1
|
Sharrouf K, Schlosser C, Mildenberger S, Fluhrer R, Hoeppner S. In vitro cleavage of tumor necrosis factor α (TNFα) by Signal-Peptide-Peptidase-like 2b (SPPL2b) resembles mechanistic principles observed in the cellular context. Chem Biol Interact 2024; 395:111006. [PMID: 38636792 DOI: 10.1016/j.cbi.2024.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Members of the Signal Peptide-Peptidase (SPP) and Signal Peptide-Peptidase-like (SPPL) family are intramembrane aspartyl-proteases like their well-studied homologs, the presenilins, which comprise the catalytically active subunit within the γ-secretase complex. The lack of in vitro cleavage assays for SPPL proteases limited their biochemical characterization as well as substrate identification and validation. So far, SPPL proteases have been analyzed exclusively in intact cells or membranes, restricting mechanistic analysis to co-expression of enzyme and substrate variants colocalizing in the same subcellular compartments. We describe the details of developing an in vitro cleavage assay for SPPL2b and its model substrate TNFα and analyzed the influence of phospholipids, detergent supplements, and cholesterol on the SPPL2b in vitro activity. SPPL2b in vitro activity resembles mechanistic principles that have been observed in a cellular context, such as cleavage sites and consecutive turnover of the TNFα transmembrane domain. The novel in vitro cleavage assay is functional with separately isolated protease and substrate and amenable to a high throughput plate-based readout overcoming previous limitations and providing the basis for studying enzyme kinetics, catalytic activity, substrate recognition, and the characteristics of small molecule inhibitors. As a proof of concept, we present the first biochemical in vitro characterization of the SPPL2a and SPPL2b specific small molecule inhibitor SPL-707.
Collapse
Affiliation(s)
- Kinda Sharrouf
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany
| | - Sandra Mildenberger
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany; Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55099, Mainz, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany; University of Augsburg, Center for Interdisciplinary Health Research, 86135, Augsburg, Germany
| | - Sabine Hoeppner
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany.
| |
Collapse
|
2
|
Tasdemiroglu Y, Council-Troche M, Chen M, Ledford B, Norris RA, Poelzing S, Gourdie RG, He JQ. Degradation of the α-Carboxyl Terminus 11 Peptide: In Vivo and Ex Vivo Impacts of Time, Temperature, Inhibitors, and Gender in Rat. ACS Pharmacol Transl Sci 2024; 7:1624-1636. [PMID: 38751644 PMCID: PMC11091968 DOI: 10.1021/acsptsci.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
In previous research, a synthetic α-carboxyl terminus 1 (αCT1) peptide derived from connexin 43 (Cx43) and its variant (αCT11) showed beneficial effects in an ex vivo ischemia-reperfusion (I/R) heart injury model in mouse. In an in vivo mouse model of cryo-induced ventricular injury, αCT1 released from adhesive cardiac patches reduced Cx43 remodeling and arrhythmias, as well as maintained cardiac conduction. Whether intravenous injection of αCT1 or αCT11 produces similar outcomes has not been investigated. Given the possibility of peptide degradation in plasma, this study utilized in vivo I/R cardiac injury and ex vivo blood plasma models to examine factors that may limit the therapeutic potential of peptide therapeutics in vivo. Following tail vein administration of αCT11 (100 μM) in blood, no effect on I/R infarct size was observed in adult rat hearts on day 1 (D1) and day 28 (D28) after injury (p > 0.05). There was also no difference in the echocardiographic ejection fraction (EF%) between the control and the αCT11 groups (p > 0.05). Surprisingly, αCT11 in blood plasma collected from these rats was undetectable within ∼10 min after tail vein injection. To investigate factors that may modulate αCT11 degradation in blood, αCT11 was directly added to blood plasma isolated from normal rats without I/R and peptide levels were measured under different experimental conditions. Consistent with in vivo observations, significant αCT11 degradation occurred in plasma within 10 min at 22 and 37 °C and was nearly undetectable by 30 min. These responses were reduced by the addition of protease/phosphatase (PTase/PPTase) inhibitors to the isolated plasma. Interestingly, no significant differences in αCT11 degradation in plasma were noted between male and female rats. We conclude that fast degradation of αCT11 is likely the reason that no beneficial effects were observed in the in vivo I/R model and inhibition or shielding from PTase/PPTase activity may be a strategy that will assist with the viability of peptide therapeutics.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - McAlister Council-Troche
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Miao Chen
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Benjamin Ledford
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Russell A. Norris
- Department
of Medicine, Medical University of South
Carolina, Charleston, South Carolina 29425, United States
| | - Steven Poelzing
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Robert G. Gourdie
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Jia-Qiang He
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Chen Y, Li M, Yan M, Chen Y, Saeed M, Ni Z, Fang Z, Chen H. Bacillus subtilis: current and future modification strategies as a protein secreting factory. World J Microbiol Biotechnol 2024; 40:195. [PMID: 38722426 DOI: 10.1007/s11274-024-03997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.
Collapse
Affiliation(s)
- Yanzhen Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Miaomiao Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yong Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
4
|
Maccioni R, Travisan C, Badman J, Zerial S, Wagener A, Andrade-Talavera Y, Picciau F, Grassi C, Chen G, Lemoine L, Fisahn A, Jiang R, Fluhrer R, Mentrup T, Schröder B, Nilsson P, Tambaro S. Signal peptide peptidase-like 2b modulates the amyloidogenic pathway and exhibits an Aβ-dependent expression in Alzheimer's disease. Prog Neurobiol 2024; 235:102585. [PMID: 38367747 DOI: 10.1016/j.pneurobio.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder driven by abnormal amyloid β-peptide (Aβ) levels. In this study, we investigated the role of presenilin-like signal peptide peptidase-like 2b (SPPL2b) in AD pathophysiology and its potential as a druggable target within the Aβ cascade. Exogenous Aβ42 influenced SPPL2b expression in human cell lines and acute mouse brain slices. SPPL2b and its AD-related substrate BRI2 were evaluated in the brains of AppNL-G-F knock-in AD mice and human postmortem AD brains. An early high cortical expression of SPPL2b was observed, followed by a downregulation in late AD pathology in AppNL-G-F mice, correlating with synaptic loss. To understand the consequences of pathophysiological SPPL2b dysregulation, we found that SPPL2b overexpression significantly increased APP cleavage, while genetic deletion reduced APP cleavage and Aβ production. Notably, postmortem AD brains showed higher levels of SPPL2b's BRI2 substrate compared to healthy control samples. These results strongly support the involvement of SPPL2b in AD pathology. The early Aβ-induced upregulation of SPPL2b may enhance Aβ production in a vicious cycle, further aggravating Aβ pathology. Therefore, SPPL2b emerges as a potential anti-Aβ drug target.
Collapse
Affiliation(s)
- Riccardo Maccioni
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States.
| | - Caterina Travisan
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; VIB-KU Leuven Center for Brain and Disease Research, Leuven 3001, Belgium.
| | - Jack Badman
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Stefania Zerial
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of life science, University of Trieste, Trieste 34127, Italy.
| | - Annika Wagener
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, 69117 Germany.
| | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Federico Picciau
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Biomedical Sciences, Cytomorphology, University of Cagliari, Cagliari 09042, Italy.
| | - Caterina Grassi
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - Laetitia Lemoine
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159, Germany.
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| |
Collapse
|
5
|
Höppner S, Schröder B, Fluhrer R. Structure and function of SPP/SPPL proteases: insights from biochemical evidence and predictive modeling. FEBS J 2023; 290:5456-5474. [PMID: 37786993 DOI: 10.1111/febs.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
More than 20 years ago, signal peptide peptidase (SPP) and its homologues, the signal peptide peptidase-like (SPPL) proteases have been identified based on their sequence similarity to presenilins, a related family of intramembrane aspartyl proteases. Other than those for the presenilins, no high-resolution structures for the SPP/SPPL proteases are available. Despite this limitation, over the years bioinformatical and biochemical data have accumulated, which altogether have provided a picture of the overall structure and topology of these proteases, their localization in the cell, the process of substrate recognition, their cleavage mechanism, and their function. Recently, the artificial intelligence-based structure prediction tool AlphaFold has added high-confidence models of the expected fold of SPP/SPPL proteases. In this review, we summarize known structural aspects of the SPP/SPPL family as well as their substrates. Of particular interest are the emerging substrate recognition and catalytic mechanisms that might lead to the prediction and identification of more potential substrates and deeper insight into physiological and pathophysiological roles of proteolysis.
Collapse
Affiliation(s)
- Sabine Höppner
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| |
Collapse
|
6
|
Tipper DJ, Harley CA. Spf1 and Ste24: quality controllers of transmembrane protein topology in the eukaryotic cell. Front Cell Dev Biol 2023; 11:1220441. [PMID: 37635876 PMCID: PMC10456885 DOI: 10.3389/fcell.2023.1220441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
DNA replication, transcription, and translation in eukaryotic cells occur with decreasing but still high fidelity. In contrast, for the estimated 33% of the human proteome that is inserted as transmembrane (TM) proteins, insertion with a non-functional inverted topology is frequent. Correct topology is essential for function and trafficking to appropriate cellular compartments and is controlled principally by responses to charged residues within 15 residues of the inserted TM domain (TMD); the flank with the higher positive charge remains in the cytosol (inside), following the positive inside rule (PIR). Yeast (Saccharomyces cerevisiae) mutants that increase insertion contrary to the PIR were selected. Mutants with strong phenotypes were found only in SPF1 and STE24 (human cell orthologs are ATP13A1 and ZMPSte24) with, at the time, no known relevant functions. Spf1/Atp13A1 is now known to dislocate to the cytosol TM proteins inserted contrary to the PIR, allowing energy-conserving reinsertion. We hypothesize that Spf1 and Ste24 both recognize the short, positively charged ER luminal peptides of TM proteins inserted contrary to the PIR, accepting these peptides into their large membrane-spanning, water-filled cavities through interaction with their many interior surface negative charges. While entry was demonstrated for Spf1, no published evidence directly demonstrates substrate entry to the Ste24 cavity, internal access to its zinc metalloprotease (ZMP) site, or active withdrawal of fragments, which may be essential for function. Spf1 and Ste24 comprise a PIR quality control system that is conserved in all eukaryotes and presumably evolved in prokaryotic progenitors as they gained differentiated membrane functions. About 75% of the PIR is imposed by this quality control system, which joins the UPR, ERAD, and autophagy (ER-phagy) in coordinated, overlapping quality control of ER protein function.
Collapse
Affiliation(s)
- Donald J. Tipper
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Carol A. Harley
- i3S-Instituto de Investigação e Inovação em Saude, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Shedding of N-acetylglucosaminyltransferase-V is regulated by maturity of cellular N-glycan. Commun Biol 2022; 5:743. [PMID: 35915223 PMCID: PMC9343384 DOI: 10.1038/s42003-022-03697-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The number of N-glycan branches on glycoproteins is closely related to the development and aggravation of various diseases. Dysregulated formation of the branch produced by N-acetylglucosaminyltransferase-V (GnT-V, also called as MGAT5) promotes cancer growth and malignancy. However, it is largely unknown how the activity of GnT-V in cells is regulated. Here, we discover that the activity of GnT-V in cells is selectively upregulated by changing cellular N-glycans from mature to immature forms. Our glycomic analysis further shows that loss of terminal modifications of N-glycans resulted in an increase in the amount of the GnT-V-produced branch. Mechanistically, shedding (cleavage and extracellular secretion) of GnT-V mediated by signal peptide peptidase-like 3 (SPPL3) protease is greatly inhibited by blocking maturation of cellular N-glycans, resulting in an increased level of GnT-V protein in cells. Alteration of cellular N-glycans hardly impairs expression or localization of SPPL3; instead, SPPL3-mediated shedding of GnT-V is shown to be regulated by N-glycans on GnT-V, suggesting that the level of GnT-V cleavage is regulated by its own N-glycan structures. These findings shed light on a mechanism of secretion-based regulation of GnT-V activity. Cleavage of the glycan-branching enzyme N-acetylglucosaminyltransferase-V (GnT-V) by signal peptide peptidase-like 3 (SPPL3) protease and extracellular secretion of active glycan GnT-V depend on GnT-V’s own glycosylation state.
Collapse
|
8
|
McKenna MJ, Adams BM, Chu V, Paulo JA, Shao S. ATP13A1 prevents ERAD of folding-competent mislocalized and misoriented proteins. Mol Cell 2022; 82:4277-4289.e10. [PMID: 36283413 PMCID: PMC9675726 DOI: 10.1016/j.molcel.2022.09.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Benjamin M Adams
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Vincent Chu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
9
|
Sabnis RW. Diazepinone Compounds as Sppl2a Inhibitors for Treating Autoimmune Diseases and Lymphomas. ACS Med Chem Lett 2022; 13:881-882. [DOI: 10.1021/acsmedchemlett.2c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 West Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
10
|
De-Simone SG, Napoleão-Pêgo P, Gonçalves PS, Lechuga GC, Mandonado A, Graeff-Teixeira C, Provance DW. Angiostrongilus cantonensis an Atypical Presenilin: Epitope Mapping, Characterization, and Development of an ELISA Peptide Assay for Specific Diagnostic of Angiostrongyliasis. MEMBRANES 2022; 12:membranes12020108. [PMID: 35207030 PMCID: PMC8878667 DOI: 10.3390/membranes12020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/10/2022]
Abstract
Background: Angiostrongyliasis, the leading cause universal of eosinophilic meningitis, is an emergent disease due to Angiostrongylus cantonensis (rat lungworm) larvae, transmitted accidentally to humans. The diagnosis of human angiostrongyliasis is based on epidemiologic characteristics, clinical symptoms, medical history, and laboratory findings, particularly hypereosinophilia in blood and cerebrospinal fluid. Thus, the diagnosis is difficult and often confused with those produced by other parasitic diseases. Therefore, the development of a fast and specific diagnostic test for angiostrongyliasis is a challenge mainly due to the lack of specificity of the described tests, and therefore, the characterization of a new target is required. Material and Methods: Using bioinformatics tools, the putative presenilin (PS) protein C7BVX5-1 was characterized structurally and phylogenetically. A peptide microarray approach was employed to identify single and specific epitopes, and tetrameric epitope peptides were synthesized to evaluate their performance in an ELISA-peptide assay. Results: The data showed that the A. cantonensis PS protein presents nine transmembrane domains, the catalytic aspartyl domain [(XD (aa 241) and GLGD (aa 332–335)], between TM6 and TM7 and the absence of the PALP and other characteristics domains of the class A22 and homologous presenilin (PSH). These individualities make it an atypical sub-branch of the PS family, located in a separate subgroup along with the enzyme Haemogonchus contournus and separated from other worm subclasses. Twelve B-linear epitopes were identified by microarray of peptides and validated by ELISA using infected rat sera. In addition, their diagnostic performance was demonstrated by an ELISA-MAP4 peptide. Conclusions: Our data show that the putative AgPS is an atypical multi-pass transmembrane protein and indicate that the protein is an excellent immunological target with two (PsAg3 and PsAg9) A. costarisencis cross-reactive epitopes and eight (PsAg1, PsAg2, PsAg6, PsAg7, PsAg8, PsAg10, PsAg11, PsAg12) apparent unique A. cantonensis epitopes. These epitopes could be used in engineered receptacle proteins to develop a specific immunological diagnostic assay for angiostrongyliasis caused by A. cantonensis.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24220-900, RJ, Brazil
- Correspondence:
| | - Paloma Napoleão-Pêgo
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| | - Priscila S. Gonçalves
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24220-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| | - Arnaldo Mandonado
- Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Carlos Graeff-Teixeira
- Infectious Diseases Unit, Department of Pathology, Federal University of Espirito Santo, Vitória 29075-910, ES, Brazil;
| | - David W. Provance
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| |
Collapse
|
11
|
Dederer V, Lemberg MK. Transmembrane dislocases: a second chance for protein targeting. Trends Cell Biol 2021; 31:898-911. [PMID: 34147299 DOI: 10.1016/j.tcb.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022]
Abstract
Precise distribution of proteins is essential to sustain the viability of cells. A complex network of protein synthesis and targeting factors cooperate with protein quality control systems to ensure protein homeostasis. Defective proteins are inevitably degraded by the ubiquitin-proteasome system and lysosomes. However, due to overlapping targeting information and limited targeting fidelity, certain proteins become mislocalized. In this review, we present the idea that transmembrane dislocases recognize and remove mislocalized membrane proteins from cellular organelles. This enables other targeting attempts and prevents degradation of mislocalized but otherwise functional proteins. These transmembrane dislocases can be found in the outer mitochondrial membrane (OMM) and endoplasmic reticulum (ER). We highlight common principles regarding client recognition and outline open questions in our understanding of transmembrane dislocases.
Collapse
Affiliation(s)
- Verena Dederer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Current address: Institute for Pharmaceutical Biology and Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
12
|
Li W, Bishop RE, Mancia F. Integral Membrane Enzymes (2020). J Mol Biol 2020; 432:4943-4945. [PMID: 32739463 DOI: 10.1016/j.jmb.2020.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Russell E Bishop
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|