1
|
Stendahl AM, Sanghvi R, Peterson S, Ray K, Lima AC, Rahbari R, Conrad DF. A naturally occurring variant of MBD4 causes maternal germline hypermutation in primates. Genome Res 2023; 33:2053-2059. [PMID: 37984997 PMCID: PMC10760519 DOI: 10.1101/gr.277977.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As part of an ongoing genome sequencing project at the Oregon National Primate Research Center, we identified a rhesus macaque with a rare homozygous frameshift mutation in the gene methyl-CpG binding domain 4, DNA glycosylase (MBD4). MBD4 is responsible for the repair of C > T deamination mutations at CpG dinucleotides and has been linked to somatic hypermutation and cancer predisposition in humans. We show here that MBD4-associated hypermutation also affects the germline: The six offspring of the MBD4-null dam have a fourfold to sixfold increase in de novo mutation burden. This excess burden was predominantly C > T mutations at CpG dinucleotides consistent with MBD4 loss of function in the dam. There was also a significant excess of C > T at CpA sites, indicating an important, unappreciated role for MBD4 to repair deamination in CpA contexts. The MBD4-null dam developed sustained eosinophilia later in life, but we saw no other signs of neoplastic processes associated with MBD4 loss of function in humans nor any obvious disease in the hypermutated offspring. This work provides the first evidence for a genetic factor causing hypermutation in the maternal germline of a mammal and adds to the very small list of naturally occurring variants known to modulate germline mutation rates in mammals.
Collapse
Affiliation(s)
- Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Rashesh Sanghvi
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Samuel Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Karina Ray
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA;
| |
Collapse
|
2
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Nikkel DJ, Wetmore SD. Distinctive Formation of a DNA-Protein Cross-Link during the Repair of DNA Oxidative Damage: Insights into Human Disease from MD Simulations and QM/MM Calculations. J Am Chem Soc 2023. [PMID: 37285289 DOI: 10.1021/jacs.3c01773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species damage DNA and result in health issues. The major damage product, 8-oxo-7,8-dihydroguanine (8oG), is repaired by human adenine DNA glycosylase homologue (MUTYH). Although MUTYH misfunction is associated with a genetic disorder called MUTYH-associated polyposis (MAP) and MUTYH is a potential target for cancer drugs, the catalytic mechanism required to develop disease treatments is debated in the literature. This study uses molecular dynamics simulations and quantum mechanics/molecular mechanics techniques initiated from DNA-protein complexes that represent different stages of the repair pathway to map the catalytic mechanism of the wild-type MUTYH bacterial homologue (MutY). This multipronged computational approach characterizes a DNA-protein cross-linking mechanism that is consistent with all previous experimental data and is a distinct pathway across the broad class of monofunctional glycosylase repair enzymes. In addition to clarifying how the cross-link is formed, accommodated by the enzyme, and hydrolyzed for product release, our calculations rationalize why cross-link formation is favored over immediate glycosidic bond hydrolysis, the accepted mechanism for all other monofunctional DNA glycosylases to date. Calculations on the Y126F mutant MutY highlight critical roles for active site residues throughout the reaction, while investigation of the N146S mutant rationalizes the connection between the analogous N224S MUTYH mutation and MAP. In addition to furthering our knowledge of the chemistry associated with a devastating disorder, the structural information gained about the distinctive MutY mechanism compared to other repair enzymes represents an important step for the development of specific and potent small-molecule inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Demir M, Russelburg LP, Lin WJ, Trasviña-Arenas C, Huang B, Yuen P, Horvath M, David S. Structural snapshots of base excision by the cancer-associated variant MutY N146S reveal a retaining mechanism. Nucleic Acids Res 2023; 51:1034-1049. [PMID: 36631987 PMCID: PMC9943663 DOI: 10.1093/nar/gkac1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
DNA glycosylase MutY plays a critical role in suppression of mutations resulted from oxidative damage, as highlighted by cancer-association of the human enzyme. MutY requires a highly conserved catalytic Asp residue for excision of adenines misinserted opposite 8-oxo-7,8-dihydroguanine (OG). A nearby Asn residue hydrogen bonds to the catalytic Asp in structures of MutY and its mutation to Ser is an inherited variant in human MUTYH associated with colorectal cancer. We captured structural snapshots of N146S Geobacillus stearothermophilus MutY bound to DNA containing a substrate, a transition state analog and enzyme-catalyzed abasic site products to provide insight into the base excision mechanism of MutY and the role of Asn. Surprisingly, despite the ability of N146S to excise adenine and purine (P) in vitro, albeit at slow rates, N146S-OG:P complex showed a calcium coordinated to the purine base altering its conformation to inhibit hydrolysis. We obtained crystal structures of N146S Gs MutY bound to its abasic site product by removing the calcium from crystals of N146S-OG:P complex to initiate catalysis in crystallo or by crystallization in the absence of calcium. The product structures of N146S feature enzyme-generated β-anomer abasic sites that support a retaining mechanism for MutY-catalyzed base excision.
Collapse
Affiliation(s)
- Merve Demir
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - L Peyton Russelburg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | - Beili Huang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Philip K Yuen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Martin P Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Hung SH, Elliott GI, Ramkumar TR, Burtnyak L, McGrenaghan CJ, Alkuzweny S, Quaiyum S, Iwata-Reuyl D, Pan X, Green BD, Kelly VP, de Crécy-Lagard V, Swairjo M. Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate. Nucleic Acids Res 2023; 51:935-951. [PMID: 36610787 PMCID: PMC9881137 DOI: 10.1093/nar/gkac1231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic life benefits from-and ofttimes critically relies upon-the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5'-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.
Collapse
Affiliation(s)
- Shr-Hau Hung
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
- The Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Gregory I Elliott
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | - Thakku R Ramkumar
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Lyubomyr Burtnyak
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Callum J McGrenaghan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sana Alkuzweny
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, PO Box 751 Portland State University, Portland, OR 97207, USA
| | - Xiaobei Pan
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Brian D Green
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
- The Viral Information Institute, San Diego State University, San Diego, CA, USA
| |
Collapse
|
6
|
Rzoska-Smith E, Stelzer R, Monterio M, Cary SC, Williamson A. DNA repair enzymes of the Antarctic Dry Valley metagenome. Front Microbiol 2023; 14:1156817. [PMID: 37125210 PMCID: PMC10140301 DOI: 10.3389/fmicb.2023.1156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Microbiota inhabiting the Dry Valleys of Antarctica are subjected to multiple stressors that can damage deoxyribonucleic acid (DNA) such as desiccation, high ultraviolet light (UV) and multiple freeze-thaw cycles. To identify novel or highly-divergent DNA-processing enzymes that may enable effective DNA repair, we have sequenced metagenomes from 30 sample-sites which are part of the most extensive Antarctic biodiversity survey undertaken to date. We then used these to construct wide-ranging sequence similarity networks from protein-coding sequences and identified candidate genes involved in specialized repair processes including unique nucleases as well as a diverse range of adenosine triphosphate (ATP) -dependent DNA ligases implicated in stationary-phase DNA repair processes. In one of the first direct investigations of enzyme function from these unique samples, we have heterologously expressed and assayed a number of these enzymes, providing insight into the mechanisms that may enable resident microbes to survive these threats to their genomic integrity.
Collapse
Affiliation(s)
- Elizabeth Rzoska-Smith
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
| | - Ronja Stelzer
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
| | - Maria Monterio
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Stephen C. Cary
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Adele Williamson
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
- *Correspondence: Adele Williamson,
| |
Collapse
|
7
|
Zhang H, Jiang PJ, Lv MY, Zhao YH, Cui J, Chen J. OGG1 contributes to hepatocellular carcinoma by promoting cell cycle-related protein expression and enhancing DNA oxidative damage repair in tumor cells. J Clin Lab Anal 2022; 36:e24561. [PMID: 35723423 PMCID: PMC9279955 DOI: 10.1002/jcla.24561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Background This study aimed to analyze the expression of 8‐oxoguanine DNA glycosylase (OGG1) in patients with hepatocellular carcinoma (HCC) and its effect on prognosis by bioinformatics techniques and to determine its possible carcinogenic mechanism through data mining. Methods The difference in OGG1 expression between healthy people and HCC patients was searched and analyzed by TCGA and GEO databases, and the effect of OGG1 on prognosis was judged by survival analysis. Meanwhile, the possible molecular mechanism of OGG1 in the tumorigenesis and development of HCC was explored by GO analysis, KEGG analysis, immune infiltration analysis, protein–protein interaction network, promoter methylation analysis, and so forth. Quantitative polymerase chain reaction (qPCR) was used to examine the gene expression in 36 pairs of HCC tissues and adjacent tissues. Results The expression of OGG1 in HCC patients was higher than that in healthy people, and the overexpression of OGG1 might stimulate cell proliferation by increasing the activity of cell cycle‐related proteins. Conclusion The alteration of OGG1 was significantly correlated with the tumorigenesis and development of HCC. OGG1 is expected to be a new biomarker for evaluating the prognosis of HCC and a new target for the treatment of HCC.
Collapse
Affiliation(s)
- He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng-Jun Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meng-Yuan Lv
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Hua Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ju Cui
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wang L, Lin T, Oger P, Gong Y, Zhang L. Biochemical Characterization and Mutational Analysis of a Mismatch Glycosylase From the Hyperthermophilic Euryarchaeon Thermococcus barophilus Ch5. DNA Repair (Amst) 2022; 114:103321. [DOI: 10.1016/j.dnarep.2022.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
|
9
|
Trasviña-Arenas CH, Demir M, Lin WJ, David SS. Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms. DNA Repair (Amst) 2021; 108:103231. [PMID: 34649144 DOI: 10.1016/j.dnarep.2021.103231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The Base Excision Repair (BER) pathway is a highly conserved DNA repair system targeting chemical base modifications that arise from oxidation, deamination and alkylation reactions. BER features lesion-specific DNA glycosylases (DGs) which recognize and excise modified or inappropriate DNA bases to produce apurinic/apyrimidinic (AP) sites and coordinate AP-site hand-off to subsequent BER pathway enzymes. The DG superfamilies identified have evolved independently to cope with a wide variety of nucleobase chemical modifications. Most DG superfamilies recognize a distinct set of structurally related lesions. In contrast, the Helix-hairpin-Helix (HhH) DG superfamily has the remarkable ability to act upon structurally diverse sets of base modifications. The versatility in substrate recognition of the HhH-DG superfamily has been shaped by motif and domain acquisitions during evolution. In this paper, we review the structural features and catalytic mechanisms of the HhH-DG superfamily and draw a hypothetical reconstruction of the evolutionary path where these DGs developed diverse and unique enzymatic features.
Collapse
Affiliation(s)
| | - Merve Demir
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A..
| |
Collapse
|