1
|
Chen F, Wang J, Ma J, Song L, Yan H, Wang F, Yang Z, Li F. Novel DNA Biosensing Platform for Detecting HIV Integrase for Highly Sensitive and Quantitative HIV Detection, Diagnosis, and Therapeutic Monitoring. ACS OMEGA 2024; 9:25042-25053. [PMID: 38882085 PMCID: PMC11170629 DOI: 10.1021/acsomega.4c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
Straightforward, sensitive, and specific human immunodeficiency virus (HIV) assays are urgently needed. The creation of a point-of-care (POC) device for decentralized diagnostics has the potential to significantly reduce the time to treatment, especially for infectious diseases. Notably, however, many POC solutions proposed to date fall short of meeting the ASSURED guidelines, which are crucial for effective deployment in the field. Herein, we developed a DNA biosensor platform for the specific and quantitative detection of HIV. The platform contains a rolling circle amplification (RCA)-based DNA biosensor and a portable fluorescence detector, in which HIV-encoded integrase (IN) enzyme activity is used as a biomarker to achieve HIV-specific detection. The cleavage and integration reaction of IN on the sensor surface and RCA are combined in this detection platform to perform detection signal cascade amplification, ultimately achieving a detection limit of 0.125 CFU/μL of HIV particles. Moreover, the DNA sensor system exhibited high sensitivity and accuracy for detecting HIV in clinical samples, suggesting that it has potential for application in clinical settings to detect retroviruses other than HIV. In addition, quantitative detection based on this biosensing platform was significantly correlated with the CD4+ lymphocytes count, which can provide guidance for antiretroviral therapy and which affects long-term death risk assessment in HIV patients. Therefore, this DNA biosensing platform based on IN activity is expected to be useful for rapid HIV testing, diagnosis, and treatment monitoring, enabling the development of new POC diagnostic tests and will thus be highly valuable for developing HIV prevention strategies and effective treatments.
Collapse
Affiliation(s)
- Fuming Chen
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- GuangDong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
| | - Jing Wang
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- GuangDong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
| | - Jie Ma
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- GuangDong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
| | - Li Song
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- GuangDong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
| | - Haojie Yan
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- GuangDong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen 518020, China
| | - Zhengrong Yang
- Shenzhen Pingshan Center for Disease Control and Prevention, Shenzhen 518118, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- GuangDong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Tay DWP, Tan LL, Heng E, Zulkarnain N, Ching KC, Wibowo M, Chin EJ, Tan ZYQ, Leong CY, Ng VWP, Yang LK, Seow DCS, Lim YW, Koh W, Koduru L, Kanagasundaram Y, Ng SB, Lim YH, Wong FT. Exploring a general multi-pronged activation strategy for natural product discovery in Actinomycetes. Commun Biol 2024; 7:50. [PMID: 38184720 PMCID: PMC10771470 DOI: 10.1038/s42003-023-05648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024] Open
Abstract
Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria. Across 54 actinobacterial strains, our approach yielded 124 distinct activator-strain combinations which consistently outperform wild type. Our approach expands accessible metabolite space by nearly two-fold and increases selected metabolite yields by up to >200-fold, enabling discovery of Gram-negative bioactivity in tetramic acid analogs. We envision these findings as a gateway towards a more streamlined, accelerated, and scalable strategy to unlock the full potential of Nature's chemical repertoire.
Collapse
Grants
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- C233017006 Agency for Science, Technology and Research (A*STAR)
- C211917003 Agency for Science, Technology and Research (A*STAR)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- C233017006 Agency for Science, Technology and Research (A*STAR)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore)
Collapse
Affiliation(s)
- Dillon W P Tay
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Lee Ling Tan
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadiah Zulkarnain
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Kuan Chieh Ching
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Mario Wibowo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Elaine Jinfeng Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Zann Yi Qi Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Veronica Wee Pin Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Deborah C S Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Yi Wee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Winston Koh
- Bioinformatics Institute (BII), Agency of Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| | - Fong Tian Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore.
| |
Collapse
|
3
|
Wang Y, Zhao Y, Li Y, Zhang K, Fan Y, Li B, Su W, Li S. piggyBac-mediated genomic integration of linear dsDNA-based library for deep mutational scanning in mammalian cells. Cell Mol Life Sci 2023; 80:321. [PMID: 37815732 PMCID: PMC11071730 DOI: 10.1007/s00018-023-04976-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Deep mutational scanning (DMS) makes it possible to perform massively parallel quantification of the relationship between genetic variants and phenotypes of interest. However, the difficulties in introducing large variant libraries into mammalian cells greatly hinder DMS under physiological states. Here, we developed two novel strategies for DMS library construction in mammalian cells, namely 'piggyBac-in vitro ligation' and 'piggyBac-in vitro ligation-PCR'. For the first strategy, we took the 'in vitro ligation' approach to prepare high-diversity linear dsDNAs, and integrate them into the mammalian genome with a piggyBac transposon system. For the second strategy, we further added a PCR step using the in vitro ligation dsDNAs as templates, for the construction of high-content genome-integrated libraries via large-scale transfection. Both strategies could successfully establish genome-integrated EGFP-chromophore-randomized libraries in HEK293T cells and enrich the green fluorescence-chromophore amino-acid sequences. And we further identified a novel transcriptional activator peptide with the 'piggyBac-in vitro ligation-PCR' strategy. Our novel strategies greatly facilitate the construction of large variant DMS library in mammalian cells, and may have great application potential in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Fan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
4
|
Durrant MG, Fanton A, Tycko J, Hinks M, Chandrasekaran SS, Perry NT, Schaepe J, Du PP, Lotfy P, Bassik MC, Bintu L, Bhatt AS, Hsu PD. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat Biotechnol 2023; 41:488-499. [PMID: 36217031 PMCID: PMC10083194 DOI: 10.1038/s41587-022-01494-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Large serine recombinases (LSRs) are DNA integrases that facilitate the site-specific integration of mobile genetic elements into bacterial genomes. Only a few LSRs, such as Bxb1 and PhiC31, have been characterized to date, with limited efficiency as tools for DNA integration in human cells. In this study, we developed a computational approach to identify thousands of LSRs and their DNA attachment sites, expanding known LSR diversity by >100-fold and enabling the prediction of their insertion site specificities. We tested their recombination activity in human cells, classifying them as landing pad, genome-targeting or multi-targeting LSRs. Overall, we achieved up to seven-fold higher recombination than Bxb1 and genome integration efficiencies of 40-75% with cargo sizes over 7 kb. We also demonstrate virus-free, direct integration of plasmid or amplicon libraries for improved functional genomics applications. This systematic discovery of recombinases directly from microbial sequencing data provides a resource of over 60 LSRs experimentally characterized in human cells for large-payload genome insertion without exposed DNA double-stranded breaks.
Collapse
Affiliation(s)
- Matthew G Durrant
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alison Fanton
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michaela Hinks
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sita S Chandrasekaran
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Nicholas T Perry
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Julia Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter Lotfy
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA.
| | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|