1
|
Chen Y, Ma S, Zhou M, Yao Y, Gao X, Fan X, Wu G. Advancements in the preparation technology of small molecule artificial antigens and their specific antibodies: a comprehensive review. Analyst 2024; 149:4583-4599. [PMID: 39140248 DOI: 10.1039/d4an00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Small molecules find extensive application in medicine, food safety, and environmental studies, particularly in biomedicine. Immunoassay technology, leveraging the specific recognition between antigens and antibodies, offers a superior alternative to traditional physical and chemical analysis methods. This approach allows for the rapid and accurate detection of small molecular compounds, owing to its high sensitivity, specificity, and swift analytical capabilities. However, small molecular compounds often struggle to effectively stimulate an immune response due to their low molecular weight, weak antigenicity, and limited antigenic epitopes. To overcome this, coupling small molecule compounds with macromolecular carriers to form complete antigens is typically required to induce specific antibodies in animals. Consequently, the preparation of small-molecule artificial antigens and the production of efficient specific antibodies are crucial for achieving precise immunoassays. This paper reviews recent advancements in small molecule antibody preparation technology, emphasizing the design and synthesis of haptens, the coupling of haptens with carriers, the purification and identification of artificial antigens, and the preparation of specific antibodies. Additionally, it evaluates the current technological shortcomings and limitations while projecting future trends in artificial antigen synthesis and antibody preparation technology.
Collapse
Affiliation(s)
- Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xiaobo Fan
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
2
|
Asadiatouei P, Salem CB, Wanninger S, Ploetz E, Lamb DC. Deep-LASI, single-molecule data analysis software. Biophys J 2024; 123:2682-2695. [PMID: 38384132 PMCID: PMC11393668 DOI: 10.1016/j.bpj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
By avoiding ensemble averaging, single-molecule methods provide novel means of extracting mechanistic insights into function of material and molecules at the nanoscale. However, one of the big limitations is the vast amount of data required for analyzing and extracting the desired information, which is time-consuming and user dependent. Here, we introduce Deep-LASI, a software suite for the manual and automatic analysis of single-molecule traces, interactions, and the underlying kinetics. The software can handle data from one-, two- and three-color fluorescence data, and was particularly designed for the analysis of two- and three-color single-molecule fluorescence resonance energy transfer experiments. The functionalities of the software include: the registration of multiple-channels, trace sorting and categorization, determination of the photobleaching steps, calculation of fluorescence resonance energy transfer correction factors, and kinetic analyses based on hidden Markov modeling or deep neural networks. After a kinetic analysis, the ensuing transition density plots are generated, which can be used for further quantification of the kinetic parameters of the system. Each step in the workflow can be performed manually or with the support of machine learning algorithms. Upon reading in the initial data set, it is also possible to perform the remaining analysis steps automatically without additional supervision. Hence, the time dedicated to the analysis of single-molecule experiments can be reduced from days/weeks to minutes. After a thorough description of the functionalities of the software, we also demonstrate the capabilities of the software via the analysis of a previously published dynamic three-color DNA origami structure fluctuating between three states. With the drastic time reduction in data analysis, new types of experiments become realistically possible that complement our currently available palette of methodologies for investigating the nanoworld.
Collapse
Affiliation(s)
- Pooyeh Asadiatouei
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clemens-Bässem Salem
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Wanninger
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
3
|
Neupane K, Narayan A, Sen Mojumdar S, Adhikari G, Garen CR, Woodside MT. Direct observation of prion-like propagation of protein misfolding templated by pathogenic mutants. Nat Chem Biol 2024; 20:1220-1226. [PMID: 39009686 DOI: 10.1038/s41589-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2024] [Indexed: 07/17/2024]
Abstract
Many neurodegenerative diseases feature misfolded proteins that propagate via templated conversion of natively folded molecules. However, crucial questions about how such prion-like conversion occurs and what drives it remain unsolved, partly because technical challenges have prevented direct observation of conversion for any protein. We observed prion-like conversion in single molecules of superoxide dismutase-1 (SOD1), whose misfolding is linked to amyotrophic lateral sclerosis. Tethering pathogenic misfolded SOD1 mutants to wild-type molecules held in optical tweezers, we found that the mutants vastly increased misfolding of the wild-type molecule, inducing multiple misfolded isoforms. Crucially, the pattern of misfolding was the same in the mutant and converted wild-type domains and varied when the misfolded mutant was changed, reflecting the templating effect expected for prion-like conversion. Ensemble measurements showed decreased enzymatic activity in tethered heterodimers as conversion progressed, mirroring the single-molecule results. Antibodies sensitive to disease-specific epitopes bound to the converted protein, implying that conversion produced disease-relevant misfolded conformers.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Supratik Sen Mojumdar
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India
| | - Gaurav Adhikari
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Gokulu IS, Banta S. Enzyme Engineering by Force: DNA Springs for the Modulation of Biocatalytic Trajectories. ACS Synth Biol 2024; 13:2600-2610. [PMID: 39110689 DOI: 10.1021/acssynbio.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The engineering of enzymatic activity generally involves alteration of the protein primary sequences, which introduce structural changes that give rise to functional improvements. Mechanical forces have been used to interrogate protein biophysics, leading to deep mechanistic insights in single-molecule studies. Here, we use simple DNA springs to apply small pulling forces to perturb the active site of a thermostable alcohol dehydrogenase. Methods were developed to enable the study of different spring lengths and spring orientations under bulk catalysis conditions. Tension applied across the active site expanded the binding pocket volume and shifted the preference of the enzyme for longer chain-length substrates, which could be tuned by altering the spring length and the resultant applied force. The substrate specificity changes did not occur when the DNA spring was either severed or rotated by ∼90°. These findings demonstrate an alternative approach in protein engineering, where active site architectures can be dynamically and reversibly remodeled using applied mechanical forces.
Collapse
Affiliation(s)
- Ipek Simay Gokulu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Zhang S, Fang M, He J, Ma L, Miao X, Li P, Yu S, Cai W. How specific ion effects influence the mechanical behaviors of amide macromolecules? A cross-scale study. RSC Adv 2024; 14:25507-25515. [PMID: 39139238 PMCID: PMC11321207 DOI: 10.1039/d4ra04360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The mechanisms of specific ion effects on the properties of amide macromolecules is essential to understanding the evolution of life. Because most biological macromolecules contain both complex hydrophilic and hydrophobic structures, it is challenging to accurately identify the contributions of molecular structure to macroscopic behaviors. Herein, we investigated the influence of specific ion effects on the mechanical behaviors of poly(N-isopropylacrylamide) and neutral polyacrylamide (i.e., PNIPAM and NPAM), through a cross-scale study that includes single-molecule force spectroscopy, molecular dynamics simulation and macro mechanical method. The results indicate that the molecular conformation can be markedly influenced by the hydrophilicity (or hydrophobicity) of both macromolecule chain and ions. An extended chain conformation can be obtained when the side groups and ions are relatively hydrophilic, which can also increase the elasticity of a macromolecule chain and film materials. The relatively hydrophobic components promote the collapse of macromolecule chains and reduce the molecular elasticity. It is believed that the hydrogen bonding intensity between a macromolecule chain and aquated ions controls the chain conformation and the elasticity of molecules and films. This study is not only helpful for understanding the self-assembly mechanism of organisms but also provides a way to associate the molecular properties with the macroscopic performance of materials.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Mengjia Fang
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| | - Junjun He
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Lina Ma
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University Hangzhou 310024 Zhejiang Province China
| | - Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences) Heze 274000 China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Wanhao Cai
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| |
Collapse
|
6
|
Li P, Li H. A Handle-Free, All-Protein-Based Optical Tweezers Method to Probe Protein Folding-Unfolding Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13721-13727. [PMID: 38899455 DOI: 10.1021/acs.langmuir.4c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Optical tweezers (OT) have evolved into powerful single molecule force spectroscopy tools to investigate protein folding-unfolding dynamics. To stretch a protein of interest using OT, the protein must be flanked with two double stranded DNA (dsDNA) handles. However, coupling dsDNA handles to the protein is often of low yield, representing a bottleneck in OT experiments. Here, we report a handle-free, all-protein-based OT method for investigating protein folding/unfolding dynamics. In this new method, we employed disordered elastin-like polypeptides (ELPs) as a molecular linker and the mechanically stable cohesin-dockerin (Coh-Doc) pair as the prey-bait system to enable the efficient capture and stretching of individual protein molecules. This novel approach was validated by using model proteins NuG2 and RTX-v, yielding experimental results comparable to those obtained by using the dsDNA handle approach. This new method provides a streamlined and efficient OT approach to investigate the folding-unfolding dynamics of proteins at the single molecule level, thus expanding the toolbox of OT-based single molecule force spectroscopy.
Collapse
Affiliation(s)
- Peiyun Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| |
Collapse
|
7
|
Xiao P, Drewniak P, Dingwell DA, Brown LS, Ladizhansky V. Probing the energy barriers and stages of membrane protein unfolding using solid-state NMR spectroscopy. SCIENCE ADVANCES 2024; 10:eadm7907. [PMID: 38758787 DOI: 10.1126/sciadv.adm7907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Understanding how the amino acid sequence dictates protein structure and defines its stability is a fundamental problem in molecular biology. It is especially challenging for membrane proteins that reside in the complex environment of a lipid bilayer. Here, we obtain an atomic-level picture of the thermally induced unfolding of a membrane-embedded α-helical protein, human aquaporin 1, using solid-state nuclear magnetic resonance spectroscopy. Our data reveal the hierarchical two-step pathway that begins with unfolding of a structured extracellular loop and proceeds to an intermediate state with a native-like helical packing. In the second step, the transmembrane domain unravels as a single unit, resulting in a heterogeneous misfolded state with high helical content but with nonnative helical packing. Our results show the importance of loops for the kinetic stabilization of the whole membrane protein structure and support the three-stage membrane protein folding model.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Philip Drewniak
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Dylan Archer Dingwell
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
8
|
van der Sleen L, Stevens JA, Marrink SJ, Poolman B, Tych K. Probing the stability and interdomain interactions in the ABC transporter OpuA using single-molecule optical tweezers. Cell Rep 2024; 43:114110. [PMID: 38607912 DOI: 10.1016/j.celrep.2024.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.
Collapse
Affiliation(s)
- Lyan van der Sleen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Jan A Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Siewert J Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Kasia Tych
- Chemical Biology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
9
|
Basu T, Das S, Majumdar S. Elucidating the influence of electrostatic force on the re-arrangement of H-bonds of protein polymers in the presence of salts. SOFT MATTER 2024; 20:2361-2373. [PMID: 38372459 DOI: 10.1039/d3sm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyampholytes/proteins have an intriguing network of hydrogen bonds (H-bonds), especially their secondary structure, which plays a crucial role in determining the conformational stability of the polymer. The changes in protein secondary structure in the protein-salt system have been extensively deciphered by researchers, yet their pathways for breakage and recreation are unknown. Understanding the mechanism of protein conformational changes towards their biological activities, like protein folding, remains one of the main challenges and requires multiscale analysis of this strongly correlated system. Herein, salts have been used to reveal the re-arrangement behavior in the H-bond network of proteins under the influence of electrostatic interactions, as the strength of electrostatic forces is much stronger than that of H-bonds. At lower salt concentrations, there are negligible changes in the secondary structures as the electrostatic forces induced by the salt ions are less. Later, the existing H-bonds break and reconstruct new H-bonds at higher salt concentrations due to the influence of the stronger electrostatic interaction induced by the large number of salt ions. Molecular dynamics (MD) simulations and FTIR studies have been used rigorously to decipher the reason behind the re-arrangement of the H-bonds within gelatin (protein). The re-arrangement in the H-bond has also been observed with time from simulations and experiments. Thus, this study could provide a fresh perspective on the conformational changes of polyampholytes/proteins and will also influence the studies of protein folding-unfolding interaction in the presence of salt ions.
Collapse
Affiliation(s)
- Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| |
Collapse
|
10
|
Bhatia S, Udgaonkar JB. Understanding the heterogeneity intrinsic to protein folding. Curr Opin Struct Biol 2024; 84:102738. [PMID: 38041993 DOI: 10.1016/j.sbi.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023]
Abstract
Relating the native fold of a protein to its amino acid sequence remains a fundamental problem in biology. While computer algorithms have demonstrated recently their prowess in predicting what structure a particular amino acid sequence will fold to, an understanding of how and why a specific protein fold is achieved remains elusive. A major challenge is to define the role of conformational heterogeneity during protein folding. Recent experimental studies, utilizing time-resolved FRET, hydrogen-exchange coupled to mass spectrometry, and single-molecule force spectroscopy, often in conjunction with simulation, have begun to reveal how conformational heterogeneity evolves during folding, and whether an intermediate ensemble of defined free energy consists of different sub-populations of molecules that may differ significantly in conformation, energy and entropy.
Collapse
Affiliation(s)
- Sandhya Bhatia
- Department of Biophysics, Howard Hughes Medical Institute UT Southwestern Medical Center, Dallas 75390, United States. https://twitter.com/Sandhyabhatia_5
| | - Jayant B Udgaonkar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pashan, Pune 41008, India.
| |
Collapse
|
11
|
Sano Y, Itoh Y, Kamonprasertsuk S, Suzuki L, Fukasawa A, Oikawa H, Takahashi S. Simple and Efficient Detection Scheme of Two-Color Fluorescence Correlation Spectroscopy for Protein Dynamics Investigation from Nanoseconds to Milliseconds. ACS PHYSICAL CHEMISTRY AU 2024; 4:85-93. [PMID: 38283787 PMCID: PMC10811772 DOI: 10.1021/acsphyschemau.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/30/2024]
Abstract
Nanosecond resolved fluorescence correlation spectroscopy (ns-FCS) based on two-color fluorescence detection is a powerful strategy for investigating the fast dynamics of biological macromolecules labeled with donor and acceptor fluorophores. The standard methods of ns-FCS use two single-photon avalanche diodes (SPADs) for the detection of single-color signals (four SPADs for two-color signals) to eliminate the afterpulse artifacts of SPAD at the expense of the efficiency of utilizing photon data in the calculation of correlograms. Herein, we demonstrated that hybrid photodetectors (HPDs) enable the recording of fluorescence photons in ns-FCS based on the minimal system using two HPDs for the detection of two-color signals. However, HPD exhibited afterpulses at a yield with respect to the rate of photodetection (<10-4) much lower than that of SPADs (∼10-2), which could still hamper correlation measurements. We demonstrated that the simple subtraction procedure could eliminate afterpulse artifacts. While the quantum efficiency of photodetection for HPDs is lower than that for high-performance SPADs, the developed system can be practically used for two-color ns-FCS in a time domain longer than a few nanoseconds. The fast chain dynamics of the B domain of protein A in the unfolded state was observed using the new method.
Collapse
Affiliation(s)
- Yutaka Sano
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yuji Itoh
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Supawich Kamonprasertsuk
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Leo Suzuki
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Atsuhito Fukasawa
- Electron
Tube Division, Hamamatsu Photonics K. K., Iwata, Shizuoka 438-0193, Japan
| | - Hiroyuki Oikawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- MOLCURE, Kawasaki, Kanagawa 212-0032, Japan
| | - Satoshi Takahashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
12
|
Bajaj M, Muddassir M, Choi B, Singh P, Park JB, Singh S, Yadav M, Kumar R, Eom K, Sharma D. Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain. Int J Biol Macromol 2023; 253:126849. [PMID: 37717878 DOI: 10.1016/j.ijbiomac.2023.126849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
The small organic molecules, known as osmolytes being ubiquitously present in different cell types, affect protein folding, stability and aggregation. However, it is unknown how the osmolytes affect the nanomechanical unfolding behavior of protein domain. Here, we show the osmolyte-dependent mechanical unfolding properties of protein titin immunoglobulin-27 (I27) domain using an atomic force microscopy (AFM)-based single-molecule force spectroscopy. We found that amines and methylamines improved the mechanical stability of I27 domain, whereas polyols had no effect. Interestingly, glycine betaine (GB) or trimethylamine-N-oxide (TMAO) increased the average unfolding force of the protein domain. The kinetic parameters analyzed at single-molecule level reveal that stabilizing effect of osmolytes is due to a decrease in the unfolding rate constant of I27, which was confirmed by molecular dynamics simulations. Our study reveals different effects that diverse osmolytes have on the mechanical properties of the protein, and suggests the potential use of osmolytes in modulating the mechanical stability of proteins required for various nano-biotechnological applications.
Collapse
Affiliation(s)
- Manish Bajaj
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Mohd Muddassir
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Sector-39A, Chandigarh, India; Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bumjoon Choi
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Digial Bio R&D Center, Mediazen, Seoul 07789, Republic of Korea
| | - Priyanka Singh
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Jong Bum Park
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Surjeet Singh
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Manisha Yadav
- School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Rajesh Kumar
- School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Deepak Sharma
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Sector-39A, Chandigarh, India; Academy of Scientific & Innovative Research, India.
| |
Collapse
|
13
|
Shrestha P, Yang D, Ward A, Shih WM, Wong WP. Mapping Single-Molecule Protein Complexes in 3D with DNA Nanoswitch Calipers. J Am Chem Soc 2023; 145:27916-27921. [PMID: 38096567 PMCID: PMC10755700 DOI: 10.1021/jacs.3c10262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
The ability to accurately map the 3D geometry of single-molecule complexes in trace samples is a challenging goal that would lead to new insights into molecular mechanics and provide an approach for single-molecule structural proteomics. To enable this, we have developed a high-resolution force spectroscopy method capable of measuring multiple distances between labeled sites in natively folded protein complexes. Our approach combines reconfigurable nanoscale devices, we call DNA nanoswitch calipers, with a force-based barcoding system to distinguish each measurement location. We demonstrate our approach by reconstructing the tetrahedral geometry of biotin-binding sites in natively folded streptavidin, with 1.5-2.5 Å agreement with previously reported structures.
Collapse
Affiliation(s)
- Prakash Shrestha
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Darren Yang
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Andrew Ward
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - William M. Shih
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wesley P. Wong
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Rajasooriya T, Ogasawara H, Dong Y, Mancuso JN, Salaita K. Force-Triggered Self-Destructive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305544. [PMID: 37724392 PMCID: PMC10764057 DOI: 10.1002/adma.202305544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Self-destructive polymers (SDPs) are defined as a class of smart polymers that autonomously degrade upon experiencing an external trigger, such as a chemical cue or optical excitation. Because SDPs release the materials trapped inside the network upon degradation, they have potential applications in drug delivery and analytical sensing. However, no known SDPs that respond to external mechanical forces have been reported, as it is fundamentally challenging to create mechano-sensitivity in general and especially so for force levels below those required for classical force-induced bond scission. To address this challenge, the development of force-triggered SDPs composed of DNA crosslinked hydrogels doped with nucleases is described here. Externally applied piconewton forces selectively expose enzymatic cleavage sites within the DNA crosslinks, resulting in rapid polymer self-degradation. The synthesis and the chemical and mechanical characterization of DNA crosslinked hydrogels, as well as the kinetics of force-triggered hydrolysis, are described. As a proof-of-concept, force-triggered and time-dependent rheological changes in the polymer as well as encapsulated nanoparticle release are demonstrated. Finally, that the kinetics of self-destruction are shown to be tuned as a function of nuclease concentration, incubation time, and thermodynamic stability of DNA crosslinkers.
Collapse
Affiliation(s)
| | | | - Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
15
|
Doffini V, Liu H, Liu Z, Nash MA. Iterative Machine Learning for Classification and Discovery of Single-Molecule Unfolding Trajectories from Force Spectroscopy Data. NANO LETTERS 2023; 23:10406-10413. [PMID: 37933959 DOI: 10.1021/acs.nanolett.3c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
We report the application of machine learning techniques to expedite classification and analysis of protein unfolding trajectories from force spectroscopy data. Using kernel methods, logistic regression, and triplet loss, we developed a workflow called Forced Unfolding and Supervised Iterative Online (FUSION) learning where a user classifies a small number of repeatable unfolding patterns encoded as images, and a machine is tasked with identifying similar images to classify the remaining data. We tested the workflow using two case studies on a multidomain XMod-Dockerin/Cohesin complex, validating the approach first using synthetic data generated with a Monte Carlo algorithm and then deploying the method on experimental atomic force spectroscopy data. FUSION efficiently separated traces that passed quality filters from unusable ones, classified curves with high accuracy, and identified unfolding pathways that were undetected by the user. This study demonstrates the potential of machine learning to accelerate data analysis and generate new insights in protein biophysics.
Collapse
Affiliation(s)
- Vanni Doffini
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Gulati K, Adachi T. Profiling to Probing: Atomic force microscopy to characterize nano-engineered implants. Acta Biomater 2023; 170:15-38. [PMID: 37562516 DOI: 10.1016/j.actbio.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface modification of implants in the nanoscale or implant nano-engineering has been recognized as a strategy for augmenting implant bioactivity and achieving long-term implant success. Characterizing and optimizing implant characteristics is crucial to achieving desirable effects post-implantation. Modified implant enables tailored, guided and accelerated tissue integration; however, our understanding is limited to multicellular (bulk) interactions. Finding the nanoscale forces experienced by a single cell on nano-engineered implants will aid in predicting implants' bioactivity and engineering the next generation of bioactive implants. Atomic force microscope (AFM) is a unique tool that enables surface characterization and understanding of the interactions between implant surface and biological tissues. The characterization of surface topography using AFM to gauge nano-engineered implants' characteristics (topographical, mechanical, chemical, electrical and magnetic) and bioactivity (adhesion of cells) is presented. A special focus of the review is to discuss the use of single-cell force spectroscopy (SCFS) employing AFM to investigate the minute forces involved with the adhesion of a single cell (resident tissue cell or bacterium) to the surface of nano-engineered implants. Finally, the research gaps and future perspectives relating to AFM-characterized current and emerging nano-engineered implants are discussed towards achieving desirable bioactivity performances. This review highlights the use of advanced AFM-based characterization of nano-engineered implant surfaces via profiling (investigating implant topography) or probing (using a single cell as a probe to study precise adhesive forces with the implant surface). STATEMENT OF SIGNIFICANCE: Nano-engineering is emerging as a surface modification platform for implants to augment their bioactivity and achieve favourable treatment outcomes. In this extensive review, we closely examine the use of Atomic Force Microscopy (AFM) to characterize the properties of nano-engineered implant surfaces (topography, mechanical, chemical, electrical and magnetic). Next, we discuss Single-Cell Force Spectroscopy (SCFS) via AFM towards precise force quantification encompassing a single cell's interaction with the implant surface. This interdisciplinary review will appeal to researchers from the broader scientific community interested in implants and cell adhesion to implants and provide an improved understanding of the surface characterization of nano-engineered implants.
Collapse
Affiliation(s)
- Karan Gulati
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan; The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| | - Taiji Adachi
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
17
|
Devi A, Neupane K, Jung H, Neuman KC, Woodside MT. Nonlinear effects in optical trapping of titanium dioxide and diamond nanoparticles. Biophys J 2023; 122:3439-3446. [PMID: 37496270 PMCID: PMC10502464 DOI: 10.1016/j.bpj.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Optical trapping in biophysics typically uses micron-scale beads made of materials like polystyrene or glass to probe the target of interest. Using smaller beads made of higher-index materials could increase the time resolution of these measurements. We characterized the trapping of nanoscale beads made of diamond and titanium dioxide (TiO2) in a single-beam gradient trap. Calculating theoretical expectations for the trapping stiffness of these beads, we found good agreement with measured values. Trap stiffness was significantly higher for TiO2 beads, owing to notable enhancement from nonlinear optical effects, not previously observed for continuous-wave trapping. Trap stiffness was over 6-fold higher for TiO2 beads than polystyrene beads of similar size at 70 mW laser power. These results suggest that diamond and TiO2 nanobeads can be used to improve time resolution in optical tweezers measurements.
Collapse
Affiliation(s)
- Anita Devi
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Haksung Jung
- Laboratory of Single Molecule Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Quantum Magnetic Imaging Team, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Shrestha P, Yang D, Shih WM, Wong WP. Mapping Single-molecule Protein Complexes in 3D with DNA Nanoswitch Calipers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548386. [PMID: 37502860 PMCID: PMC10369884 DOI: 10.1101/2023.07.10.548386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ability to accurately map the 3D geometry of single-molecule complexes in trace samples would lead to new insights into molecular mechanics and provide an approach for single-molecule structural proteomics. To enable this, we have developed a high-resolution force-spectroscopy method capable of measuring multiple distances between labeled sites in natively folded protein complexes. Our approach combines reconfigurable nanoscale devices we call DNA Nanoswitch Calipers, which we have previously introduced, with a force-based barcoding system to distinguish each measurement location. We demonstrate our approach by reconstructing the tetrahedral geometry of biotin-binding sites in natively folded streptavidin, with 1.5-2.5 Å agreement to previously reported structures.
Collapse
|
19
|
Lou Y. Appetizer on soft matter physics concepts in mechanobiology. Dev Growth Differ 2023; 65:234-244. [PMID: 37126437 PMCID: PMC11520965 DOI: 10.1111/dgd.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Mechanosensing, the active responses of cells to the mechanics on multiple scales, plays an indispensable role in regulating cell behaviors and determining the fate of biological entities such as tissues and organs. Here, I aim to give a pedagogical illustration of the fundamental concepts of soft matter physics that aid in understanding biomechanical phenomena from the scale of tissues to proteins. Examples of up-to-date research are introduced to elaborate these concepts. Challenges in applying physics models to biology have also been discussed for biologists and physicists to meet in the field of mechanobiology.
Collapse
Affiliation(s)
- Yuting Lou
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
20
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
21
|
Abbas U, Chen J, Shao Q. Assessing Fairness of AlphaFold2 Prediction of Protein 3D Structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542006. [PMID: 37293014 PMCID: PMC10245900 DOI: 10.1101/2023.05.23.542006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
AlphaFold2 is reshaping biomedical research by enabling the prediction of a protein's 3D structure solely based on its amino acid sequence. This breakthrough reduces reliance on labor-intensive experimental methods traditionally used to obtain protein structures, thereby accelerating the pace of scientific discovery. Despite the bright future, it remains unclear whether AlphaFold2 can uniformly predict the wide spectrum of proteins equally well. Systematic investigation into the fairness and unbiased nature of its predictions is still an area yet to be thoroughly explored. In this paper, we conducted an in-depth analysis of AlphaFold2's fairness using data comprised of five million reported protein structures from its open-access repository. Specifically, we assessed the variability in the distribution of PLDDT scores, considering factors such as amino acid type, secondary structure, and sequence length. Our findings reveal a systematic discrepancy in AlphaFold2's predictive reliability, varying across different types of amino acids and secondary structures. Furthermore, we observed that the size of the protein exerts a notable impact on the credibility of the 3D structural prediction. AlphaFold2 demonstrates enhanced prediction power for proteins of medium size compared to those that are either smaller or larger. These systematic biases could potentially stem from inherent biases present in its training data and model architecture. These factors need to be taken into account when expanding the applicability of AlphaFold2.
Collapse
Affiliation(s)
- Usman Abbas
- Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Jin Chen
- Institute for Biomedical Informatics, University of Kentucky, Lexington, Kentucky, USA
| | - Qing Shao
- Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
22
|
Orzeł U, Pasznik P, Miszta P, Lorkowski M, Niewieczerzał S, Jakowiecki J, Filipek S. GS-SMD server for steered molecular dynamics of peptide substrates in the active site of the γ-secretase complex. Nucleic Acids Res 2023:7173862. [PMID: 37207343 DOI: 10.1093/nar/gkad409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Despite recent advances in research, the mechanism of Alzheimer's disease is not fully understood yet. Understanding the process of cleavage and then trimming of peptide substrates, can help selectively block γ-secretase (GS) to stop overproduction of the amyloidogenic products. Our GS-SMD server (https://gs-smd.biomodellab.eu/) allows cleaving and unfolding of all currently known GS substrates (more than 170 peptide substrates). The substrate structure is obtained by threading of the substrate sequence into the known structure of GS complex. The simulations are performed in an implicit water-membrane environment so they are performed rather quickly, 2-6 h per job, depending on the mode of calculations (part of GS complex or the whole structure). It is also possible to introduce mutations to the substrate and GS and pull any part of the substrate in any direction using the steered molecular dynamics (SMD) simulations with constant velocity. The obtained trajectories are visualized and analyzed in the interactive way. One can also compare multiple simulations using the interaction frequency analysis. GS-SMD server can be useful for revealing mechanisms of substrate unfolding and role of mutations in this process.
Collapse
Affiliation(s)
- Urszula Orzeł
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Paweł Pasznik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Marcin Lorkowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Szymon Niewieczerzał
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Aufderhorst-Roberts A, Cussons S, Brockwell DJ, Dougan L. Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel. SOFT MATTER 2023; 19:3167-3178. [PMID: 37067782 DOI: 10.1039/d2sm01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Folded protein hydrogels are prime candidates as tuneable biomaterials but it is unclear to what extent their mechanical properties have mesoscopic, as opposed to molecular origins. To address this, we probe hydrogels inspired by the muscle protein titin and engineered to the polyprotein I275, using a multimodal rheology approach. Across multiple protocols, the hydrogels consistently exhibit power-law viscoelasticity in the linear viscoelastic regime with an exponent β = 0.03, suggesting a dense fractal meso-structure, with predicted fractal dimension df = 2.48. In the nonlinear viscoelastic regime, the hydrogel undergoes stiffening and energy dissipation, indicating simultaneous alignment and unfolding of the folded proteins on the nanoscale. Remarkably, this behaviour is highly reversible, as the value of β, df and the viscoelastic moduli return to their equilibrium value, even after multiple cycles of deformation. This highlights a previously unrevealed diversity of viscoelastic properties that originate on both at the nanoscale and the mesoscopic scale, providing powerful opportunities for engineering novel biomaterials.
Collapse
Affiliation(s)
- Anders Aufderhorst-Roberts
- Department of Physics, Centre for Materials Physics, University of Durham, Durham, DH1 3LE, UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
24
|
Kuznets-Speck B, Limmer DT. Inferring equilibrium transition rates from nonequilibrium protocols. Biophys J 2023; 122:1659-1664. [PMID: 36964656 PMCID: PMC10183322 DOI: 10.1016/j.bpj.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
We develop a theory for inferring equilibrium transition rates from trajectories driven by a time-dependent force using results from stochastic thermodynamics. Applying the Kawasaki relation to approximate the nonequilibrium distribution function in terms of the equilibrium distribution function and the excess dissipation, we formulate a nonequilibrium transition state theory to estimate the rate enhancement over the equilibrium rate due to the nonequilibrium protocol. We demonstrate the utility of our theory in examples of pulling of harmonically trapped particles in one and two dimensions, as well as a semiflexible polymer with a reactive linker in three dimensions. We expect our purely thermodynamic approach will find use in both molecular simulation and force spectroscopy experiments.
Collapse
Affiliation(s)
| | - David T Limmer
- Chemistry Department, University of California, Berkeley, Berkeley, California; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Kavli Energy NanoSciences Institute, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
25
|
Gokulu IS, Banta S. Biotechnology applications of proteins functionalized with DNA oligonucleotides. Trends Biotechnol 2023; 41:575-585. [PMID: 36115723 DOI: 10.1016/j.tibtech.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
The functionalization of proteins with DNA through the formation of covalent bonds enables a wide range of biotechnology advancements. For example, single-molecule analytical methods rely on bioconjugated DNA as elastic biolinkers for protein immobilization. Labeling proteins with DNA enables facile protein identification, as well as spatial and temporal organization and control of protein within DNA-protein networks. Bioconjugation reactions can target native, engineered, and non-canonical amino acids (NCAAs) within proteins. In addition, further protein engineering via the incorporation of peptide tags and self-labeling proteins can also be used for conjugation reactions. The selection of techniques will depend on application requirements such as yield, selectivity, conjugation position, potential for steric hindrance, cost, commercial availability, and potential impact on protein function.
Collapse
Affiliation(s)
- Ipek Simay Gokulu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
26
|
Nakama T, Rossen A, Ebihara R, Yagi-Utsumi M, Fujita D, Kato K, Sato S, Fujita M. Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages. Chem Sci 2023; 14:2910-2914. [PMID: 36937586 PMCID: PMC10016334 DOI: 10.1039/d2sc05879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Confinement of molecules in a synthetic host can physically isolate even their unstable temporary structures, which has potential for application to protein transient structure analysis. Here we report the NMR snapshot observation of protein unfolding and refolding processes by confining a target protein in a self-assembled coordination cage. With increasing acetonitrile content in CD3CN/H2O media (50 to 90 vol%), the folding structure of a protein sharply denatured at 83 vol%, clearly revealing the regions of initial unfolding. Unfavorable aggregation of the protein leading to irreversible precipitation is completely prevented because of the spatial isolation of the single protein molecule in the cage. When the acetonitrile content reversed (84 to 70 vol%), the once-denatured protein started to regain its original folded structure at 80 vol%, showing that the protein folding/unfolding process can be referred to as a phase transition with hysteresis behavior.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Anouk Rossen
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Risa Ebihara
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Maho Yagi-Utsumi
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Daishi Fujita
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Koichi Kato
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Sota Sato
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
27
|
Li H. Single Molecule Force Spectroscopy Studies on Metalloproteins: Opportunities and Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1345-1353. [PMID: 36647634 DOI: 10.1021/acs.langmuir.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metalloproteins play important roles in a wide range of biological processes. Elucidating the mechanisms via which metalloproteins fold and constitute their metal centers is critical to the understanding of the functions and dynamics of metalloproteins. Owing to its superior force and length resolution, single-molecule force spectroscopy (SMFS) has evolved into a powerful tool to probe the unfolding and folding mechanisms of metalloproteins at the single level by forcing metalloproteins to unfold and then refold along a reaction coordinate defined by the applied stretching force. The folding of metalloproteins is complex and involves two interwound processes, the folding of the polypeptide chain and the constitution of the metal center. Experimental studies of the folding of metalloproteins are challenging. SMFS studies have allowed researchers to directly probe the folding and unfolding of metalloproteins at the single-molecule level and the effect of metal centers on the folding-unfolding energy landscape of metalloproteins. New mechanistic insights on the folding and unfolding of some metalloproteins have been obtained, demonstrating the power and unique advantages that SMFS techniques may offer. In this Perspective, using calcium-binding proteins and small iron-sulfur proteins as examples, I provide a concise overview of the information and insights that SMFS studies have provided to understand the folding and unfolding of metalloproteins. I also discuss the opportunities and challenges that are present in this fast-progressing area of research.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
28
|
Mukherjee S, Mepperi J, Sahu P, Barman DK, Kotamarthi HC. Single-Molecule Optical Tweezers As a Tool for Delineating the Mechanisms of Protein-Processing Mechanoenzymes. ACS OMEGA 2023; 8:87-97. [PMID: 36643560 PMCID: PMC9835622 DOI: 10.1021/acsomega.2c06044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Mechanoenzymes convert chemical energy from the hydrolysis of nucleotide triphosphates to mechanical energy for carrying out cellular functions ranging from DNA unwinding to protein degradation. Protein-processing mechanoenzymes either remodel the protein structures or translocate them across cellular compartments in an energy-dependent manner. Optical-tweezer-based single-molecule force spectroscopy assays have divulged information on details of chemo-mechanical coupling, directed motion, as well as mechanical forces these enzymes are capable of generating. In this review, we introduce the working principles of optical tweezers as a single-molecule force spectroscopy tool and assays developed to decipher the properties such as unfolding kinetics, translocation velocities, and step sizes by protein remodeling mechanoenzymes. We focus on molecular motors involved in protein degradation and disaggregation, i.e., ClpXP, ClpAP, and ClpB, and insights provided by single-molecule assays on kinetics and stepping dynamics during protein unfolding and translocation. Cellular activities such as protein synthesis, folding, and translocation across membranes are also energy dependent, and the recent single-molecule studies decoding the role of mechanical forces on these processes have been discussed.
Collapse
|
29
|
Tapia-Rojo R, Mora M, Board S, Walker J, Boujemaa-Paterski R, Medalia O, Garcia-Manyes S. Enhanced statistical sampling reveals microscopic complexity in the talin mechanosensor folding energy landscape. NATURE PHYSICS 2023; 19:52-60. [PMID: 36660164 PMCID: PMC7614079 DOI: 10.1038/s41567-022-01808-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Statistical mechanics can describe the major conformational ensembles determining the equilibrium free-energy landscape of a folding protein. The challenge is to capture the full repertoire of low-occurrence conformations separated by high kinetic barriers that define complex landscapes. Computationally, enhanced sampling methods accelerate the exploration of molecular rare events. However, accessing the entire protein's conformational space in equilibrium experiments requires technological developments to enable extended observation times. We developed single-molecule magnetic tweezers to capture over a million individual transitions as a single talin protein unfolds and refolds under force in equilibrium. When observed at classically-probed timescales, talin folds in an apparently uncomplicated two-state manner. As the sampling time extends from minutes to days, the underlying energy landscape exhibits gradually larger signatures of complexity, involving a finite number of well-defined rare conformations. A fluctuation analysis allows us to propose plausible structures of each low-probability conformational state. The physiological relevance of each distinct conformation can be connected to the binding of the cytoskeletal protein vinculin, suggesting an extra layer of complexity in talin-mediated mechanotransduction. More generally, our experiments directly test the fundamental notion that equilibrium dynamics depend on the observation timescale.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Corresponding authors: , ,
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Corresponding authors: , ,
| | - Stephanie Board
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
| | - Jane Walker
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
| | - Rajaa Boujemaa-Paterski
- Department of Biochemistry, Zurich University, Winterhurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, Zurich University, Winterhurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Corresponding authors: , ,
| |
Collapse
|
30
|
Beedle AEM, Garcia-Manyes S. The role of single protein elasticity in mechanobiology. NATURE REVIEWS. MATERIALS 2023; 8:10-24. [PMID: 37469679 PMCID: PMC7614781 DOI: 10.1038/s41578-022-00488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 07/21/2023]
Abstract
In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. Yet the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are comparatively not so well understood. With the advent, development and refining of single molecule nanomechanical techniques, enabling to exquisitely probe the conformational dynamics of individual proteins under the effect of a calibrated force, we have begun to acquire a comprehensive knowledge on the rich plethora of physicochemical principles that regulate the elasticity of single proteins. Here we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of such a prolific and burgeoning field.
Collapse
Affiliation(s)
- Amy EM Beedle
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
| |
Collapse
|
31
|
Rief M, Žoldák G. Single-molecule mechanical studies of chaperones and their clients. BIOPHYSICS REVIEWS 2022; 3:041301. [PMID: 38505517 PMCID: PMC10903372 DOI: 10.1063/5.0098033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/12/2022] [Indexed: 03/21/2024]
Abstract
Single-molecule force spectroscopy provides access to the mechanics of biomolecules. Recently, magnetic and laser optical tweezers were applied in the studies of chaperones and their interaction with protein clients. Various aspects of the chaperone-client interactions can be revealed based on the mechanical probing strategies. First, when a chaperone is probed under load, one can examine the inner workings of the chaperone while it interacts with and works on the client protein. Second, when protein clients are probed under load, the action of chaperones on folding clients can be studied in great detail. Such client folding studies have given direct access to observing actions of chaperones in real-time, like foldase, unfoldase, and holdase activity. In this review, we introduce the various single molecule mechanical techniques and summarize recent single molecule mechanical studies on heat shock proteins, chaperone-mediated folding on the ribosome, SNARE folding, and studies of chaperones involved in the folding of membrane proteins. An outlook on significant future developments is given.
Collapse
Affiliation(s)
- Matthias Rief
- Center for Functional Protein Assemblies (CPA), Physik Department, Technische Universität München, Ernst-Otto-Fischer-Str., 8, D-85748 Garching, Germany
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
32
|
Žoldák G. Protein Nanomechanics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3524. [PMID: 36234652 PMCID: PMC9565256 DOI: 10.3390/nano12193524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
For a comprehensive understanding of protein function and dynamics, it is crucial to study their mechanical properties [...].
Collapse
Affiliation(s)
- Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
33
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
34
|
Dong Y, Lin W, Laaksonen A, Ji X. Complementary Powerful Techniques for Investigating the Interactions of Proteins with Porous TiO2 and Its Hybrid Materials: A Tutorial Review. MEMBRANES 2022; 12:membranes12040415. [PMID: 35448385 PMCID: PMC9029952 DOI: 10.3390/membranes12040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Abstract
Understanding the adsorption and interaction between porous materials and protein is of great importance in biomedical and interface sciences. Among the studied porous materials, TiO2 and its hybrid materials, featuring distinct, well-defined pore sizes, structural stability and excellent biocompatibility, are widely used. In this review, the use of four powerful, synergetic and complementary techniques to study protein-TiO2-based porous materials interactions at different scales is summarized, including high-performance liquid chromatography (HPLC), atomic force microscopy (AFM), surface-enhanced Raman scattering (SERS), and Molecular Dynamics (MD) simulations. We expect that this review could be helpful in optimizing the commonly used techniques to characterize the interfacial behavior of protein on porous TiO2 materials in different applications.
Collapse
Affiliation(s)
- Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
- Correspondence: (Y.D.); (X.J.)
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden;
- Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, ‘‘Petru Poni” Institute of Macromolecular Chemistry, 700469 Iasi, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden;
- Correspondence: (Y.D.); (X.J.)
| |
Collapse
|
35
|
Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, Saito S. Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat Commun 2022; 13:303. [PMID: 35027559 PMCID: PMC8758707 DOI: 10.1038/s41467-022-27972-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the transmission of nanoscale forces in the pico-to-nanonewton range is important in polymer physics. While physical approaches have limitations in analyzing the local force distribution in condensed environments, chemical analysis using force probes is promising. However, there are stringent requirements for probing the local forces generated before structural damage. The magnitude of those forces corresponds to the range below covalent bond scission (from 200 pN to several nN) and above thermal fluctuation (several pN). Here, we report a conformationally flexible dual-fluorescence force probe with a theoretically estimated threshold of approximately 100 pN. This probe enables ratiometric analysis of the distribution of local forces in a stretched polymer chain network. Without changing the intrinsic properties of the polymer, the force distribution was reversibly monitored in real time. Chemical control of the probe location demonstrated that the local stress concentration is twice as biased at crosslinkers than at main chains, particularly in a strain-hardening region. Due to the high sensitivity, the percentage of the stressed force probes was estimated to be more than 1000 times higher than the activation rate of a conventional mechanophore.
Collapse
Affiliation(s)
- Ryota Kotani
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Soichi Yokoyama
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | | | - Atsuhiro Osuka
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
- PRESTO, Japan Science and Technology Agency, Kyoto, 606-8502, Japan.
| |
Collapse
|
36
|
Sorokina I, Mushegian AR, Koonin EV. Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? Int J Mol Sci 2022; 23:521. [PMID: 35008947 PMCID: PMC8745595 DOI: 10.3390/ijms23010521] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.
Collapse
Affiliation(s)
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA 22314, USA;
- Clare Hall College, University of Cambridge, Cambridge CB3 9AL, UK
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
37
|
Li J, Li H. New insights into the folding–unfolding mechanism and conformations of cytochrome C. Chem Sci 2022; 13:7498-7508. [PMID: 35872809 PMCID: PMC9241957 DOI: 10.1039/d2sc01126c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
Optical trapping experiments offer new insights into the folding and unfolding of cytochrome C.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
38
|
|