1
|
Arosio P, Cairo G, Bou-Abdallah F. A Brief History of Ferritin, an Ancient and Versatile Protein. Int J Mol Sci 2024; 26:206. [PMID: 39796064 PMCID: PMC11719527 DOI: 10.3390/ijms26010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Ferritin, a highly conserved iron storage protein, is among the earliest proteins that have been purified, named, and characterized due to its unique properties that continue to captivate researchers. Ferritin is composed of 24 subunits that form an almost spherical shell delimiting a cavity where thousands of iron atoms can be stored in a nontoxic ferric form, thereby preventing cytosolic iron from catalyzing oxidative stress. Mitochondrial and extracellular ferritin have also been described and characterized, with the latter being associated with several signaling functions. In addition, serum ferritin serves as a reliable indicator of both iron stores and inflammatory conditions. First identified and purified through crystallization in 1937, ferritin has since drawn significant attention for its critical role in iron metabolism and regulation. Its unique structural features have recently been exploited for many diverse biological and technological applications. To date, more than 40,000 publications have explored this remarkable protein. Here, we present a historical overview, tracing its journey from discovery to current applications and highlighting the evolution of biochemical techniques developed for its structure-function characterization over the past eight decades.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA;
| |
Collapse
|
2
|
Bou-Abdallah F, Boumaiza M, Srivastava AK. Effects of ferritin iron loading, subunit composition, and the NCOA4-iron sulfur cluster on ferritin-NCOA4 interactions: An isothermal titration calorimetry study. Int J Biol Macromol 2024; 278:135044. [PMID: 39182888 DOI: 10.1016/j.ijbiomac.2024.135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Ferritin is a 24-mer protein nanocage that stores iron and regulates intracellular iron homeostasis. The nuclear receptor coactivator-4 (NCOA4) binds specifically to ferritin H subunits and facilitates the autophagic trafficking of ferritin to the lysosome for degradation and iron release. Using isothermal titration calorimetry (ITC), we studied the thermodynamics of the interactions between ferritin and the soluble fragment of NCOA4 (residues 383-522), focusing on the effects of the recently identified FeS cluster bound to NCOA4, ferritin subunit composition, and ferritin-iron loading. Our findings show that in the presence of the FeS cluster, the binding is driven by a more favorable enthalpy change and a decrease in entropy change, indicating a key role for the FeS cluster in the structural organization and stability of the complex. The ferritin iron core further enhances this association, increasing binding enthalpy and stabilizing the NCOA4-ferritin complex. The ferritin subunit composition primarily affects binding stoichiometry of the reaction based on the number of H subunits in the ferritin H/L oligomer. Our results demonstrate that both the FeS cluster and the ferritin iron core significantly affect the binding thermodynamics of the NCOA4-ferritin interactions, suggesting regulatory roles for the FeS cluster and ferritin iron content in ferritinophagy.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Mohamed Boumaiza
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| |
Collapse
|
3
|
Kaur H, Alluri RK, Wu K, Kalayjian RC, Bush WS, Palella FJ, Koletar SL, Hileman CO, Erlandson KM, Ellis RJ, Bedimo RJ, Taiwo BO, Tassiopoulos KK, Kallianpur AR. Sex-Biased Associations of Circulating Ferroptosis Inhibitors with Reduced Lipid Peroxidation and Better Neurocognitive Performance in People with HIV. Antioxidants (Basel) 2024; 13:1042. [PMID: 39334701 PMCID: PMC11429126 DOI: 10.3390/antiox13091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Ferroptosis is implicated in viral neuropathogenesis and may underlie HIV-associated neurocognitive impairment (NCI). Emerging data also suggest differences in brain iron transport by sex. We hypothesized that circulating ferritins that inhibit ferroptosis associate with neurocognitive function and NCI in people with HIV (PWH) in a sex-biased manner. Serum ferritin heavy-chain-1 (FTH1), ferritin light-chain (FTL), and urinary F2-isoprostanes (uF2-isoPs, specific lipid peroxidation marker) were quantified in 324 PWH (including 61 women) with serial global (NPZ-4) and domain-specific neurocognitive testing. Biomarker associations with neurocognitive test scores and NCIs were evaluated by multivariable regression; correlations with uF2-isoPs were also assessed. Higher FTL and FTH1 levels were associated with less NCI in all PWH (adjusted odds ratios 0.53, 95% confidence interval (95% CI) 0.36-0.79 and 0.66, 95% CI 0.45-0.97, respectively). In women, higher FTL and FTH1 were also associated with better NPZ-4 (FTL adjusted beta (β) = 0.15, 95% CI 0.02-0.29; FTL-by-sex βinteraction = 0.32, p = 0.047) and domain-specific neurocognitive test scores. Effects on neurocognitive performance persisted for up to 5 years. Levels of both ferritins correlated inversely with uF2-isoPs in women (FTL: rho = -0.47, p < 0.001). Circulating FTL and FTH1 exert sustained, sex-biased neuroprotective effects in PWH, possibly by protecting against iron-mediated lipid peroxidation (ferroptosis). Larger studies are needed to confirm the observed sex differences and further delineate the underlying mechanisms.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ravi K Alluri
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
| | - Kunling Wu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Robert C Kalayjian
- Department of Medicine/Infectious Diseases, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Frank J Palella
- Department of Medicine/Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Susan L Koletar
- Department of Medicine/Infectious Diseases, The Ohio State University, Columbus, OH 43210, USA
| | - Corrilynn O Hileman
- Department of Medicine/Infectious Diseases, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kristine M Erlandson
- Department of Medicine/Infectious Diseases, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California-San Diego, San Diego, CA 92103, USA
| | - Roger J Bedimo
- Medicine/Infectious Diseases Section, VA North Texas Health Care System, Dallas, TX 75216, USA
| | - Babafemi O Taiwo
- Department of Medicine/Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Asha R Kallianpur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Beyer M, Hladun C, Bou-Abdallah F. Detection of proteins with ascorbic acid-capped gold nanoparticles: a simple and highly sensitive colorimetric assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5391-5398. [PMID: 38978467 DOI: 10.1039/d4ay01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report a simple and highly sensitive colorimetric method for the detection and quantification of proteins, based on the aggregation of ascorbic acid (AA) capped gold nanoparticles (AuNPs) by proteins. The interactions between our AuNPs and nine different proteins of various sizes and shapes (cytochrome C (12 kDa), lysozyme (14.3 kDa), myoglobin (17 kDa), human serum albumin (66 kDa), bovine serum albumin (66.4 kDa), human transferrin (80 kDa), aldolase (160 kDa), catalase (240 kDa), and human H-ferritin (500 kDa)) generated similar AuNPs-protein absorption spectra in a concentration-dependent manner in the range of 1-15 nM. Upon the addition of a protein, the UV-visible spectra of AuNPs-protein conjugates shifted from 524 nm for the AuNps alone to longer wavelength (600-750 nm) due to the presence of one of these proteins. This bathochromic shift is accompanied by a color change from a cherry red, to dark purple, and then light grey or colorless if excess protein has been added, indicating the formation of AuNPs-protein conjugates followed by protein-induced aggregation of the AuNPs. High-resolution transmission electron microscopy images revealed uniformly distributed spherical nanoparticles with an average size of 27.5 ± 15.2 nm, increasing in size to 39.6 ± 12.9 nm upon the addition of a protein, indicating the formation of AuNPs-protein conjugates in solution. A general mechanism for the protein-induced aggregation of our AuNPs is proposed. The consistent behavior observed with the nine proteins tested in our study suggests that our assay can be universally applied for the quantification of pure proteins in a solution, regardless of size, shape, or molecular weight.
Collapse
Affiliation(s)
- Maximilian Beyer
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Colby Hladun
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| |
Collapse
|
5
|
Bou‐Abdallah F, Fish J, Terashi G, Zhang Y, Kihara D, Arosio P. Unveiling the stochastic nature of human heteropolymer ferritin self-assembly mechanism. Protein Sci 2024; 33:e5104. [PMID: 38995055 PMCID: PMC11241160 DOI: 10.1002/pro.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.
Collapse
Affiliation(s)
- Fadi Bou‐Abdallah
- Department of ChemistryState University of New YorkPotsdamNew YorkUSA
| | - Jeremie Fish
- Department of Electrical & Computer EngineeringCoulter School of Engineering, Clarkson UniversityPotsdamNew YorkUSA
| | - Genki Terashi
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuanyuan Zhang
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Paolo Arosio
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
6
|
Hu J, Sha X, Li Y, Wu J, Ma J, Zhang Y, Yang R. Multifaceted Applications of Ferritin Nanocages in Delivering Metal Ions, Bioactive Compounds, and Enzymes: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19903-19919. [PMID: 37955969 DOI: 10.1021/acs.jafc.3c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Ferritin, a distinctive iron-storage protein, possesses a unique cage-like nanoscale structure that enables it to encapsulate and deliver a wide range of biomolecules. Recent advances prove that ferritin can serve as an efficient 8 nm diameter carrier for various bioinorganic nutrients, such as minerals, bioactive polyphenols, and enzymes. This review offers a comprehensive summary of ferritin's structural features from different sources and emphasizes its functions in iron supplementation, calcium delivery, single- and coencapsulation of polyphenols, and enzyme package. Additionally, the influence of innovative food processing technologies, including manothermosonication, pulsed electric field, and atmospheric cold plasma, on the structure and function of ferritin are examined. Furthermore, the limitations and prospects of ferritin in food and nutritional applications are discussed. The exploration of ferritin as a multifunctional protein with the capacity to load various biomolecules is crucial to fully harnessing its potential in food applications.
Collapse
Affiliation(s)
- Jiangnan Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Srivastava AK, Reutovich AA, Hunter NJ, Arosio P, Bou-Abdallah F. Ferritin microheterogeneity, subunit composition, functional, and physiological implications. Sci Rep 2023; 13:19862. [PMID: 37963965 PMCID: PMC10646083 DOI: 10.1038/s41598-023-46880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Ferritin is a ubiquitous intracellular iron storage protein that plays a crucial role in iron homeostasis. Animal tissue ferritins consist of multiple isoforms (or isoferritins) with different proportions of H and L subunits that contribute to their structural and compositional heterogeneity, and thus physiological functions. Using size exclusion and anion exchange chromatography, capillary isoelectric focusing (cIEF), and SDS-capillary gel electrophoresis (SDS-CGE), we reveal for the first time a significant variation in ferritin subunit composition and isoelectric points, in both recombinant and native ferritins extracted from animal organs. Our results indicate that subunits composition is the main determinant of the mean pI of recombinant ferritin heteropolymers, and that ferritin microheterogeneity is a common property of both natural and recombinant proteins and appears to be an intrinsic feature of the cellular machinery during ferritin expression, regulation, post-translational modifications, and post-subunits assembly. The functional significance and physiological implications of ferritin heterogeneity in terms of iron metabolism, response to oxidative stress, tissue-specific functions, and pathological processes are discussed.
Collapse
Affiliation(s)
- Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY, 13676, USA
| | | | - Nathan J Hunter
- Department of Chemistry, State University of New York, Potsdam, NY, 13676, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25121, Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY, 13676, USA.
| |
Collapse
|
8
|
Reutovich AA, Srivastava AK, Arosio P, Bou-Abdallah F. Ferritin nanocages as efficient nanocarriers and promising platforms for COVID-19 and other vaccines development. Biochim Biophys Acta Gen Subj 2023; 1867:130288. [PMID: 36470367 PMCID: PMC9721431 DOI: 10.1016/j.bbagen.2022.130288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The development of safe and effective vaccines against SARS-CoV-2 and other viruses with high antigenic drift is of crucial importance to public health. Ferritin is a well characterized and ubiquitous iron storage protein that has emerged not only as a useful nanoreactor and nanocarrier, but more recently as an efficient platform for vaccine development. SCOPE OF REVIEW This review discusses ferritin structure-function properties, self-assembly, and novel bioengineering strategies such as interior cavity and exterior surface modifications for cargo encapsulation and delivery. It also discusses the use of ferritin as a scaffold for biomedical applications, especially for vaccine development against influenza, Epstein-Barr, HIV, hepatitis-C, Lyme disease, and respiratory viruses such as SARS-CoV-2. The use of ferritin for the synthesis of mosaic vaccines to deliver a cocktail of antigens that elicit broad immune protection against different viral variants is also explored. MAJOR CONCLUSIONS The remarkable stability, biocompatibility, surface functionalization, and self-assembly properties of ferritin nanoparticles make them very attractive platforms for a wide range of biomedical applications, including the development of vaccines. Strong immune responses have been observed in pre-clinical studies against a wide range of pathogens and have led to the exploration of ferritin nanoparticles-based vaccines in multiple phase I clinical trials. GENERAL SIGNIFICANCE The broad protective antibody response of ferritin nanoparticles-based vaccines demonstrates the usefulness of ferritin as a highly promising and effective approaches for vaccine development.
Collapse
Affiliation(s)
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| |
Collapse
|
9
|
Srivastava AK, Scalcione LJ, Arosio P, Bou‐Abdallah F. Hyperthermostable recombinant human heteropolymer ferritin derived from a novel plasmid design. Protein Sci 2023; 32:e4543. [PMID: 36519270 PMCID: PMC9798250 DOI: 10.1002/pro.4543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mammalian ferritins are predominantly heteropolymeric species consisting of 2 structurally similar, but functionally and genetically distinct subunit types, called H (Heavy) and L (Light). The two subunits co-assemble in different H and L ratios to form 24-mer shell-like protein nanocages where thousands of iron atoms can be mineralized inside a hollow cavity. Here, we use differential scanning calorimetry (DSC) to study ferritin stability and understand how various combinations of H and L subunits confer aspects of protein structure-function relationships. Using a recently engineered plasmid design that enables the synthesis of complex ferritin nanostructures with specific H to L subunit ratios, we show that homopolymer L and heteropolymer L-rich ferritins have a remarkable hyperthermostability (Tm = 115 ± 1°C) compared to their H-ferritin homologues (Tm = 93 ± 1°C). Our data reveal a significant linear correlation between protein thermal stability and the number of L subunits present on the ferritin shell. A strong and unexpected iron-induced protein thermal destabilization effect (ΔTm up to 20°C) is observed. To our knowledge, this is the first report of recombinant human homo- and hetero-polymer ferritins that exhibit surprisingly high dissociation temperatures, the highest among all known ferritin species, including many known hyperthermophilic proteins and enzymes. This extreme thermostability of our L and L-rich ferritins may have great potential for biotechnological applications.
Collapse
Affiliation(s)
| | | | - Paolo Arosio
- Department of Molecular & Translational MedicineUniversity of BresciaBresciaItaly
| | - Fadi Bou‐Abdallah
- Department of ChemistryState University of New YorkPotsdamNew YorkUSA
| |
Collapse
|
10
|
Longo T, Kim S, Srivastava AK, Hurley L, Ji K, Viescas AJ, Flint N, Foucher AC, Yates D, Stach EA, Bou-Abdallah F, Papaefthymiou GC. Micromagnetic and morphological characterization of heteropolymer human ferritin cores. NANOSCALE ADVANCES 2022; 5:208-219. [PMID: 36605807 PMCID: PMC9765448 DOI: 10.1039/d2na00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.
Collapse
Affiliation(s)
- Thomas Longo
- Department of Physics, Villanova University Villanova PA USA
| | - Steve Kim
- Department of Physics, Villanova University Villanova PA USA
| | | | - Lauren Hurley
- Department of Physics, Villanova University Villanova PA USA
| | - Kaixuan Ji
- Department of Physics, Villanova University Villanova PA USA
| | | | - Nicholas Flint
- Department of Chemistry, State University of New York Potsdam NY USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania Philadelphia PA USA
| | - Douglas Yates
- Singh Center for Nanotechnology, University of Pennsylvania Philadelphia PA USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania Philadelphia PA USA
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York Potsdam NY USA
| | | |
Collapse
|
11
|
Reutovich AA, Srivastava AK, Smith GL, Foucher A, Yates DM, Stach EA, Papaefthymiou GC, Arosio P, Bou-Abdallah F. Effect of Phosphate and Ferritin Subunit Composition on the Kinetics, Structure, and Reactivity of the Iron Core in Human Homo- and Heteropolymer Ferritins. Biochemistry 2022; 61:2106-2117. [PMID: 36099002 PMCID: PMC9548343 DOI: 10.1021/acs.biochem.2c00354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferritins are highly conserved supramolecular protein nanostructures that play a key role in iron homeostasis. Thousands of iron atoms can be stored inside their hollow cavity as a hydrated ferric oxyhydroxide mineral. Although phosphate associates with the ferritin iron nanoparticles, the effect of physiological concentrations on the kinetics, structure, and reactivity of ferritin iron cores has not yet been explored. Here, the iron loading and mobilization kinetics were studied in the presence of 1-10 mM phosphate using homopolymer and heteropolymer ferritins having different H to L subunit ratios. In the absence of ferritin, phosphate enhances the rate of ferrous ion oxidation and forms large and soluble polymeric Fe(III)-phosphate species. In the presence of phosphate, Fe(II) oxidation and core formation in ferritin is significantly accelerated with oxidation rates several-fold higher than with phosphate alone. High-angle annular dark-field scanning transmission electron microscopy measurements revealed a strong phosphate effect on both the size and morphology of the iron mineral in H-rich (but not L-rich) ferritins. While iron nanoparticles in L-rich ferritins have spherical shape in the absence and presence of phosphate, iron nanoparticles in H-rich ferritins change from irregular shapes in the absence of phosphate to spherical particles in the presence of phosphate with larger size distribution and smaller particle size. In the presence of phosphate, the kinetics of iron-reductive mobilization from ferritin releases twice as much iron than in its absence. Altogether, our results demonstrate an important role for phosphate, and the ferritin H and L subunit composition toward the kinetics of iron oxidation and removal from ferritin, as well as the structure and reactivity of the iron mineral, and may have an important implication on ferritin iron management in vivo.
Collapse
Affiliation(s)
- Aliaksandra A Reutovich
- Department of Chemistry, State University of New York, Potsdam, New York 13676, United States
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, New York 13676, United States
| | - Gideon L Smith
- Department of Chemistry, State University of New York, Potsdam, New York 13676, United States
| | - Alexandre Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Douglas M Yates
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, New York 13676, United States
| |
Collapse
|
12
|
Smith GL, Srivastava AK, Reutovich AA, Hunter NJ, Arosio P, Melman A, Bou-Abdallah F. Iron Mobilization from Ferritin in Yeast Cell Lysate and Physiological Implications. Int J Mol Sci 2022; 23:ijms23116100. [PMID: 35682778 PMCID: PMC9181690 DOI: 10.3390/ijms23116100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Most in vitro iron mobilization studies from ferritin have been performed in aqueous buffered solutions using a variety of reducing substances. The kinetics of iron mobilization from ferritin in a medium that resembles the complex milieu of cells could dramatically differ from those in aqueous solutions, and to our knowledge, no such studies have been performed. Here, we have studied the kinetics of iron release from ferritin in fresh yeast cell lysates and examined the effect of cellular metabolites on this process. Our results show that iron release from ferritin in buffer is extremely slow compared to cell lysate under identical experimental conditions, suggesting that certain cellular metabolites present in yeast cell lysate facilitate the reductive release of ferric iron from the ferritin core. Using filtration membranes with different molecular weight cut-offs (3, 10, 30, 50, and 100 kDa), we demonstrate that a cellular component >50 kDa is implicated in the reductive release of iron. When the cell lysate was washed three times with buffer, or when NADPH was omitted from the solution, a dramatic decrease in iron mobilization rates was observed. The addition of physiological concentrations of free flavins, such as FMN, FAD, and riboflavin showed about a two-fold increase in the amount of released iron. Notably, all iron release kinetics occurred while the solution oxygen level was still high. Altogether, our results indicate that in addition to ferritin proteolysis, there exists an auxiliary iron reductive mechanism that involves long-range electron transfer reactions facilitated by the ferritin shell. The physiological implications of such iron reductive mechanisms are discussed.
Collapse
Affiliation(s)
- Gideon L. Smith
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Ayush K. Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Aliaksandra A. Reutovich
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Nathan J. Hunter
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Paolo Arosio
- Department of Molecular & Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Artem Melman
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
- Correspondence:
| |
Collapse
|