1
|
Obr M, Percipalle M, Chernikova D, Yang H, Thader A, Pinke G, Porley D, Mansky LM, Dick RA, Schur FKM. Distinct stabilization of the human T cell leukemia virus type 1 immature Gag lattice. Nat Struct Mol Biol 2024:10.1038/s41594-024-01390-8. [PMID: 39242978 DOI: 10.1038/s41594-024-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) immature particles differ in morphology from other retroviruses, suggesting a distinct way of assembly. Here we report the results of cryo-electron tomography studies of HTLV-1 virus-like particles assembled in vitro, as well as derived from cells. This work shows that HTLV-1 uses a distinct mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature capsid (CA) tubular arrays reveals that the primary stabilizing component in HTLV-1 is the N-terminal domain of CA. Mutagenesis analysis supports this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the C-terminal domain of CA. These results provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus and this helps explain why HTLV-1 particles are morphologically distinct.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Material and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, Eindhoven, Netherlands
| | - Mathias Percipalle
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Darya Chernikova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gergely Pinke
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Dario Porley
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, GA, USA
| | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Ghanam RH, Eastep GN, Saad JS. Structural Insights into the Mechanism of HIV-1 Tat Secretion from the Plasma Membrane. J Mol Biol 2023; 435:167880. [PMID: 36370804 PMCID: PMC9822876 DOI: 10.1016/j.jmb.2022.167880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) is a small, intrinsically disordered basic protein that plays diverse roles in the HIV-1 replication cycle, including promotion of efficient viral RNA transcription. Tat is released by infected cells and subsequently absorbed by healthy cells, thereby contributing to HIV-1 pathogenesis including HIV-associated neurocognitive disorder. It has been shown that, in HIV-1-infected primary CD4 T-cells, Tat accumulates at the plasma membrane (PM) for secretion, a mechanism mediated by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural basis for Tat interaction with the PM and thereby secretion is lacking. Herein, we employed NMR and biophysical methods to characterize Tat86 (86 amino acids) interactions with PI(4,5)P2 and lipid nanodiscs (NDs). Our data revealed that Arg49, Lys50 and Lys51 (RKK motif) constitute the PI(4,5)P2 binding site, that Tat86 interaction with lipid NDs is dependent on PI(4,5)P2 and phosphatidylserine (PS), and that the arginine-rich motif (RRQRRR) preferentially interacts with PS. Furthermore, we show that Trp11, previously implicated in Tat secretion, penetrates deeply in the membrane; substitution of Trp11 severely reduced Tat86 interaction with membranes. Deletion of the entire highly basic region and Trp11 completely abolished Tat86 binding to lipid NDs. Our data support a mechanism by which HIV-1 Tat secretion from the PM is mediated by a tripartite signal consisting of binding of the RKK motif to PI(4,5)P2, arginine-rich motif to PS, and penetration of Trp11 in the membrane. Altogether, these findings provide new insights into the molecular requirements for Tat binding to membranes during secretion.
Collapse
Affiliation(s)
- Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gunnar N Eastep
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
3
|
Herrmann D, Hanson HM, Zhou LW, Addabbo R, Willkomm NA, Angert I, Mueller JD, Mansky LM, Saad JS. Molecular Determinants of Human T-cell Leukemia Virus Type 1 Gag Targeting to the Plasma Membrane for Assembly. J Mol Biol 2022; 434:167609. [PMID: 35490898 PMCID: PMC10557380 DOI: 10.1016/j.jmb.2022.167609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/10/2023]
Abstract
Assembly of human T-cell leukemia virus type 1 (HTLV-1) particles is initiated by the trafficking of virally encoded Gag polyproteins to the inner leaflet of the plasma membrane (PM). Gag-PM interactions are mediated by the matrix (MA) domain, which contains a myristoyl group (myr) and a basic patch formed by lysine and arginine residues. For many retroviruses, Gag-PM interactions are mediated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]; however, previous studies suggested that HTLV-1 Gag-PM interactions and therefore virus assembly are less dependent on PI(4,5)P2. We have recently shown that PI(4,5)P2 binds directly to HTLV-1 unmyristoylated MA [myr(-)MA] and that myr(-)MA binding to membranes is significantly enhanced by inclusion of phosphatidylserine (PS) and PI(4,5)P2. Herein, we employed structural, biophysical, biochemical, mutagenesis, and cell-based assays to identify residues involved in MA-membrane interactions. Our data revealed that the lysine-rich motif (Lys47, Lys48, and Lys51) constitutes the primary PI(4,5)P2-binding site. Furthermore, we show that arginine residues 3, 7, 14 and 17 located in the unstructured N-terminus are essential for MA binding to membranes containing PS and/or PI(4,5)P2. Substitution of lysine and arginine residues severely attenuated virus-like particle production, but only the lysine residues could be clearly correlated with reduced PM binding. These results support a mechanism by which HTLV-1 Gag targeting to the PM is mediated by a trio engagement of the myr group, Arg-rich and Lys-rich motifs. These findings advance our understanding of a key step in retroviral particle assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Heather M Hanson
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| | - Lynne W Zhou
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rayna Addabbo
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Nora A Willkomm
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| | - Isaac Angert
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Joachim D Mueller
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States.
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
4
|
Atomic view of the HIV-1 matrix lattice; implications on virus assembly and envelope incorporation. Proc Natl Acad Sci U S A 2022; 119:e2200794119. [PMID: 35658080 PMCID: PMC9191676 DOI: 10.1073/pnas.2200794119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceThe assembly of immature HIV-1 particles is initiated by targeting of the Gag polyproteins to the plasma membrane (PM). Gag binding to the PM is mediated by the N-terminally myristoylated matrix (myrMA) domain. Formation of a Gag lattice on the PM is obligatory for the assembly of immature HIV-1 and envelope (Env) incorporation. The structure of the myrMA lattice presented here provided insights on the molecular factors that stabilize the lattice and hence favor Env incorporation. Our data support a mechanism for Gag binding to the PM during the assembly of immature particles and upon maturation. These findings advance our understanding of a critical step in HIV-1 assembly.
Collapse
|
5
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|