1
|
Khairulin A, Kuchumov AG, Silberschmidt VV. In silico model of stent performance in multi-layered artery using 2-way fluid-structure interaction: Influence of boundary conditions and vessel length. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108327. [PMID: 39018788 DOI: 10.1016/j.cmpb.2024.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND AND OBJECTIVE Atherosclerotic lesions of coronary arteries (stenosis) are caused by the buildup of lipids and blood-borne substances within the artery wall. Their qualitative and rapid assessment is still a challenging task. The primary therapy for this pathology involves implanting coronary stents, which help to restore the blood flow in atherosclerosis-prone arteries. In-stent restenosis is a stenting-procedure complication detected in about 10-40% of patients. A numerical study using 2-way fluid-structure interaction (FSI) assesses the stenting procedure quality and can decrease the number of negative post-operative results. Nevertheless, boundary conditions (BCs) used in simulation play a crucial role in implementation of an adequate computational analysis. METHODS Three CoCr stents designs were modelled with the suggested approach. A multi-layer structure describing the artery and plaque with anisotropic hyperelastic mechanical properties was adopted in this study. Two kinds of boundary conditions for a solid domain were examined - fixed support (FS) and remote displacement (RD) - to assess their impact on the hemodynamic parameters to predict restenosis. Additionally, the influence of artery elongation (short-artery model vs. long-artery model) on numerical results with the FS boundary condition was analyzed. RESULTS The comparison of FS and RD boundary conditions demonstrated that the variation of hemodynamic parameters values did not exceed 2%. The analysis of short-artery and long-artery models revealed that the difference in hemodynamic parameters was less than 5.1%, and in most cases, it did not exceed 2.5%. The RD boundary conditions were found to reduce the computation time by up to 1.7-2.0 times compared to FS. Simple stent model was shown to be susceptible to restenosis development, with maximum WSS values equal to 183 Pa, compared to much lower values for other two stents. CONCLUSIONS The study revealed that the stent design significantly affected the hemodynamic parameters as restenosis predictors. Moreover, the stress-strain state of the system artery-plaque-stent also depends on a proper choice of boundary conditions.
Collapse
Affiliation(s)
- Aleksandr Khairulin
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, Komsomolskiy prospect 29, Perm 614990, Russia; Biofluids Laboratory, Perm National Research Polytechnic University, Komsomolskiy prospect 29, Perm 614990, Russia
| | - Alex G Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, Komsomolskiy prospect 29, Perm 614990, Russia; Biofluids Laboratory, Perm National Research Polytechnic University, Komsomolskiy prospect 29, Perm 614990, Russia.
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
2
|
Ashrafee A, Yashfe SMS, Khan NS, Islam MT, Azam MG, Arafat MT. Design of experiment approach to identify the dominant geometrical feature of left coronary artery influencing atherosclerosis. Biomed Phys Eng Express 2024; 10:035008. [PMID: 38430572 DOI: 10.1088/2057-1976/ad2f59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
Background and Objective. Coronary artery geometry heavily influences local hemodynamics, potentially leading to atherosclerosis. Consequently, the unique geometrical configuration of an individual by birth can be associated with future risk of atherosclerosis. Although current researches focus on exploring the relationship between local hemodynamics and coronary artery geometry, this study aims to identify the order of influence of the geometrical features through systematic experiments, which can reveal the dominant geometrical feature for future risk assessment.Methods. According to Taguchi's method of design of experiment (DoE), the left main stem (LMS) length (lLMS), curvature (kLMS), diameter (dLMS) and the bifurcation angle between left anterior descending (LAD) and left circumflex (LCx) artery (αLAD-LCx) of two reconstructed patient-specific left coronary arteries (LCA) were varied in three levels to create L9 orthogonal array. Computational fluid dynamic (CFD) simulations with physiological boundary conditions were performed on the resulting eighteen LCA models. Average helicity intensity (h2) and relative atheroprone area (RAA) of near-wall hemodynamic descriptors were analyzed.Results. The proximal LAD (LADproximal) was identified to be the most atheroprone region of the left coronary artery due to higherh2,large RAA of time averaged wall shear stress (TAWSS < 0.4 Pa), oscillatory shear index (OSI ∼ 0.5) and relative residence time (RRT > 4.17 Pa-1). In both patient-specific cases, based onh2and TAWSS,dlmsis the dominant geometric parameter while based on OSI and RRT,αLAD-LCxis the dominant one influencing hemodynamic condition in proximal LAD (p< 0.05). Based on RRT, the rank of the geometrical factors is:αLAD-LCx>dLMS>lLMS>kLMS, indicating thatαLAD-LCxis the most dominant geometrical factor affecting hemodynamics at proximal LAD which may influence atherosclerosis.Conclusion. The proposed identification of the rank of geometrical features of LCA and the dominant feature may assist clinicians in predicting the possibility of atherosclerosis, of an individual, long before it will occur. This study can further be translated to be used to rank the influence of several arterial geometrical features at different arterial locations to explore detailed relationships between the arterial geometrical features and local hemodynamics.
Collapse
Affiliation(s)
- Adiba Ashrafee
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka - 1205, Bangladesh
| | - Syed Muiz Sadat Yashfe
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka - 1205, Bangladesh
| | - Nusrat S Khan
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka - 1205, Bangladesh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Md Tariqul Islam
- Department of Radiology and Imaging, Sheikh Hasina National Institute of Burn & Plastic Surgery, Dhaka - 1205, Bangladesh
| | - M G Azam
- Department of Cardiology, National Institute of Cardiovascular Diseases (NICVD), Dhaka - 1207, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka - 1205, Bangladesh
| |
Collapse
|
3
|
Johari NH, Menichini C, Hamady M, Xu XY. Computational modeling of low-density lipoprotein accumulation at the carotid artery bifurcation after stenting. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3772. [PMID: 37730441 DOI: 10.1002/cnm.3772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Restenosis typically occurs in regions of low and oscillating wall shear stress, which also favor the accumulation of atherogenic macromolecules such as low-density lipoprotein (LDL). This study aims to evaluate LDL transport and accumulation at the carotid artery bifurcation following carotid artery stenting (CAS) by means of computational simulation. The computational model consists of coupled blood flow and LDL transport, with the latter being modeled as a dilute substance dissolved in the blood and transported by the flow through a convection-diffusion transport equation. The endothelial layer was assumed to be permeable to LDL, and the hydraulic conductivity of LDL was shear-dependent. Anatomically realistic geometric models of the carotid bifurcation were built based on pre- and post-stent computed tomography (CT) scans. The influence of stent design was investigated by virtually deploying two different types of stents (open- and closed-cell stents) into the same carotid bifurcation model. Predicted LDL concentrations were compared between the post-stent carotid models and the relatively normal contralateral model reconstructed from patient-specific CT images. Our results show elevated LDL concentration in the distal section of the stent in all post-stent models, where LDL concentration is 20 times higher than that in the contralateral carotid. Compared with the open-cell stents, the closed-cell stents have larger areas exposed to high LDL concentration, suggesting an increased risk of stent restenosis. This computational approach is readily applicable to multiple patient studies and, once fully validated against follow-up data, it can help elucidate the role of stent strut design in the development of in-stent restenosis after CAS.
Collapse
Affiliation(s)
- Nasrul H Johari
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Centre for Advanced Industrial Technology, University Malaysia Pahang, Pekan, Pahang, Malaysia
| | - Claudia Menichini
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Mohamad Hamady
- Department of Surgery & Cancer, Imperial College London, St. Mary's Campus, London, UK
| | - Xiao Y Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
4
|
Oyejide AJ, Awonusi AA, Ige EO. Fluid-structure interaction study of hemodynamics and its biomechanical influence on carotid artery atherosclerotic plaque deposits. Med Eng Phys 2023; 117:103998. [PMID: 37331752 DOI: 10.1016/j.medengphy.2023.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Atherosclerotic plaque deposits are common causes of blood flow disruption in the carotid artery bifurcation and the associated fluid mechanics has been extensively studied using Computational Fluid Dynamics (CFD) and Fluid Structure Interaction (FSI). However, the elastic responses of plaques to hemodynamics in the carotid artery bifurcation has not been deeply studied using either of the above-mentioned numerical techniques. In this study, a two-way FSI study was coupled with CFD technique, using Arbitrary-Lagrangian-Eulerian method, to study the biomechanics of blood flow on nonlinear and hyperelastic calcified plaque deposits in a realistic geometry of the carotid sinus. FSI parameters such as total mesh displacement and von Misses stress on the plaque, as well as flow velocity and blood pressure around the plaques, were analyzed and compared to variables such as velocity streamline, pressure and wall shear stress obtained from CFD simulation in a healthy model. The blood flow simulations reveal complete reversed blood flow behavior in the internal carotid artery, ICAs and external carotid artery, ECAs for both cases. In particular, this study suggests that plaques, irrespective of the masses, possess a high yielding response to hemodynamic forces at the attaching edges, while the surfaces are vulnerable to rupture.
Collapse
Affiliation(s)
- Ayodele James Oyejide
- Department of Biomedical Engineering, Afe Babalola University, Ado-Ekiti 360231, Nigeria
| | | | - Ebenezer Olubunmi Ige
- Department of Biomedical Engineering, Afe Babalola University, Ado-Ekiti 360231, Nigeria; Department of Mechanical Engineering, Rochester Institute of Technology, NY 14623, USA.
| |
Collapse
|
5
|
Li X, Simakov S, Liu Y, Liu T, Wang Y, Liang F. The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study. Bioengineering (Basel) 2023; 10:709. [PMID: 37370640 DOI: 10.3390/bioengineering10060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Aortic valve disease (AVD) often coexists with coronary artery disease (CAD), but whether and how the two diseases are correlated remains poorly understood. In this study, a zero-three dimensional (0-3D) multi-scale modeling method was developed to integrate coronary artery hemodynamics, aortic valve dynamics, coronary flow autoregulation mechanism, and systemic hemodynamics into a unique model system, thereby yielding a mathematical tool for quantifying the influences of aortic valve stenosis (AS) and aortic valve regurgitation (AR) on hemodynamics in large coronary arteries. The model was applied to simulate blood flows in six patient-specific left anterior descending coronary arteries (LADs) under various aortic valve conditions (i.e., control (free of AVD), AS, and AR). Obtained results showed that the space-averaged oscillatory shear index (SA-OSI) was significantly higher under the AS condition but lower under the AR condition in comparison with the control condition. Relatively, the overall magnitude of wall shear stress was less affected by AVD. Further data analysis revealed that AS induced the increase in OSI in LADs mainly through its role in augmenting the low-frequency components of coronary flow waveform. These findings imply that AS might increase the risk or progression of CAD by deteriorating the hemodynamic environment in coronary arteries.
Collapse
Affiliation(s)
- Xuanyu Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sergey Simakov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Youjun Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Taiwei Liu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Kashyap V, Gharleghi R, Li DD, McGrath-Cadell L, Graham RM, Ellis C, Webster M, Beier S. Accuracy of vascular tortuosity measures using computational modelling. Sci Rep 2022; 12:865. [PMID: 35039557 PMCID: PMC8764056 DOI: 10.1038/s41598-022-04796-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
Severe coronary tortuosity has previously been linked to low shear stresses at the luminal surface, yet this relationship is not fully understood. Several previous studies considered different tortuosity metrics when exploring its impact of on the wall shear stress (WSS), which has likely contributed to the ambiguous findings in the literature. Here, we aim to analyze different tortuosity metrics to determine a benchmark for the highest correlating metric with low time-averaged WSS (TAWSS). Using Computed Tomography Coronary Angiogram (CTCA) data from 127 patients without coronary artery disease, we applied all previously used tortuosity metrics to the left main coronary artery bifurcation, and to its left anterior descending and left circumflex branches, before modelling their TAWSS using computational fluid dynamics (CFD). The tortuosity measures included tortuosity index, average absolute-curvature, root-mean-squared (RMS) curvature, and average squared-derivative-curvature. Each tortuosity measure was then correlated with the percentage of vessel area that showed a < 0.4 Pa TAWSS, a threshold associated with altered endothelial cell cytoarchitecture and potentially higher disease risk. Our results showed a stronger correlation between curvature-based versus non-curvature-based tortuosity measures and low TAWSS, with the average-absolute-curvature showing the highest coefficient of determination across all left main branches (p < 0.001), followed by the average-squared-derivative-curvature (p = 0.001), and RMS-curvature (p = 0.002). The tortuosity index, the most widely used measure in literature, showed no significant correlation to low TAWSS (p = 0.86). We thus recommend the use of average-absolute-curvature as a tortuosity measure for future studies.
Collapse
Affiliation(s)
- Vishesh Kashyap
- Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, USA
| | - Ramtin Gharleghi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Darson D Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Lucy McGrath-Cadell
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | | | - Susann Beier
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Chiastra C, Mazzi V, Lodi Rizzini M, Calò K, Corti A, Acquasanta A, De Nisco G, Belliggiano D, Cerrato E, Gallo D, Morbiducci U. Coronary Artery Stenting Affects Wall Shear Stress Topological Skeleton. J Biomech Eng 2022; 144:1131202. [PMID: 35015058 DOI: 10.1115/1.4053503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 01/09/2023]
Abstract
Despite the important advancements in the stent technology for the treatment of diseased coronary arteries, major complications still affect the post-operative long-term outcome. The stent-induced flow disturbances, and especially the altered wall shear stress (WSS) profile at the strut level, play an important role in the pathophysiological mechanisms leading to stent thrombosis (ST) and in-stent restenosis (ISR). In this context, the analysis of the WSS topological skeleton is gaining more and more interest by extending the current understanding of the association between local hemodynamics and vascular diseases. The present study aims to analyze the impact that a deployed coronary stent has on the WSS topological skeleton. Computational fluid dynamics simulations were performed in three stented human coronary artery geometries reconstructed from clinical images. The selected cases presented stents with different designs (i.e., two contemporary drug eluting stents and one bioresorbable scaffold) and included regions with stent malapposition or overlapping. A recently proposed Eulerian-based approach was applied to analyze the WSS topological skeleton features. The results highlighted that the presence of single or multiple stents within a coronary artery markedly impacts the WSS topological skeleton. In particular, repetitive patterns of WSS divergence were observed at the luminal surface, highlighting a WSS contraction action proximal to the struts and a WSS expansion action distal to the struts. This WSS action pattern was independent from the stent design. In conclusions, these findings could contribute to a deeper understanding of the hemodynamic-driven processes underlying ST and ISR.
Collapse
Affiliation(s)
- Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Valentina Mazzi
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Lodi Rizzini
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Karol Calò
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alessandro Acquasanta
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Giuseppe De Nisco
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Davide Belliggiano
- Cardiology Division, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Enrico Cerrato
- Interventional Cardiology Unit, San Luigi Gonzaga University Hospital, Orbassano, and Rivoli Infermi Hospital, Rivoli, Turin, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
8
|
Gamage PT, Dong P, Lee J, Gharaibeh Y, Zimin VN, Dallan LAP, Bezerra HG, Wilson DL, Gu L. Hemodynamic alternations following stent deployment and post-dilation in a heavily calcified coronary artery: In silico and ex-vivo approaches. Comput Biol Med 2021; 139:104962. [PMID: 34715552 DOI: 10.1016/j.compbiomed.2021.104962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023]
Abstract
In this work, hemodynamic alterations in a patient-specific, heavily calcified coronary artery following stent deployment and post-dilations are quantified using in silico and ex-vivo approaches. Three-dimensional artery models were reconstructed from OCT images. Stent deployment and post-dilation with various inflation pressures were performed through both the finite element method (FEM) and ex vivo experiments. Results from FEM agreed very well with the ex-vivo measurements, interms of lumen areas, stent underexpansion, and strut malapposition. In addition, computational fluid dynamics (CFD) simulations were performed to delineate the hemodynamic alterations after stent deployment and post-dilations. A pressure time history at the inlet and a lumped parameter model (LPM) at the outlet were adopted to mimic the aortic pressure and the distal arterial tree, respectively. The pressure drop across the lesion, pertaining to the clinical measure of instantaneous wave-free flow ratio (iFR), was investigated. Results have shown that post-dilations are necessary for the lumen gain as well as the hemodynamic restoration towards hemostasis. Malapposed struts induced much higher shear rate, flow disturbances and lower time-averaged wall shear stress (TAWSS) around struts. Post-dilations mitigated the strut malapposition, and thus the shear rate. Moreover, stenting induced larger area of low TAWSS (<0.4 Pa) and lager volume of high shear rate (>2000 s-1), indicating higher risks of in-stent restenosis (ISR) and stent thrombosis (ST), respectively. Oscillatory shear index (OSI) and relative residence time (RRT) indicated the wall regions more prone to ISR are located near the malapposed stent struts.
Collapse
Affiliation(s)
- Peshala T Gamage
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vladislav N Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Luis A P Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, The University of South Florida, Tampa, FL, 33606, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
9
|
Carpenter HJ, Gholipour A, Ghayesh MH, Zander AC, Psaltis PJ. In Vivo Based Fluid-Structure Interaction Biomechanics of the Left Anterior Descending Coronary Artery. J Biomech Eng 2021; 143:081001. [PMID: 33729476 DOI: 10.1115/1.4050540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/25/2022]
Abstract
A fluid-structure interaction-based biomechanical model of the entire left anterior descending coronary artery is developed from in vivo imaging via the finite element method in this paper. Included in this investigation is ventricle contraction, three-dimensional motion, all angiographically visible side branches, hyper/viscoelastic artery layers, non-Newtonian and pulsatile blood flow, and the out-of-phase nature of blood velocity and pressure. The fluid-structure interaction model is based on in vivo angiography of an elite athlete's entire left anterior descending coronary artery where the influence of including all alternating side branches and the dynamical contraction of the ventricle is investigated for the first time. Results show the omission of side branches result in a 350% increase in peak wall shear stress and a 54% decrease in von Mises stress. Peak von Mises stress is underestimated by up to 80% when excluding ventricle contraction and further alterations in oscillatory shear indices are seen, which provide an indication of flow reversal and has been linked to atherosclerosis localization. Animations of key results are also provided within a video abstract. We anticipate that this model and results can be used as a basis for our understanding of the interaction between coronary and myocardium biomechanics. It is hoped that further investigations could include the passive and active components of the myocardium to further replicate in vivo mechanics and lead to an understanding of the influence of cardiac abnormalities, such as arrythmia, on coronary biomechanical responses.
Collapse
Affiliation(s)
- Harry J Carpenter
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alireza Gholipour
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia
| |
Collapse
|
10
|
A multi-objective optimization of stent geometries. J Biomech 2021; 125:110575. [PMID: 34186293 DOI: 10.1016/j.jbiomech.2021.110575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
Stents are scaffolding cardiovascular implants used to restore blood flow in narrowed arteries. However, the presence of the stent alters local blood flow and shear stresses on the surrounding arterial wall, which can cause adverse tissue responses and increase the risk of adverse outcomes. There is a need for optimization of stent designs for hemodynamic performance. We used multi-objective optimization to identify ideal combinations of design variables by assessing potential trade-offs based on common hemodynamic indices associated with clinical risk and mechanical performance of the stents. We studied seven design variables including strut cross-section, strut dimension, strut angle, cell alignment, cell height, connector type and connector arrangement. Optimization objectives were the percentage of vessel area exposed to adversely low time averaged WSS (TAWSS) and adversely high Wall Shear Stress (WSS) assessed using computational fluid dynamics modeling, as well as radial stiffness of the stent using FEA simulation. Two multi-objective optimization algorithms were used and compared to iteratively predict ideal designs. Out of 50 designs, three best designs with respect to each of the three objectives, and two designs in regard to overall performance were identified.
Collapse
|
11
|
Wei L, Wang J, Chen Q, Li Z. Impact of stent malapposition on intracoronary flow dynamics: An optical coherence tomography-based patient-specific study. Med Eng Phys 2021; 94:26-32. [PMID: 34303498 DOI: 10.1016/j.medengphy.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Percutaneous coronary intervention with stent implantation has emerged as a popular approach to treat coronary artery stenosis. Stent malapposition (SM), also referred as incomplete stent apposition, could reduce stent tissue coverage and hence increase the risk of late stent thrombosis. The objective of this study was to investigate the impact of SM on intracoronary flow dynamics by combining optical coherence tomography (OCT) image-based model reconstruction and computational analysis. Firstly, a stenosed coronary artery model was reconstructed from OCT and angiography imaging data of a patient. Two structural analyses were carried out to simulate two types of coronary artery stent implantations: a fully-apposed (FA) case and a SM case. Then, based on the two deformed coronary geometries, two computational fluid dynamics (CFD) analyses were performed to evaluate the differences of hemodynamic metrics between the FA and the SM cases, including wall shear stress (WSS), time-averaged WSS (TWSS), oscillatory shear index (OSI), WSS gradient (WSSG), time-averaged WSSG (TWSSG), and relative residence time (RRT). The results indicated that maximum flow velocity was higher in the SM case than that of the FA case, due to the incomplete expansion of the stent and artery. Moreover, the SM case had a lower percentage of areas of adverse WSS (< 0.5 Pa) and RRT (> 10/Pa) but a higher percentage of areas of adverse OSI (> 0.1) and WSSG (> 5000 Pa/m). Specifically, the differences of OSI, WSSG, and RRT between the two cases were relatively small. It was suggested that SM might not be responsible for negative hemodynamic metrics which would further result in stent thrombosis on the basis of the present specific model.
Collapse
Affiliation(s)
- Lingling Wei
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Qiang Chen
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhiyong Li
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia.
| |
Collapse
|
12
|
Impact of Malapposed and Overlapping Stents on Hemodynamics: A 2D Parametric Computational Fluid Dynamics Study. MATHEMATICS 2021. [DOI: 10.3390/math9080795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite significant progress, malapposed or overlapped stents are a complication that affects daily percutaneous coronary intervention (PCI) procedures. These malapposed stents affect blood flow and create a micro re-circulatory environment. These disturbances are often associated with a change in Wall Shear Stress (WSS), Time-averaged WSS (TAWSS), relative residence time (RRT) and oscillatory character of WSS and disrupt the delicate balance of vascular biology, providing a possible source of thrombosis and restenosis. In this study, 2D axisymmetric parametric computational fluid dynamics (CFD) simulations were performed to systematically analyze the hemodynamic effects of malapposition and stent overlap for two types of stents (drug-eluting stent and a bioresorbable stent). The results of the modeling are mainly analyzed using streamlines, TAWSS, oscillatory shear index (OSI) and RRT. The risks of restenosis and thrombus are evaluated according to commonly accepted thresholds for TAWSS and OSI. The small malapposition distances (MD) cause both low TAWSS and high OSI, which are potential adverse outcomes. The region of low OSI decrease with MD. Overlap configurations produce areas with low WSS and high OSI. The affected lengths are relatively insensitive to the overlap distance. The effects of strut size are even more sensitive and adverse for overlap configurations compared to a well-applied stent.
Collapse
|
13
|
Escuer J, Aznar I, McCormick C, Peña E, McGinty S, Martínez MA. Influence of vessel curvature and plaque composition on drug transport in the arterial wall following drug-eluting stent implantation. Biomech Model Mechanobiol 2021; 20:767-786. [PMID: 33533998 DOI: 10.1007/s10237-020-01415-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023]
Abstract
In the last decade, many computational models have been developed to describe the transport of drug eluted from stents and the subsequent uptake into arterial tissue. Each of these models has its own set of limitations: for example, models typically employ simplified stent and arterial geometries, some models assume a homogeneous arterial wall, and others neglect the influence of blood flow and plasma filtration on the drug transport process. In this study, we focus on two common limitations. Specifically, we provide a comprehensive investigation of the influence of arterial curvature and plaque composition on drug transport in the arterial wall following drug-eluting stent implantation. The arterial wall is considered as a three-layered structure including the subendothelial space, the media and the adventitia, with porous membranes separating them (endothelium, internal and external elastic lamina). Blood flow is modelled by the Navier-Stokes equations, while Darcy's law is used to calculate plasma filtration through the porous layers. Our findings demonstrate that arterial curvature and plaque composition have important influences on the spatiotemporal distribution of drug, with potential implications in terms of effectiveness of the treatment. Since the majority of computational models tend to neglect these features, these models are likely to be under- or over-estimating drug uptake and redistribution in arterial tissue.
Collapse
Affiliation(s)
- Javier Escuer
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Irene Aznar
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Estefanía Peña
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Miguel A Martínez
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain. .,, María de Luna, 3, 50018, Zaragoza, Spain.
| |
Collapse
|
14
|
Ferroni M, De Gaetano F, Cereda MG, Boschetti F. Evaluation of the ocular fluid dynamic effects on intraocular magnesium-based device: A comparison between CFD and FSI approaches. Med Eng Phys 2020; 86:20-28. [PMID: 33261729 DOI: 10.1016/j.medengphy.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
Magnesium is an essential element for the ocular functions and used for the realization of medical devices due to its low corrosion resistance, bioresorbable nature and biocompatibility. Wet age-related macular degeneration is one of the main causes of blindness with patients treated by intravitreal injections of inhibitor drugs. According to the need to reduce the number of injections, the development of new drug delivery devices able to extend the therapeutical outcomes is mandatory and magnesium can be considered as a promising candidate. The aim of the work concerns the evaluation of the ocular fluid dynamic role on a magnesium-based device placed in the vitreous chamber. Particularly, the fluid-induced shear stress field on the surfaces in contact with the liquefied vitreous was studied. Both computational fluid dynamic and fluid-structure interaction approaches were proposed and then compared. Saccadic motion was implemented to recreate the vitreous fluid dynamics. High changes in terms of fluid-induced shear stress field varying the CFD and FSI numerical approaches and kinematic parameters of the saccadic function can be noticed. The comparison between CFD and FSI approaches showed minor significant differences and both implementations suggested the possibility to obtain a uniform and controlled corrosion of the device.
Collapse
Affiliation(s)
- Marco Ferroni
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; MgShell S.r.l., Milan, Italy.
| | - Francesco De Gaetano
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; MgShell S.r.l., Milan, Italy
| | - Matteo Giuseppe Cereda
- Eye Clinic, Department of Biomedical and clinical science "Luigi Sacco", Sacco Hospital, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Federica Boschetti
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
15
|
He S, Liu W, Qu K, Yin T, Qiu J, Li Y, Yuan K, Zhang H, Wang G. Effects of different positions of intravascular stent implantation in stenosed vessels on in-stent restenosis: An experimental and numerical simulation study. J Biomech 2020; 113:110089. [PMID: 33181394 DOI: 10.1016/j.jbiomech.2020.110089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Percutaneous coronary intervention (PCI) has been widely used in the treatment of atherosclerosis, while in-stent restenosis (ISR) has not been completely resolved. Studies have shown that changes in intravascular mechanical environment are related to ISR. Hence, an in-depth understanding of the effects of stent intervention on vascular mechanics is important for clinically optimizing stent implantation and relieving ISR. Nine rabbits with stenotic carotid artery were collected by balloon injury. Intravascular stents were implanted into different longitudinal positions (proximal, middle and distal relative to the stenotic area) of the stenotic vessels for numerical simulations. Optical coherence tomography (OCT) scanning was performed to reconstruct the three-dimensional configuration of the stented carotid artery and blood flow velocity waveforms were collected by Doppler ultrasound. The numerical simulations were performed through direct solution of Naiver-Stokes equation in ANSYS. Results showed that the distributions of time-averaged wall shear stress (TAWSS), oscillating shear index (OSI) and relative residual time (RRT) in near-end segment were distinctively different from other regions of the stent which considered to promote restenosis for all three models. Spearman rank-correlation analysis showed a significant correlation between hemodynamic descriptors and the stent longitudinal positions (rTAWSS = -0.718, rOSI = 0.898, rRRT = 0.818, p < 0.01). Histology results of the near-end segment showed neointima thickening deepened with the longitudinal positions of stent which was consistent with the numerical simulations. The results suggest that stent implantation can promote restenosis at the near-end segment. As the stenting position moves to distal end, the impact on ISR is more significant.
Collapse
Affiliation(s)
- Shicheng He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Wanling Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| | - Yan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Kunshan Yuan
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, PR China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
16
|
Lee W, Cho SW, Allahwala UK, Bhindi R. Numerical study to identify the effect of fluid presence on the mechanical behavior of the stents during coronary stent expansion. Comput Methods Biomech Biomed Engin 2020; 23:744-754. [PMID: 32427003 DOI: 10.1080/10255842.2020.1763967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, structural analysis and one-way fluid-structure interaction (FSI) analysis were performed to identify the effect of fluid presence on the mechanical behavior of the stents during stent expansion. An idealized vessel model with stenosis was used for simulation, and stents made of metal and polymer were assumed, respectively. The bilinear model was applied to the stents, and the Mooney-Rivlin model was applied to the arterial wall and plaque. The blood used in the FSI analysis was assumed to be a non-Newtonian fluid. As a result of all numerical simulations, the von Mises stress, the first principal stress and the displacement were calculated as the mechanical behaviors. Through the comparison of the results of the structural analysis with those of the one-way FSI analysis, our results indicated the fluid had no significant influence on the expansion of the metal stent. However, it was found that the expansion of the polymer stent affected by the presence of fluid. These findings meant the one-way FSI technique was suggested to achieve an accurate analysis when targeting a polymer stent for numerical simulation.
Collapse
Affiliation(s)
- Wookjin Lee
- Department of Cardiology, Kolling Institute of Medical Research, Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Seong Wook Cho
- School of Mechanical Engineering, Chung-Ang University, Seoul, South Korea
| | - Usaid K Allahwala
- Department of Cardiology, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Ravinay Bhindi
- Department of Cardiology, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Cardiovascular models for personalised medicine: Where now and where next? Med Eng Phys 2020; 72:38-48. [PMID: 31554575 DOI: 10.1016/j.medengphy.2019.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
The aim of this position paper is to provide a brief overview of the current status of cardiovascular modelling and of the processes required and some of the challenges to be addressed to see wider exploitation in both personal health management and clinical practice. In most branches of engineering the concept of the digital twin, informed by extensive and continuous monitoring and coupled with robust data assimilation and simulation techniques, is gaining traction: the Gartner Group listed it as one of the top ten digital trends in 2018. The cardiovascular modelling community is starting to develop a much more systematic approach to the combination of physics, mathematics, control theory, artificial intelligence, machine learning, computer science and advanced engineering methodology, as well as working more closely with the clinical community to better understand and exploit physiological measurements, and indeed to develop jointly better measurement protocols informed by model-based understanding. Developments in physiological modelling, model personalisation, model outcome uncertainty, and the role of models in clinical decision support are addressed and 'where-next' steps and challenges discussed.
Collapse
|
18
|
Migliori S, Chiastra C, Bologna M, Montin E, Dubini G, Genuardi L, Aurigemma C, Mainardi L, Burzotta F, Migliavacca F. Application of an OCT-based 3D reconstruction framework to the hemodynamic assessment of an ulcerated coronary artery plaque. Med Eng Phys 2020; 78:74-81. [PMID: 32037282 DOI: 10.1016/j.medengphy.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/23/2019] [Accepted: 12/01/2019] [Indexed: 01/09/2023]
Abstract
The rupture of a vulnerable plaque, known as ulceration, is the most common cause of myocardial infarction. It can be recognized by angiographic features, such as prolonged intraluminal filling and delayed clearance of the contrast liquid. The diagnosis of such an event is an open challenge due to the limited angiographic resolution and acquisition frequency. The treatment of ulcerated plaques is an open discussion, due to the high heterogeneity and the lack of evidences that support particular strategies. Therefore, the therapeutic decision should follow a detailed investigation with angiography and intravascular imaging, such as optical coherence tomography (OCT), to locate the lesion, besides its geometric features and the lumen occlusion severity. The aim of this study is the application of a framework for the in-silico analysis of the disrupted hemodynamics due to an ulcerated lesion. The study employed a validated OCT-based reconstruction methodology and computational fluid dynamics (CFD) simulations for the computation of local hemodynamic quantities, such as wall shear stress. The reported findings, such as disrupted pre-operative flow conditions, proved the applicability of the developed framework for CFD analyses on complicated patient-specific anatomies that feature ulcerated plaques. The prediction of lesion expansion and the clinical decision making can benefit from a reliable computation of wall shear stress distributions that result from the peculiar anatomy of the lesion. The application of intravascular OCT imaging, high fidelity 3D reconstructions and CFD simulations might guide the treatment of such pathology.
Collapse
Affiliation(s)
- Susanna Migliori
- Research and Development Department, Caristo Diagnostics, Oxford, United Kingdom; Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Bologna
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Eros Montin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Lorenzo Genuardi
- Institute of Cardiology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Aurigemma
- Institute of Cardiology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Francesco Burzotta
- Institute of Cardiology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
19
|
Computational analysis of the coronary artery hemodynamics with different anatomical variations. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Wei L, Leo HL, Chen Q, Li Z. Structural and Hemodynamic Analyses of Different Stent Structures in Curved and Stenotic Coronary Artery. Front Bioeng Biotechnol 2019; 7:366. [PMID: 31867313 PMCID: PMC6908811 DOI: 10.3389/fbioe.2019.00366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
Coronary artery stenting is commonly used for the treatment of coronary stenosis, and different stent structures indeed have various impacts on the stress distribution within the plaque and artery as well as the local hemodynamic environment. This study aims to evaluate the performance of different stent structures by characterizing the mechanical parameters after coronary stenting. Six stent structures including three commercially-shaped stents (Palmaz-Schatz-shaped, Xience Prime-shaped, and Cypher-shaped) and three author-developed stents (C-Rlink, C-Rcrown, and C-Astrut) implanted into a curved stenotic coronary artery were investigated. Structural analyses of the balloon-stent-plaque-artery system were first performed, and then followed by hemodynamic analyses. The results showed that among the three commercially-shaped stents, the Palmaz-Schatz-shaped had the least stent dogboning and recoiling, corresponding to the greatest maximum plastic strain and the largest diameter change, nevertheless, it induced the highest maximum von Mises stress on plaque, arterial intima and media. From the viewpoint of hemodynamics, the Palmaz-Schatz-shaped displayed smaller areas of adverse low wall shear stress (<0.5 Pa), low time-averaged wall shear stress (<0.5 Pa), and high oscillating shear index (>0.1). Compared to the Cypher-shaped, the C-Rcrown and C-Astrut had smaller recoiling, greater maximum plastic stain and larger diameter change, which indicated the improved mechanical performance of the Cypher-shaped stent. Moreover, both C-Rcrown and C-Astrut exhibited smaller areas of adverse low wall shear stress, and low time-averaged wall shear stress, but only the C-Rcrown displayed a smaller area of adverse high oscillating shear index. The present study evaluated and compared the performance of six different stents deployed inside a curved artery, and could be potentially utilized as a guide for the selection of suitable commercially-shaped stent for clinical application, and to provide an approach to improve the performance of the commercial stents.
Collapse
Affiliation(s)
- Lingling Wei
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Qiang Chen
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Zhiyong Li
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Stiehm M, Wüstenhagen C, Siewert S, Ince H, Grabow N, Schmitz KP. Impact of strut dimensions and vessel caliber on thrombosis risk of bioresorbable scaffolds using hemodynamic metrics. ACTA ACUST UNITED AC 2019; 64:251-262. [PMID: 29933242 DOI: 10.1515/bmt-2017-0101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 05/18/2018] [Indexed: 11/15/2022]
Abstract
Bioresorbable scaffolds (BRS) promise to be the treatment of choice for stenosed coronary vessels. But higher thrombosis risk found in current clinical studies limits the expectations. Three hemodynamic metrics are introduced to evaluate the thrombosis risk of coronary stents/scaffolds using transient computational fluid dynamics (CFD). The principal phenomena are platelet activation and effective diffusion (platelet shear number, PSN), convective platelet transport (platelet convection number, PCN) and platelet aggregation (platelet aggregation number, PAN) were taken into consideration. In the present study, two different stent designs (thick-strut vs. thin-strut design) positioned in small- and medium-sized vessels (reference vessel diameter, RVD=2.25 mm vs. 2.70 mm) were analyzed. In both vessel models, the thick-strut design induced higher PSN, PCN and PAN values than the thin-strut design (thick-strut vs. thin-strut: PSN=2.92/2.19 and 0.54/0.30; PCN=3.14/1.15 and 2.08/0.43; PAN: 14.76/8.19 and 20.03/10.18 for RVD=2.25 mm and 2.70 mm). PSN and PCN are increased by the reduction of the vessel size (PSN: RVD=2.25 mm vs. 2.70 mm=5.41 and 7.30; PCN: RVD=2.25 mm vs. 2.70 mm=1.51 and 2.67 for thick-strut and thin-strut designs). The results suggest that bulky stents implanted in small caliber vessels may substantially increase the thrombosis risk. Moreover, sensitivity analyses imply that PSN is mostly influenced by vessel size (lesion-related factor), whereas PCN and PAN sensitively respond to strut-thickness (device-related factor).
Collapse
Affiliation(s)
- Michael Stiehm
- Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| | - Carolin Wüstenhagen
- Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| | - Stefan Siewert
- Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| | - Hüseyin Ince
- Center for Internal Medicine, Department of Cardiology, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| | - Klaus-Peter Schmitz
- Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany.,Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| |
Collapse
|
22
|
Shen X, Jiang J, Deng Y, Zhu H, Lu K. Haemodynamics Study of Tapered Stents Intervention to Tapered Arteries. Cardiovasc Eng Technol 2019; 10:583-589. [DOI: 10.1007/s13239-019-00437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
|
23
|
Razavi SE, Farhangmehr V, Babaie Z. Numerical investigation of hemodynamic performance of a stent in the main branch of a coronary artery bifurcation. ACTA ACUST UNITED AC 2019; 9:97-103. [PMID: 31334041 PMCID: PMC6637217 DOI: 10.15171/bi.2019.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023]
Abstract
Introduction: The effect of a bare-metal stent on the hemodynamics in the main branch of a coronary artery bifurcation with a particular type of stenosis was numerically investigated by the computational fluid dynamics (CFD). Methods: Three-dimensional idealized geometry of bifurcation was constructed in Catia modelling commercial software package. The Newtonian blood flow was assumed to be incompressible and laminar. CFD was utilized to calculate the shear stress and blood pressure distributions on the wall of main branch. In order to do the numerical simulations, a commercial software package named as COMSOL Multiphysics 5.3 was employed. Two types of stent , namely, one-part stent and two-part stent were applied to prevent the build-up and progression of the atherosclerotic plaques in the main branch. Results: A particular type of stenosis in the main branch was considered in this research. It occurred before and after the side branch. Moreover, it was found that the main branch with an inserted one-part stent had the smallest region with the wall shear stress (WSS) below 0.5 Pa which was the minimum WSS in the main branch without the stenosis. Conclusion: The use of a one-part stent in the main branch of a coronary artery bifurcation for the aforementioned type of stenosis is recommended.
Collapse
Affiliation(s)
| | - Vahid Farhangmehr
- Department of Mechanical Engineering, University of Bonab, Bonab 5551761167, Iran
| | - Zahra Babaie
- Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
24
|
Jiang B, Thondapu V, Poon E, Barlis P, Ooi A. Numerical study of incomplete stent apposition caused by deploying undersized stent in arteries with elliptical cross-sections. J Biomech Eng 2019; 141:2725823. [PMID: 30778567 DOI: 10.1115/1.4042899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/26/2022]
Abstract
Incomplete stent apposition (ISA) is one of the causes leading to post-stent complications, which can be found when an undersized or under-expanded stent is deployed at lesions. Previous research efforts have focused on ISA in idealized coronary arterial geometry with circular cross-sections. However, arterial cross-section eccentricity plays an important role in both location and severity of ISA. Computational fluid dynamics (CFD) simulations are carried out to systematically study the effects of ISA in arteries with elliptical cross-sections, as such stents are partially embedded on the minor axis sides of the ellipse and malapposed elsewhere. Overall, ISA leads to high time-averaged WSS (TAWSS) at the proximal end of the stent and low TAWSS at the ISA transition region and the distal end. Shear rate depends on both malapposition distance and blood stream locations, which is found to be significantly higher at the inner stent surface than the outer surface. The proximal high shear rate signifies increasing possibility in platelet activation, when coupled with low TAWSS at the transition and distal region which may indicate a nidus for in-stent thrombosis.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Mechanical Engineering, The University of Melbourne, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Vikas Thondapu
- Department of Mechanical Engineering, The University of Melbourne, Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Eric Poon
- Department of Mechanical Engineering, The University of Melbourne, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Peter Barlis
- Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Andrew Ooi
- Department of Mechanical Engineering, The University of Melbourne, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
25
|
Sakamoto A, Torii S, Jinnouchi H, Virmani R, Finn AV. Histopathologic and physiologic effect of overlapping vs single coronary stents: impact of stent evolution. Expert Rev Med Devices 2018; 15:665-682. [DOI: 10.1080/17434440.2018.1515012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Sho Torii
- CVPath Institute, Gaithersburg, MD, USA
| | | | | | - Aloke V. Finn
- CVPath Institute, Gaithersburg, MD, USA
- School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
26
|
A Patient-Specific Study Investigating the Relation between Coronary Hemodynamics and Neo-Intimal Thickening after Bifurcation Stenting with a Polymeric Bioresorbable Scaffold. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present an application of a validated reconstruction methodology for the comparison between patient-specific hemodynamics and neo-intimal thickening at nine months from the intervention. (1) Background: Coronary bifurcation stenting alters the vessel geometry, influencing the local hemodynamics. The evaluation of wall shear stress (WSS) relies on the application of computational fluid dynamics to model its distribution along the coronary tree. The endothelium actively responds to WSS, which triggers eventual cell proliferation to cover the stent struts. (2) Methods: Baseline optical coherence tomography and angiographic data were combined to reconstruct a patient-specific coronary bifurcation with an implanted bioresorbable scaffold and to simulate the hemodynamics. Results were linked with the neo-intimal thickening after nine months from the intervention. (3) Results: Blood velocity patterns were disrupted at the bifurcation due to the presence of the stent. It was observed that 55.6% of the scaffolded lumen surface was exposed to values of time-averaged WSS lower than 0.4 Pa. Follow-up images showed a luminal narrowing of 19% in the main branch. There was also a complete coverage in 99% of struts. (4) Conclusions: This approach provided valuable complementary information that might improve the clinical outcomes in this subset of coronary diseases.
Collapse
|
27
|
Putra NK, Palar PS, Anzai H, Shimoyama K, Ohta M. Multiobjective design optimization of stent geometry with wall deformation for triangular and rectangular struts. Med Biol Eng Comput 2018; 57:15-26. [DOI: 10.1007/s11517-018-1864-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
|
28
|
Riaz U, Rakesh L, Shabib I, Haider W. Effect of dissolution of magnesium alloy AZ31 on the rheological properties of Phosphate Buffer Saline. J Mech Behav Biomed Mater 2018; 85:201-208. [PMID: 29908488 DOI: 10.1016/j.jmbbm.2018.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 01/29/2023]
Abstract
The issue of long-term incompatible interactions associated with the permanent implants can be eliminated by using various biodegradable metal implants. The recent research is focusing on the use of degradable stents to restore most of the hindrances of capillaries, and coronary arteries by supplying instant blood flow with constant mechanical and structural support. However, internal endothelialization and infection due to the corrosion of implanted stents are not easy to diagnose in the long run. In the recent past, magnesium (Mg) has been widely investigated for the cardiovascular stent applications. Here we made an attempt to understand the biodegradation process of Mg alloy stent by studying the degradation of Mg alloy AZ31 (3 wt% Aluminum, 1 wt% Zn) powder at various time-intervals in simulated blood fluid using the Rheological methods. The degradability of the Mg stent in the arteries affects the stress-strain properties of blood plasma and the subsequent flow conditions. Blood and plasma viscosities alter due to the degradation of Mg resulting from the stress-strain experienced in the blood vessels, in which the stent is inserted. Here our objective was to explore the influence of Mg degradation on the blood plasma viscosity by studying the viscoelastic properties. In this work, the effect of dissolution of Mg alloy AZ31 on the rheological properties of Phosphate Buffer Saline (PBS) at various time intervals have been investigated. The viscosity of the PBS-AZ31 solution increased with the dissolution of both slurries and percolated clear solution. The only exception was day-7 of the percolated clear solution, where viscosity was decreased showing a reduction in viscosity at initial stages of dissolution. The frequency sweep showed the tendency of the PBS-AZ31 gelation up to 100 rad/s frequency.
Collapse
Affiliation(s)
- Usman Riaz
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Leela Rakesh
- Department of Mathematics, Center for Applied Mathematics & Polymer Fluid Dynamics, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ishraq Shabib
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA; Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Waseem Haider
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA; Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
29
|
FSI simulation of CSF hydrodynamic changes in a large population of non-communicating hydrocephalus patients during treatment process with regard to their clinical symptoms. PLoS One 2018; 13:e0196216. [PMID: 29708982 PMCID: PMC5927404 DOI: 10.1371/journal.pone.0196216] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/06/2018] [Indexed: 11/19/2022] Open
Abstract
3D fluid-structure interaction modelling was utilized for simulation of 13 normal subjects, 11 non-communicating hydrocephalus (NCH) patients at pre-treatment phase, and 3 patients at five post-treatment phases. Evaluation of ventricles volume and maximum CSF pressure (before shunting) following results validation indicated that these parameters were the most proper hydrodynamic indices and the NCH type doesn't have any significant effect on changes in two indices. The results confirmed an appropriate correlation between these indices although the correlation decreased slightly after the occurrence of disease. NCH raises the intensity of vortex and pulsatility (2.4 times) of CSF flow while the flow remains laminar. On day 18 after shunting, the CSF pressure decreased 81.0% and all clinical symptoms of patients vanished except for headache. Continuing this investigation during the treatment process showed that maximum CSF pressure is the most sensitive parameter to patients' clinical symptoms. Maximum CSF pressure has decreased proportional to the level of decrease in clinical symptoms and has returned close to the pressure range in normal subjects faster than other parameters and simultaneous with disappearance of patients' clinical symptoms (from day 81 after shunting). However, phase lag between flow rate and pressure gradient functions and the degree of CSF pulsatility haven't returned to normal subjects' conditions even 981 days after shunting and NCH has also caused a permanent volume change (of 20.1%) in ventricles. Therefore, patients have experienced a new healthy state in new hydrodynamic conditions after shunting and healing. Increase in patients' intracranial compliance was predicted with a more accurate non-invasive method than previous experimental methods up to more than 981 days after shunting. The changes in hydrodynamic parameters along with clinical reports of patients can help to gain more insight into the pathophysiology of NCH patients.
Collapse
|
30
|
Chiastra C, Migliori S, Burzotta F, Dubini G, Migliavacca F. Patient-Specific Modeling of Stented Coronary Arteries Reconstructed from Optical Coherence Tomography: Towards a Widespread Clinical Use of Fluid Dynamics Analyses. J Cardiovasc Transl Res 2017; 11:156-172. [PMID: 29282628 PMCID: PMC5908818 DOI: 10.1007/s12265-017-9777-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
The recent widespread application of optical coherence tomography (OCT) in interventional cardiology has improved patient-specific modeling of stented coronary arteries for the investigation of local hemodynamics. In this review, the workflow for the creation of fluid dynamics models of stented coronary arteries from OCT images is presented. The algorithms for lumen contours and stent strut detection from OCT as well as the reconstruction methods of stented geometries are discussed. Furthermore, the state of the art of studies that investigate the hemodynamics of OCT-based stented coronary artery geometries is reported. Although those studies analyzed few patient-specific cases, the application of the current reconstruction methods of stented geometries to large populations is possible. However, the improvement of these methods and the reduction of the time needed for the entire modeling process are crucial for a widespread clinical use of the OCT-based models and future in silico clinical trials.
Collapse
Affiliation(s)
- Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Susanna Migliori
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Burzotta
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
31
|
Putra NK, Palar PS, Anzai H, Shimoyama K, Ohta M. In search for a better stent: Surrogate based multi-objective optimization of stent design under influence of vessel wall deformation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1344-1347. [PMID: 29060125 DOI: 10.1109/embc.2017.8037081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stenting is known as one of the main treatment procedure for some intravascular abnormalities such as stenosis and aneurysm. In recent years, stent optimization has been conducted by several research groups in order to increase its treatment efficacy. If we can observe post-deployment behavior on the blood vessel with respect to different stent designs, this observation will be useful in the design process. Kriging surrogate model based on fluid flow simulation on a deformed vessel wall was developed in order to observe this behavior. Multi-objectives optimization was performed with configurations of gap and size as design variables. In this research, percentage of low wall shear stress (WSS) area and average mechanical stress along the deployment area were set as the objective functions. We can recommend that strut with medium size around 100 - 250 micron with a relatively big inter-strut gap is suitable for achieving the optimize criteria. This is because on this range, acceptable optimized value of both objectives functions are successfully obtained.
Collapse
|
32
|
Haemodynamic effects of incomplete stent apposition in curved coronary arteries. J Biomech 2017; 63:164-173. [DOI: 10.1016/j.jbiomech.2017.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/18/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
|
33
|
Chen WX, Poon EKW, Hutchins N, Thondapu V, Barlis P, Ooi A. Computational fluid dynamics study of common stent models inside idealised curved coronary arteries. Comput Methods Biomech Biomed Engin 2017; 20:671-681. [PMID: 28349764 DOI: 10.1080/10255842.2017.1289374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The haemodynamic behaviour of blood inside a coronary artery after stenting is greatly affected by individual stent features as well as complex geometrical properties of the artery including tortuosity and curvature. Regions at higher risk of restenosis, as measured by low wall shear stress (WSS < 0.5 Pa), have not yet been studied in detail in curved stented arteries. In this study, three-dimensional computational modelling and computational fluid dynamics methodologies were used to analyse the haemodynamic characteristics in curved stented arteries using several common stent models. Results in this study showed that stent strut thickness was one major factor influencing the distribution of WSS in curved arteries. Regions of low WSS were found behind struts, particularly those oriented at a large angle relative to the streamwise flow direction. These findings were similar to those obtained in studies of straight arteries. An uneven distribution of WSS at the inner and outer bends of curved arteries was observed where the WSS was lower at the inner bend. In this study, it was also shown that stents with a helical configuration generated an extra swirling component of the flow based on the helical direction; however, this extra swirl in the flow field did not cause significant changes on the distribution of WSS under the current setup.
Collapse
Affiliation(s)
- Winson X Chen
- a Department of Mechanical Engineering , Melbourne School of Engineering, The University of Melbourne , Parkville , Australia
| | - Eric K W Poon
- a Department of Mechanical Engineering , Melbourne School of Engineering, The University of Melbourne , Parkville , Australia
| | - Nicholas Hutchins
- a Department of Mechanical Engineering , Melbourne School of Engineering, The University of Melbourne , Parkville , Australia
| | - Vikas Thondapu
- b Faculty of Medicine, Dentistry & Health Sciences, Department of Medicine , The University of Melbourne , Parkville , Australia
| | - Peter Barlis
- b Faculty of Medicine, Dentistry & Health Sciences, Department of Medicine , The University of Melbourne , Parkville , Australia.,c Department of Cardiology , North-West Academic Centre, Melbourne Medical School, The University of Melbourne , Epping , Australia
| | - Andrew Ooi
- a Department of Mechanical Engineering , Melbourne School of Engineering, The University of Melbourne , Parkville , Australia
| |
Collapse
|
34
|
Singh J, Brunner G, Morrisett JD, Ballantyne CM, Lumsden AB, Shah DJ, Decuzzi P. Patient-Specific Flow Descriptors and Normalized wall index in Peripheral Artery Disease: a Preliminary Study. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING. IMAGING & VISUALIZATION 2016; 6:119-127. [PMID: 29503774 PMCID: PMC5830147 DOI: 10.1080/21681163.2016.1184589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS MRI-based hemodynamics have been applied to study the relationship between time-averaged wall shear stresses (TAWSS), oscillatory shear index (OSI) and atherosclerotic lesions in the coronary arteries, carotid artery, and human aorta. However, the role of TAWSS and OSI are poorly understood in lower extremity arteries. The aim of this work was to investigate the feasibility of hemodynamic assessment of the superficial femoral artery (SFA) in patients with peripheral artery disease (PAD) and we hypothesized that there is an association between TAWSS and OSI, respectively, and atherosclerotic burden expressed as the normalized wall index (NWI). METHODS Six cases of 3D vascular geometries of the SFA and related inlet/outlet flow conditions were extracted from patient-specific MRI data including baseline, 12 and 24 months. Blood flow simulations were performed to compute flow descriptors, including TAWSS and OSI, and NWI. RESULTS NWI was correlated positively with TAWSS (correlation coefficient: r = 0.592; p < 0.05). NWI was correlated negatively with OSI (correlation coefficient: r = -0.310, p < 0.01). Spatially averaged TAWSS and average NWI increased significantly between baseline and 24-months, whereas OSI decreased over 2-years. CONCLUSIONS In this pilot study with a limited sample size, TAWSS was positively associated with NWI, a measure of plaque burden, whereas OSI showed an inverse relationship. However, our findings need to be verified in a larger prospective study. MRI-based study of hemodynamics is feasible in the superficial femoral artery.
Collapse
Affiliation(s)
- Jaykrishna Singh
- Department of Translational Imaging, The Houston Methodist Research Institute (HMRI), Houston, TX
| | - Gerd Brunner
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
- Methodist DeBakey Heart & Vascular Center, The Houston Methodist Research Institute (HMRI), Houston, TX
| | - Joel D. Morrisett
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
- Methodist DeBakey Heart & Vascular Center, The Houston Methodist Research Institute (HMRI), Houston, TX
| | - Christie M. Ballantyne
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
- Methodist DeBakey Heart & Vascular Center, The Houston Methodist Research Institute (HMRI), Houston, TX
| | - Alan B. Lumsden
- Methodist DeBakey Heart & Vascular Center, The Houston Methodist Research Institute (HMRI), Houston, TX
| | - Dipan J. Shah
- Methodist DeBakey Heart & Vascular Center, The Houston Methodist Research Institute (HMRI), Houston, TX
| | - Paolo Decuzzi
- Department of Translational Imaging, The Houston Methodist Research Institute (HMRI), Houston, TX
| |
Collapse
|
35
|
Behaviour of two typical stents towards a new stent evolution. Med Biol Eng Comput 2016; 55:1019-1037. [PMID: 27669700 DOI: 10.1007/s11517-016-1574-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/15/2016] [Indexed: 11/27/2022]
Abstract
This study explores the analysis of a new stent geometry from two typical stents used to treat the coronary artery disease. Two different finite element methods are applied with different boundary conditions to investigate the stenosis region. Computational fluid dynamics (CFD) models including fluid-structure interaction are used to assess the haemodynamic impact of two types of coronary stents implantation: (1) type 1-based on a strut-link stent geometry and (2) type 2-a continuous helical stent. Using data from a recent clinical stenosis, flow disturbances and consequent shear stress alterations introduced by the stent treatment are investigated. A relationship between stenosis and the induced flow fields for the two types of stent designs is analysed as well as the correlation between haemodynamics and vessel wall biomechanical factors during the initiation and development of stenosis formation in the coronary artery. Both stents exhibit a good performance in reducing the obstruction artery. However, stent type 1 presents higher radial deformation than the type 2. This deformation can be seen as a limitation with a long-term clinical impact.
Collapse
|
36
|
Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, Young A, Gilbert K, Cowan B. Overcoming spatio-temporal limitations using dynamically scaled in vitro PC-MRI - A flow field comparison to true-scale computer simulations of idealized, stented and patient-specific left main bifurcations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:1220-1223. [PMID: 28324943 DOI: 10.1109/embc.2016.7590925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The majority of patients with angina or heart failure have coronary artery disease. Left main bifurcations are particularly susceptible to pathological narrowing. Flow is a major factor of atheroma development, but limitations in imaging technology such as spatio-temporal resolution, signal-to-noise ratio (SNRv), and imaging artefacts prevent in vivo investigations. Computational fluid dynamics (CFD) modelling is a common numerical approach to study flow, but it requires a cautious and rigorous application for meaningful results. Left main bifurcation angles of 40°, 80° and 110° were found to represent the spread of an atlas based 100 computed tomography angiograms. Three left mains with these bifurcation angles were reconstructed with 1) idealized, 2) stented, and 3) patient-specific geometry. These were then approximately 7× scaled-up and 3D printing as large phantoms. Their flow was reproduced using a blood-analogous, dynamically scaled steady flow circuit, enabling in vitro phase-contrast magnetic resonance (PC-MRI) measurements. After threshold segmentation the image data was registered to true-scale CFD of the same coronary geometry using a coherent point drift algorithm, yielding a small covariance error (σ2 <;5.8×10-4). Natural-neighbour interpolation of the CFD data onto the PC-MRI grid enabled direct flow field comparison, showing very good agreement in magnitude (error 2-12%) and directional changes (r2 0.87-0.91), and stent induced flow alternations were measureable for the first time. PC-MRI over-estimated velocities close to the wall, possibly due to partial voluming. Bifurcation shape determined the development of slow flow regions, which created lower SNRv regions and increased discrepancies. These can likely be minimised in future by testing different similarity parameters to reduce acquisition error and improve correlation further. It was demonstrated that in vitro large phantom acquisition correlates to true-scale coronary flow simulations when dynamically scaled, and thus can overcome current PC-MRI's spatio-temporal limitations. This novel method enables experimental assessment of stent induced flow alternations, and in future may elevate CFD coronary flow simulations by providing sophisticated boundary conditions, and enable investigations of stenosis phantoms.
Collapse
|
37
|
Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses. J Biomech 2016; 49:2102-2111. [DOI: 10.1016/j.jbiomech.2015.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 01/26/2023]
|
38
|
Ellwein L, Marks DS, Migrino RQ, Foley WD, Sherman S, LaDisa JF. Image-based quantification of 3D morphology for bifurcations in the left coronary artery: Application to stent design. Catheter Cardiovasc Interv 2016; 87:1244-55. [PMID: 27251470 DOI: 10.1002/ccd.26247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/21/2015] [Accepted: 09/05/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Improved strategies for stent-based treatment of coronary artery disease at bifurcations require a greater understanding of artery morphology. OBJECTIVE We developed a workflow to quantify morphology in the left main coronary (LMCA), left anterior descending (LAD), and left circumflex (LCX) artery bifurcations. METHODS Computational models of each bifurcation were created for 55 patients using computed tomography images in 3D segmentation software. Metrics including cross-sectional area, length, eccentricity, taper, curvature, planarity, branching law parameters, and bifurcation angles were assessed using open-sources software and custom applications. Geometric characterization was performed by comparison of means, correlation, and linear discriminant analysis (LDA). RESULTS Differences between metrics suggest dedicated or multistent approaches should be tailored for each bifurcation. For example, the side branch of the LCX (i.e., obtuse marginal; OM) was longer than that of the LMCA (i.e., LCXprox) and LAD (i.e., first diagonal; D1). Bifurcation metrics for some locations (e.g., LMCA Finet ratio) provide results and confidence intervals agreeing with prior findings, while revised metric values are presented for others (e.g., LAD and LCX). LDA revealed several metrics that differentiate between artery locations (e.g., LMCA vs. D1, LMCA vs. OM, LADprox vs. D1, and LCXprox vs. D1). CONCLUSIONS These results provide a foundation for elucidating common parameters from healthy coronary arteries and could be leveraged in the future for treating diseased arteries. Collectively the current results may ultimately be used for design iterations that improve outcomes following implantation of future dedicated bifurcation stents. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Ellwein
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA
| | - David S Marks
- Department of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Raymond Q Migrino
- Department of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Medicine, VA Health Care System, Phoenix, Arizona
| | - W Dennis Foley
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sara Sherman
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA
| | - John F LaDisa
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA.,Department of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
39
|
Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, Young A, Cowan B. Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries. J Biomech 2016; 49:1570-1582. [PMID: 27062590 DOI: 10.1016/j.jbiomech.2016.03.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/01/2016] [Accepted: 03/23/2016] [Indexed: 01/14/2023]
Abstract
The hemodynamic influence of vessel shape such as bifurcation angle is not fully understood with clinical and quantitative observations being equivocal. The aim of this study is to use computational modeling to study the hemodynamic effect of shape characteristics, in particular bifurcation angle (BA), for non-stented and stented coronary arteries. Nine bifurcations with angles of 40°, 60° and 80°, representative of ±1 SD of 101 asymptomatic computed tomography angiogram cases (average age 54±8 years; 57 females), were generated for (1) a non-stented idealized, (2) stented idealized, and (3) non-stented patient-specific geometry. Only the bifurcation angle was changed while the geometries were constant to eliminate flow effects induced by other vessel shape characteristics. The commercially available Biomatrix stent was used as a template and virtually inserted into each branch, simulating the T-stenting technique. Three patient-specific geometries with additional shape variation and ±2 SD BA variation (33°, 42° and 117°) were also computed. Computational fluid dynamics (CFD) analysis was performed for all 12 geometries to simulate physiological conditions, enabling the quantification of the hemodynamic stress distributions, including a threshold analysis of adversely low and high wall shear stress (WSS), low time-averaged WSS (TAWSS), high spatial WSS gradient (WSSG) and high Oscillatory Shear Index (OSI) area. The bifurcation angle had a minor impact on the areas of adverse hemodynamics in the idealized non-stented geometries, which fully disappeared once stented and was not apparent for patient geometries. High WSS regions were located close to the carina around peak-flow, and WSSG increased significantly after stenting for the idealized bifurcations. Additional shape variations affected the hemodynamic profiles, suggesting that BA alone has little effect on a patient׳s hemodynamic profile. Incoming flow angle, diameter and tortuosity appear to have stronger effects. This suggests that other bifurcation shape characteristics and stent placement/strategy may be more important than bifurcation angle in atherosclerotic disease development, progression, and stent outcome.
Collapse
Affiliation(s)
- Susann Beier
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - John Ormiston
- Mercy Angiography, 98 Mountain Rd, Mt Eden, 1023, Auckland, New Zealand.
| | - Mark Webster
- Green Lane Cardiovascular Service, Auckland City Hospital, Park Rd, Auckland 1030, New Zealand.
| | - John Cater
- Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Stuart Norris
- Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Pau Medrano-Gracia
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Alistair Young
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Brett Cowan
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
40
|
Mesh management methods in finite element simulations of orthodontic tooth movement. Med Eng Phys 2016; 38:140-7. [DOI: 10.1016/j.medengphy.2015.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/10/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022]
|
41
|
Maurel B, Sarraf C, Bakir F, Chai F, Maton M, Sobocinski J, Hertault A, Blanchemain N, Haulon S, Lermusiaux P. A New Hemodynamic Ex Vivo Model for Medical Devices Assessment. Ann Vasc Surg 2015; 29:1648-55. [PMID: 26254604 DOI: 10.1016/j.avsg.2015.06.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND In-stent restenosis (ISR) remains a major public health concern associated with an increased morbidity, mortality, and health-related costs. Drug-eluting stents (DES) have reduced ISR, but generate healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. Assessments of new DES are based on animal models or in vitro release systems, which have several limitations. The role of flow and shear stress on endothelial cell and ISR has also been emphasized. The aim of this work was to design and first evaluate an original bioreactor, replicating ex vivo hemodynamic and biological conditions similar to human conditions, to further evaluate new DES. METHODS This bioreactor was designed to study up to 6 stented arteries connected in bypass, immersed in a culture box, in which circulated a physiological systolo-diastolic resistive flow. Two centrifugal pumps drove the flow. The main pump generated pulsating flows by modulation of rotation velocity, and the second pump worked at constant rotation velocity, ensuring the counter pressure levels and backflows. The flow rate, the velocity profile, the arterial pressure, and the resistance of the flow were adjustable. The bioreactor was placed in an incubator to reproduce a biological environment. RESULTS A first feasibility experience was performed over a 24-day period. Three rat aortic thoracic arteries were placed into the bioreactor, immersed in cell culture medium changed every 3 days, and with a circulating systolic and diastolic flux during the entire experimentation. There was no infection and no leak. At the end of the experimentation, a morphometric analysis was performed confirming the viability of the arteries. CONCLUSIONS We designed and patented an original hemodynamic ex vivo model to further study new DES, as well as a wide range of vascular diseases and medical devices. This bioreactor will allow characterization of the velocity field and drug transfers within a stented artery with new functionalized DES, with experimental means not available in vivo. Another major benefit will be the reduction of animal experimentation and the opportunity to test new DES or other vascular therapeutics in human tissues (human infrapopliteal or coronary arteries collected during human donation).
Collapse
Affiliation(s)
- Blandine Maurel
- Aortic Centre, Department of Vascular Surgery, CHRU Lille, Lille, France; INSERM U1008, Groupe Recherche Biomatériaux, University of Lille, Lille, France.
| | | | - Farid Bakir
- Laboratoire DynFluid, Arts et Métiers ParisTech, Paris, France
| | - Feng Chai
- INSERM U1008, Groupe Recherche Biomatériaux, University of Lille, Lille, France
| | - Mickael Maton
- INSERM U1008, Groupe Recherche Biomatériaux, University of Lille, Lille, France
| | - Jonathan Sobocinski
- Aortic Centre, Department of Vascular Surgery, CHRU Lille, Lille, France; INSERM U1008, Groupe Recherche Biomatériaux, University of Lille, Lille, France
| | - Adrien Hertault
- Aortic Centre, Department of Vascular Surgery, CHRU Lille, Lille, France; INSERM U1008, Groupe Recherche Biomatériaux, University of Lille, Lille, France
| | - Nicolas Blanchemain
- INSERM U1008, Groupe Recherche Biomatériaux, University of Lille, Lille, France
| | - Stephan Haulon
- Aortic Centre, Department of Vascular Surgery, CHRU Lille, Lille, France; INSERM U1008, Groupe Recherche Biomatériaux, University of Lille, Lille, France
| | - Patrick Lermusiaux
- Department of Vascular Surgery, Groupement Hospitalier Edouard Herriot, CHU Lyon, Faculté de médecine Lyon 1, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
42
|
Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, Young A, Cowan B. Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations. Ann Biomed Eng 2015; 44:315-29. [PMID: 26178872 PMCID: PMC4764643 DOI: 10.1007/s10439-015-1387-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/08/2015] [Indexed: 01/25/2023]
Abstract
Stent induced hemodynamic changes in the coronary arteries are associated with higher risk of adverse clinical outcome. The purpose of this study was to evaluate the impact of stent design on wall shear stress (WSS), time average WSS, and WSS gradient (WSSG), in idealized stent geometries using computational fluid dynamics. Strut spacing, thickness, luminal protrusion, and malapposition were systematically investigated and a comparison made between two commercially available stents (Omega and Biomatrix). Narrower strut spacing led to larger areas of adverse low WSS and high WSSG but these effects were mitigated when strut size was reduced, particularly for WSSG. Local hemodynamics worsened with luminal protrusion of the stent and with stent malapposition, adverse high WSS and WSSG were identified around peak flow and throughout the cardiac cycle respectively. For the Biomatrix stent, the adverse effect of thicker struts was mitigated by greater strut spacing, radial cell offset and flow-aligned struts. In conclusion, adverse hemodynamic effects of specific design features (such as strut size and narrow spacing) can be mitigated when combined with other hemodynamically beneficial design features but increased luminal protrusion can worsen the stent’s hemodynamic profile significantly.
Collapse
Affiliation(s)
- Susann Beier
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - John Ormiston
- Mercy Angiography, 98 Mountain Rd, Mt Eden, Auckland, 1023, New Zealand.
| | - Mark Webster
- Green Lane Cardiovascular Service, Auckland City Hospital, Park Rd, Auckland, 1030, New Zealand.
| | - John Cater
- Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Stuart Norris
- Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Pau Medrano-Gracia
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Alistair Young
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Brett Cowan
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
43
|
Influence of proximal drug eluting stent (DES) on distal bare metal stent (BMS) in multi-stent implantation strategies in coronary arteries. Med Eng Phys 2015; 37:840-4. [PMID: 26149391 DOI: 10.1016/j.medengphy.2015.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/23/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the drug distribution in arteries treated with DES-BMS stenting strategy and to analyze the influence of proximal DES on distal segments of BMS. A straight artery model (Straight Model) and a branching artery model (Branching Model) were constructed in this study. In each model, the DES was implanted at the proximal position and the BMS was implanted distally. Hemodynamic environments, drug delivery and distribution features were simulated and analyzed in each model. The results showed that blood flow would contribute to non-uniform drug distribution in arteries. In the Straight Model the proximal DES would cause drug concentration in BMS segments. While in the Branching Model the DES in the main artery has slight influence on the BMS segments in the branch artery. In conclusion, due to the blood flow washing effect the uniformly released drug from DES would distribute focally and distally. The proximal DES would have greater influence on the distal BMS in straight artery than that in branching artery. This preliminary study would provide good reference for atherosclerosis treatment, especially for some complex cases, like coronary branching stenting.
Collapse
|
44
|
Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis. Cardiovasc Eng Technol 2015; 6:314-28. [PMID: 26577363 DOI: 10.1007/s13239-015-0219-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/21/2015] [Indexed: 12/21/2022]
Abstract
Several clinical studies have identified a strong correlation between neointimal hyperplasia following coronary stent deployment and both stent-induced arterial injury and altered vessel hemodynamics. As such, the sequential structural and fluid dynamics analysis of balloon-expandable stent deployment should provide a comprehensive indication of stent performance. Despite this observation, very few numerical studies of balloon-expandable coronary stents have considered both the mechanical and hemodynamic impact of stent deployment. Furthermore, in the few studies that have considered both phenomena, only a small number of stents have been considered. In this study, a sequential structural and fluid dynamics analysis methodology was employed to compare both the mechanical and hemodynamic impact of six balloon-expandable coronary stents. To investigate the relationship between stent design and performance, several common stent design properties were then identified and the dependence between these properties and both the mechanical and hemodynamic variables of interest was evaluated using statistical measures of correlation. Following the completion of the numerical analyses, stent strut thickness was identified as the only common design property that demonstrated a strong dependence with either the mean equivalent stress predicted in the artery wall or the mean relative residence time predicted on the luminal surface of the artery. These results corroborate the findings of the large-scale ISAR-STEREO clinical studies and highlight the crucial role of strut thickness in coronary stent design. The sequential structural and fluid dynamics analysis methodology and the multivariable statistical treatment of the results described in this study should prove useful in the design of future balloon-expandable coronary stents.
Collapse
|
45
|
Martin DM, Murphy EA, Boyle FJ. Computational fluid dynamics analysis of balloon-expandable coronary stents: Influence of stent and vessel deformation. Med Eng Phys 2014; 36:1047-56. [DOI: 10.1016/j.medengphy.2014.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 01/13/2023]
|