1
|
Bao C, Gao Q, Xiang H, Shen Y, Chen Q, Gao Q, Cao Y, Zhang M, He W, Mao L. Human endogenous retroviruses and exogenous viral infections. Front Cell Infect Microbiol 2024; 14:1439292. [PMID: 39397863 PMCID: PMC11466896 DOI: 10.3389/fcimb.2024.1439292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
The human genome harbors many endogenous retroviral elements, known as human endogenous retroviruses (HERVs), which have been integrated into the genome during evolution due to infections by exogenous retroviruses. Accounting for up to 8% of the human genome, HERVs are tightly regulated by the host and are implicated in various physiological and pathological processes. Aberrant expression of HERVs has been observed in numerous studies on exogenous viral infections. In this review, we focus on elucidating the potential roles of HERVs during various exogenous viral infections and further discuss their implications in antiviral immunity.
Collapse
Affiliation(s)
- Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuxuan Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuanfei Cao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Mengyu Zhang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Wenyuan He
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
2
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol 2024; 25:212-222. [PMID: 37872387 DOI: 10.1038/s41580-023-00674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Mantovani F, Kitsou K, Magiorkinis G. HERVs: Expression Control Mechanisms and Interactions in Diseases and Human Immunodeficiency Virus Infection. Genes (Basel) 2024; 15:192. [PMID: 38397182 PMCID: PMC10888493 DOI: 10.3390/genes15020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the result of retroviral infections acquired millions of years ago; nowadays, they compose around 8% of human DNA. Multiple mechanisms have been employed for endogenous retroviral deactivation, rendering replication and retrotransposition defective, while some of them have been co-opted to serve host evolutionary advantages. A pleiad of mechanisms retains the delicate balance of HERV expression in modern humans. Thus, epigenetic modifications, such as DNA and histone methylation, acetylation, deamination, chromatin remodeling, and even post-transcriptional control are recruited. In this review, we aim to summarize the main HERV silencing pathways, revisit paradigms of human disease with a HERV component, and emphasize the human immunodeficiency virus (HIV) and HERV interactions during HIV infection.
Collapse
Affiliation(s)
| | | | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (F.M.); (K.K.)
| |
Collapse
|
5
|
Abstract
Recent advances in the study of virus-cell interactions have improved our understanding of how viruses that replicate their genomes in the nucleus (e.g., retroviruses, hepadnaviruses, herpesviruses, and a subset of RNA viruses) hijack cellular pathways to export these genomes to the cytoplasm where they access virion egress pathways. These findings shed light on novel aspects of viral life cycles relevant to the development of new antiviral strategies and can yield new tractable, virus-based tools for exposing additional secrets of the cell. The goal of this review is to summarize defined and emerging modes of virus-host interactions that drive the transit of viral genomes out of the nucleus across the nuclear envelope barrier, with an emphasis on retroviruses that are most extensively studied. In this context, we prioritize discussion of recent progress in understanding the trafficking and function of the human immunodeficiency virus type 1 Rev protein, exemplifying a relatively refined example of stepwise, cooperativity-driven viral subversion of multi-subunit host transport receptor complexes.
Collapse
Affiliation(s)
- Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Mantovani F, Kitsou K, Paraskevis D, Lagiou P, Magiorkinis G. The interaction of human immunodeficiency virus-1 and human endogenous retroviruses in patients (primary cell cultures) and cell line models. Microbiol Spectr 2023; 11:e0137923. [PMID: 37811936 PMCID: PMC10715072 DOI: 10.1128/spectrum.01379-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE In this work, we demonstrated that human immunodeficiency virus (HIV) infection leads to the modification of the human endogenous retrovirus (HERV) expression. Differential expression of multiple HERVs was found in peripheral blood mononuclear cells derived from HIV-infected patients compared to healthy donors and HIV-infected T cell cultures compared to non-infected. The effect of HIV presence on HERV expression appears to be more restricted in cells of monocytic origin, as only deregulation of HERV-W and HERV-K (HML-6) was found in these cell cultures after their infection with HIV. Multiple factors contribute to this aberrant HERV expression, and its levels appear to be modified in a time-dependent manner. Further studies and the development of optimized in vitro protocols are warranted to elucidate the interactions between HIV and HERVs in detail.
Collapse
Affiliation(s)
- Federica Mantovani
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
DeMarino C, Nath A, Zhuang Z, Doucet-O’Hare TT. Does the interplay between human endogenous retrovirus K and extracellular vesicles contribute to aging? EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:548-56. [PMID: 38606283 PMCID: PMC11007738 DOI: 10.20517/evcna.2023.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The role of extracellular vesicles (EVs), including retroviral-like particles (RVLPs), in pathogenic processes is currently a subject of active investigation. Several studies have identified mechanistic links between the increased presence of EVs and the process of senescence. A recent study reveals that the reverse transcribed complementary DNA (cDNA) of a human endogenous retroviral sequence can activate the innate immune system and result in tissue damage and/or the spread of cellular senescence to distant tissues. Several studies have linked EVs to age-related diseases, such as Alzheimer's disease and Parkinson's disease, and have included isolation of EVs from individuals with these diseases. Loss of epigenetic regulation, immune activation, and environmental stimuli can all lead to the expression of endogenous retroviruses and the incorporation of their proteins and transcripts into EVs. In addition, EVs disseminating these endogenous retroviral components have now been shown to act in a paracrine manner in multiple human diseases. Further investigation of the connection between EVs containing endogenous retroviral protein products or nucleotides should be pursued in models of age-related diseases.
Collapse
Affiliation(s)
- Catherine DeMarino
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
8
|
Lyons DE, Kumar P, Roan NR, Defechereux PA, Feschotte C, Lange UC, Murthy N, Sameshima P, Verdin E, Ake JA, Parsons MS, Nath A, Gianella S, Smith DM, Kallas EG, Villa TJ, Strange R, Mwesigwa B, Furler O’Brien RL, Nixon DF, Ndhlovu LC, Valente ST, Ott M. HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing. Viruses 2023; 15:2171. [PMID: 38005849 PMCID: PMC10674359 DOI: 10.3390/v15112171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Despite remarkable progress, a cure for HIV-1 infection remains elusive. Rebound competent latent and transcriptionally active reservoir cells persevere despite antiretroviral therapy and rekindle infection due to inefficient proviral silencing. We propose a novel "block-lock-stop" approach, entailing long term durable silencing of viral expression towards an irreversible transcriptionally inactive latent provirus to achieve long term antiretroviral free control of the virus. A graded transformation of remnant HIV-1 in PLWH from persistent into silent to permanently defective proviruses is proposed, emulating and accelerating the natural path that human endogenous retroviruses (HERVs) take over millions of years. This hypothesis was based on research into delineating the mechanisms of HIV-1 latency, lessons from latency reversing agents and advances of Tat inhibitors, as well as expertise in the biology of HERVs. Insights from elite controllers and the availability of advanced genome engineering technologies for the direct excision of remnant virus set the stage for a rapid path to an HIV-1 cure.
Collapse
Affiliation(s)
- Danielle E. Lyons
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Nadia R. Roan
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Patricia A. Defechereux
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA;
- Innovative Genomics Institute, Berkeley, CA 94720, USA
| | - Pauline Sameshima
- Faculty of Education, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Eric Verdin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (M.S.P.)
| | - Matthew S. Parsons
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (M.S.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20824, USA;
| | - Sara Gianella
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Esper G. Kallas
- Department of Infectious and Parasitic Diseases, University of Sao Paulo, São Paulo 04023-900, Brazil
| | - Thomas J. Villa
- HOPE Martin Delaney Collaboratory for HIV Cure Research Community Engagement Ambassador, Washinton, DC 20004, USA (R.S.)
- National HIV & Aging Advocacy Network, Washington, DC 20004, USA
| | - Richard Strange
- HOPE Martin Delaney Collaboratory for HIV Cure Research Community Engagement Ambassador, Washinton, DC 20004, USA (R.S.)
| | - Betty Mwesigwa
- Research Department, Makerere University Walter Reed Project, Kampala P.O Box 7062, Uganda
| | - Robert L. Furler O’Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Kyriakou E, Magiorkinis G. Interplay between endogenous and exogenous human retroviruses. Trends Microbiol 2023; 31:933-946. [PMID: 37019721 DOI: 10.1016/j.tim.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
In humans, retroviruses thrive more as symbionts than as parasites. Apart from the only two modern exogenous human retroviruses (human T-cell lymphotropic and immunodeficiency viruses; HTLV and HIV, respectively), ~8% of the human genome is occupied by ancient retroviral DNA [human endogenous retroviruses (HERVs)]. Here, we review the recent discoveries about the interactions between the two groups, the impact of infection by exogenous retroviruses on the expression of HERVs, the effect of HERVs on the pathogenicity of HIV and HTLV and on the severity of the diseases caused by them, and the antiviral protection that HERVs can allegedly provide to the host. Tracing the crosstalk between contemporary retroviruses and their endogenized ancestors will provide better understanding of the retroviral world.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Lee YT, Fan L, Ding J, Wang YX. Combining Biophysical Methods for Structure-Function Analyses of RNA in Solution. Methods Mol Biol 2023; 2568:165-177. [PMID: 36227568 DOI: 10.1007/978-1-0716-2687-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
RNA-level regulation by riboswitches relies on the specific binding of small metabolites to the aptamer domain to trigger substantial conformational changes that affect transcription or translation. Although several biophysical methods have been employed to study such RNAs, the utility of any one single method is limited. Hybrid approaches, therefore, are essential to better characterize these intrinsically dynamic molecules and elucidate their regulatory mechanisms driven by ligand-induced conformational changes. This chapter outlines procedures for biochemical and biophysical characterization of RNA that employs a combination of solution-based methods: isothermal titration calorimetry (ITC), small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM). Collectively, these tools provide a semi-quantitative assessment of the thermodynamics associated with ligand binding and subsequent conformational changes.
Collapse
Affiliation(s)
- Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jienyu Ding
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
11
|
Li X, Guo Y, Li H, Huang X, Pei Z, Wang X, Liu Y, Jia L, Li T, Bao Z, Wang X, Han L, Han J, Li J, Li L. Infection by Diverse HIV-1 Subtypes Leads to Different Elevations in HERV-K Transcriptional Levels in Human T Cell Lines. Front Microbiol 2021; 12:662573. [PMID: 34079529 PMCID: PMC8165174 DOI: 10.3389/fmicb.2021.662573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Human endogenous retroviruses (HERVs) make up ~8% of the human genome, and for millions of years, they have been subject to strict biological regulation. Many HERVs do not participate in normal physiological activities in the body. However, in some pathological conditions, they can be abnormally activated. For example, HIV infection can cause abnormal activation of HERVs, and under different infection conditions, HERV expression may be different. We observed significant differences in HERV-K transcription levels among HIV-1 subtype-infected individuals. The transcriptional levels in the HERV-K gag region were significantly increased in HIV-1 B subtype-infected patients, while the transcriptional levels in the HERV-K pol region were significantly increased in CRF01_AE and CRF07_BC subtype-infected patients. In vitro, the transcriptional levels of HEVR-K were increased 5-fold and 15-fold in MT2 cells transfected with two different HIV-1 strains (B and CRF01_AE, respectively). However, there was no significant difference in transcriptional levels among regions of HERV-K. When MT2 cells were infected with different subtypes of HIV-1 Tat proteins (B, CRF01_AE), which is constructed by lentiviruses, and the transcription levels of HERV-K were increased 4-fold and 2-fold, respectively. Thus, different subtypes of HIV-1 have different effects on HERV-K transcription levels, which may be caused by many factors, not only Tat protein.
Collapse
Affiliation(s)
- Xi Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yaolin Guo
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaofeng Huang
- The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhichao Pei
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zuoyi Bao
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaorui Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Infectious Disease Control and Prevention in Universities of Shandong, Jinan, China
| | - Leilei Han
- School of Public Health and Affiliated Shijiazhuang Fifth Hospital, North China University of Science and Technology, Tangshan, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
12
|
Römer C. Viruses and Endogenous Retroviruses as Roots for Neuroinflammation and Neurodegenerative Diseases. Front Neurosci 2021; 15:648629. [PMID: 33776642 PMCID: PMC7994506 DOI: 10.3389/fnins.2021.648629] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative diseases are associated with chronic inflammation in the brain and periphery giving rise to a continuous imbalance of immune processes. Next to inflammation markers, activation of transposable elements, including long intrespersed nuclear elements (LINE) elements and endogenous retroviruses (ERVs), has been identified during neurodegenerative disease progression and even correlated with the clinical severity of the disease. ERVs are remnants of viral infections in the human genome acquired during evolution. Upon activation, they produce transcripts and the phylogenetically youngest ones are still able to produce viral-like particles. In addition, ERVs can bind transcription factors and modulate immune response. Being between own and foreign, ERVs are reviewed in the context of viral infections of the central nervous system, in aging and neurodegenerative diseases. Moreover, this review tests the hypothesis that viral infection may be a trigger at the onset of neuroinflammation and that ERVs sustain the inflammatory imbalance by summarizing existing data of neurodegenerative diseases associated with viruses and/or ERVs.
Collapse
Affiliation(s)
- Christine Römer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|