos
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcius da Silva Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gisele Cardoso de Amorim
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Cristiane Dinis Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
do Amaral MJ, Freire MHO, Almeida MS, Pinheiro AS, Cordeiro Y. Phase separation of the mammalian prion protein: physiological and pathological perspectives. J Neurochem 2022. [PMID: 35149997 DOI: 10.1111/jnc.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Abnormal phase transitions have been implicated in the occurrence of proteinopathies. Disordered proteins with nucleic acid binding ability drive the formation of reversible micron-sized condensates capable of controlling nucleic acid processing/transport. This mechanism, achieved via liquid-liquid phase separation (LLPS), underlies the formation of long-studied membraneless organelles (e.g., nucleolus) and various transient condensates formed by driver proteins. The prion protein (PrP) is not a classical nucleic acid-binding protein. However, it binds nucleic acids with high affinity, undergoes nucleocytoplasmic shuttling, contains a long intrinsically disordered region rich in glycines and evenly spaced aromatic residues, among other biochemical/biophysical properties of bona fide drivers of phase transitions. Because of this, our group and others have characterized LLPS of recombinant PrP. In vitro phase separation of PrP is modulated by nucleic acid aptamers, and, depending on the aptamer conformation, the liquid droplets evolve to solid-like species. Herein we discuss recent studies and previous evidence supporting PrP phase transitions. We focus on the central role of LLPS related to PrP physiology and pathology, with a special emphasis on the interaction of PrP with different ligands, such as proteins and nucleic acids, which can play a role in prion disease pathogenesis. Finally, we comment on therapeutic strategies directed at the nonfunctional phase separation that could potentially tackle prion diseases or other protein misfolding disorders.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Martens CR, Dorn LE, Kenney AD, Bansal SS, Yount JS, Accornero F. BEX1 is a critical determinant of viral myocarditis. PLoS Pathog 2022; 18:e1010342. [PMID: 35192678 PMCID: PMC8896894 DOI: 10.1371/journal.ppat.1010342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Viral infection of the heart is a common but underappreciated cause of heart failure. Viruses can cause direct cardiac damage by lysing infected cardiomyocytes. Inflammatory immune responses that limit viral replication can also indirectly cause damage during infection, making regulatory factors that fine-tune these responses particularly important. Identifying and understanding these factors that regulate cardiac immune responses during infection will be essential for developing targeted treatments for virus-associated heart failure. Our laboratory has discovered Brain Expressed X-linked protein 1 (BEX1) as a novel stress-regulated pro-inflammatory factor in the heart. Here we report that BEX1 plays a cardioprotective role in the heart during viral infection. Specifically, we adopted genetic gain- and loss-of-function strategies to modulate BEX1 expression in the heart in the context of coxsackievirus B3 (CVB3)-induced cardiomyopathy and found that BEX1 limits viral replication in cardiomyocytes. Interestingly, despite the greater viral load observed in mice lacking BEX1, inflammatory immune cell recruitment in the mouse heart was profoundly impaired in the absence of BEX1. Overall, the absence of BEX1 accelerated CVB3-driven heart failure and pathologic heart remodeling. This result suggests that limiting inflammatory cell recruitment has detrimental consequences for the heart during viral infections. Conversely, transgenic mice overexpressing BEX1 in cardiomyocytes revealed the efficacy of BEX1 for counteracting viral replication in the heart in vivo. We also found that BEX1 retains its antiviral role in isolated cells. Indeed, BEX1 was necessary and sufficient to counteract viral replication in both isolated primary cardiomyocytes and mouse embryonic fibroblasts suggesting a broader applicability of BEX1 as antiviral agent that extended to viruses other than CVB3, including Influenza A and Sendai virus. Mechanistically, BEX1 regulated interferon beta (IFN-β) expression in infected cells. Overall, our study suggests a multifaceted role of BEX1 in the cardiac antiviral immune response.
Collapse
Affiliation(s)
- Colton R. Martens
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Lisa E. Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Shyam S. Bansal
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Zhang J, Ghadermarzi S, Katuwawala A, Kurgan L. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences. Brief Bioinform 2021; 22:6355416. [PMID: 34415020 DOI: 10.1093/bib/bbab336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Efforts to elucidate protein-DNA interactions at the molecular level rely in part on accurate predictions of DNA-binding residues in protein sequences. While there are over a dozen computational predictors of the DNA-binding residues, they are DNA-type agnostic and significantly cross-predict residues that interact with other ligands as DNA binding. We leverage a custom-designed machine learning architecture to introduce DNAgenie, first-of-its-kind predictor of residues that interact with A-DNA, B-DNA and single-stranded DNA. DNAgenie uses a comprehensive physiochemical profile extracted from an input protein sequence and implements a two-step refinement process to provide accurate predictions and to minimize the cross-predictions. Comparative tests on an independent test dataset demonstrate that DNAgenie outperforms the current methods that we adapt to predict residue-level interactions with the three DNA types. Further analysis finds that the use of the second (refinement) step leads to a substantial reduction in the cross predictions. Empirical tests show that DNAgenie's outputs that are converted to coarse-grained protein-level predictions compare favorably against recent tools that predict which DNA-binding proteins interact with double-stranded versus single-stranded DNAs. Moreover, predictions from the sequences of the whole human proteome reveal that the results produced by DNAgenie substantially overlap with the known DNA-binding proteins while also including promising leads for several hundred previously unknown putative DNA binders. These results suggest that DNAgenie is a valuable tool for the sequence-based characterization of protein functions. The DNAgenie's webserver is available at http://biomine.cs.vcu.edu/servers/DNAgenie/.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology at the Xinyang Normal University, No.237, Nanhu Road, Xinyang 464000, Henan Province, P.R. China
| | - Sina Ghadermarzi
- Department of Computer Science at the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| | - Akila Katuwawala
- Department of Computer Science from the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science at the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| |
Collapse
|
8
|
do Amaral MJ, de Andrade Rosa I, Andrade SA, Fang X, Andrade LR, Costa ML, Mermelstein C. The perinuclear region concentrates disordered proteins with predicted phase separation distributed in a 3D network of cytoskeletal filaments and organelles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119161. [PMID: 34655689 DOI: 10.1016/j.bbamcr.2021.119161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Membraneless organelles have emerged during the evolution of eukaryotic cells as intracellular domains in which multiple proteins organize into complex structures to perform specialized functions without the need of a lipid bilayer compartment. Here we describe the perinuclear space of eukaryotic cells as a highly organized network of cytoskeletal filaments that facilitates assembly of biomolecular condensates. Using bioinformatic analyses, we show that the perinuclear proteome is enriched in intrinsic disorder with several proteins predicted to undergo liquid-liquid phase separation. We also analyze immunofluorescence and transmission electron microscopy images showing the association between the nucleus and other organelles, such as mitochondria and lysosomes, or the labeling of specific proteins within the perinuclear region of cells. Altogether our data support the existence of a perinuclear dense sub-micron region formed by a well-organized three-dimensional network of structural and signaling proteins, including several proteins containing intrinsically disordered regions with phase behavior. This network of filamentous cytoskeletal proteins extends a few micrometers from the nucleus, contributes to local crowding, and organizes the movement of molecular complexes within the perinuclear space. Our findings take a key step towards understanding how membraneless regions within eukaryotic cells can serve as hubs for biomolecular condensates assembly, in particular the perinuclear space. Finally, evaluation of the disease context of the perinuclear proteins revealed that alterations in their expression can lead to several pathological conditions, and neurological disorders and cancer are among the most frequent.
Collapse
Affiliation(s)
| | - Ivone de Andrade Rosa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Sarah Azevedo Andrade
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Xi Fang
- Department of Medicine, University of California, La Jolla, CA, USA
| | - Leonardo Rodrigues Andrade
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil; Salk Institute for Biological Studies, Waitt Advanced Biophotonics Core, La Jolla, CA, USA
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
10
|
M Passos Y, J do Amaral M, C Ferreira N, Macedo B, Chaves JAP, E de Oliveira V, P B Gomes M, L Silva J, Cordeiro Y. The interplay between a GC-rich oligonucleotide and copper ions on prion protein conformational and phase transitions. Int J Biol Macromol 2021; 173:34-43. [PMID: 33476618 DOI: 10.1016/j.ijbiomac.2021.01.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023]
Abstract
The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids. Using recombinant PrP, we investigate the effects of Cu(II) (at 6 M equivalents) and a previously described PrP-binding GC-rich DNA (equimolarly to protein) on PrP conformation, oligomerization, and phase transitions using a range of biophysical techniques. Raman spectroscopy data reveals the formation of the ternary complex. Microscopy suggests that phase separation is mainly driven by DNA, whereas Cu(II) has no influence. Our results show that DNA can be an adjuvant, leading to the structural conversion of PrP, even in the presence of an endogenous ligand, copper. These results provide new insights into the role of Cu(II) and NA on the phase separation, structural conversion, and aggregation of PrP, which are critical events leading to neurodegeneration.
Collapse
Affiliation(s)
- Yulli M Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Mariana J do Amaral
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Natalia C Ferreira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil; Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, MT, USA
| | - Bruno Macedo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Juliana A P Chaves
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Vanessa E de Oliveira
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rio das Ostras 28890-000, RJ, Brazil
| | - Mariana P B Gomes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil.
| |
Collapse
|
11
|
Navas-Pérez E, Vicente-García C, Mirra S, Burguera D, Fernàndez-Castillo N, Ferrán JL, López-Mayorga M, Alaiz-Noya M, Suárez-Pereira I, Antón-Galindo E, Ulloa F, Herrera-Úbeda C, Cuscó P, Falcón-Moya R, Rodríguez-Moreno A, D'Aniello S, Cormand B, Marfany G, Soriano E, Carrión ÁM, Carvajal JJ, Garcia-Fernàndez J. Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biol 2020; 21:267. [PMID: 33100228 PMCID: PMC7586669 DOI: 10.1186/s13059-020-02172-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the most unusual sources of phylogenetically restricted genes is the molecular domestication of transposable elements into a host genome as functional genes. Although these kinds of events are sometimes at the core of key macroevolutionary changes, their origin and organismal function are generally poorly understood. RESULTS Here, we identify several previously unreported transposable element domestication events in the human and mouse genomes. Among them, we find a remarkable molecular domestication that gave rise to a multigenic family in placental mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within diverse signaling pathways, have been associated with neurological features of human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal genes display neural-enriched patterns and are differentially expressed in human neurological disorders, such as autism and schizophrenia. Two different murine alleles of the cluster member Bex3 display morphological and physiopathological brain modifications, such as reduced interneuron number and hippocampal electrophysiological imbalance, alterations that translate into distinct behavioral phenotypes. CONCLUSIONS We provide an in-depth understanding of the emergence of a gene cluster that originated by transposon domestication and gene duplication at the origin of placental mammals, an evolutionary process that transformed a non-functional transposon sequence into novel components of the eutherian genome. These genes were integrated into existing signaling pathways involved in the development, maintenance, and function of the CNS in eutherians. At least one of its members, Bex3, is relevant for higher brain functions in placental mammals and may be involved in human neurological disorders.
Collapse
Affiliation(s)
- Enrique Navas-Pérez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Demian Burguera
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Noèlia Fernàndez-Castillo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - José Luis Ferrán
- Department of Human Anatomy, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, 30120, Murcia, Spain
| | - Macarena López-Mayorga
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Marta Alaiz-Noya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - Irene Suárez-Pereira
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Neuropsychopharmacology and psychobiology research group, UCA, INiBICA, Cádiz, Spain
| | - Ester Antón-Galindo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Pol Cuscó
- Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Rafael Falcón-Moya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Ángel M Carrión
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
12
|
Wang K, Hu G, Wu Z, Su H, Yang J, Kurgan L. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. Int J Mol Sci 2020; 21:E6879. [PMID: 32961749 PMCID: PMC7554811 DOI: 10.3390/ijms21186879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
With close to 30 sequence-based predictors of RNA-binding residues (RBRs), this comparative survey aims to help with understanding and selection of the appropriate tools. We discuss past reviews on this topic, survey a comprehensive collection of predictors, and comparatively assess six representative methods. We provide a novel and well-designed benchmark dataset and we are the first to report and compare protein-level and datasets-level results, and to contextualize performance to specific types of RNAs. The methods considered here are well-cited and rely on machine learning algorithms on occasion combined with homology-based prediction. Empirical tests reveal that they provide relatively accurate predictions. Virtually all methods perform well for the proteins that interact with rRNAs, some generate accurate predictions for mRNAs, snRNA, SRP and IRES, while proteins that bind tRNAs are predicted poorly. Moreover, except for DRNApred, they confuse DNA and RNA-binding residues. None of the six methods consistently outperforms the others when tested on individual proteins. This variable and complementary protein-level performance suggests that users should not rely on applying just the single best dataset-level predictor. We recommend that future work should focus on the development of approaches that facilitate protein-level selection of accurate predictors and the consensus-based prediction of RBRs.
Collapse
Affiliation(s)
- Kui Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China;
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Hong Su
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Jianyi Yang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|