1
|
Coronary Artery Radial Deformation and Velocity in Native and Stented Arteries. J Interv Cardiol 2022; 2022:5981027. [PMID: 35401063 PMCID: PMC8976594 DOI: 10.1155/2022/5981027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/12/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Coronary arteries are exposed to a variety of complex biomechanical forces during a normal cardiac cycle. These forces have the potential to contribute to coronary stent failure. Recent advances in stent design allow for the transmission of native pulsatile biomechanical forces in the stented vessel. However, there is a significant lack of evidence in a human model to measure vessel motion in native coronary arteries and stent conformability. Thus, we aimed to characterize and define coronary artery radial deformation and the effect of stent implantation on arterial deformation. Materials and Methods Intravascular ultrasound (IVUS) pullback DICOM images were obtained from human coronary arteries using a coronary ultrasound catheter. Using two-dimensional speckle tracking, coronary artery radial deformation was defined as the inward and outward displacement (mm) and velocity (cm/s) of the arterial wall during the cardiac cycle. These deformation values were obtained in native and third-generation drug-eluting stented artery segments. Results A total of 20 coronary artery segments were independently analyzed pre and poststent implantation for a total of 40 IVUS runs. Stent implantation impacted the degree of radial deformation and velocity. Mean radial deformation in native coronary arteries was 0.1230 mm ± 0.0522 mm compared to 0.0775 mm ± 0.0376 mm in stented vessels (p=0.0031). Mean radial velocity in native coronary arteries was 0.1194 cm/s ± 0.0535 cm/s compared to 0.0840 cm/s ± 0.0399 cm/s in stented vessels (p=0.0228). Conclusion In this in vivo analysis of third-generation stents, stent implantation attenuates normal human coronary deformation during the cardiac cycle. The implications of these findings on stent failure and improved clinical outcomes require further investigation.
Collapse
|
2
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Mora V, Roldán I, Bertolín J, Faga V, Pérez-Gil MDM, Saad A, Serrats R, Callizo R, Arbucci R, Lowenstein J. Influence of Ventricular Wringing on the Preservation of Left Ventricular Ejection Fraction in Cardiac Amyloidosis. J Am Soc Echocardiogr 2021; 34:767-774. [PMID: 33744403 DOI: 10.1016/j.echo.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The purpose of this work was to determine the influence of myocardial wringing on ventricular function in patients with cardiac amyloidosis (CA). METHODS Fifteen healthy volunteers (group 1) and 34 patients with CA (17 with left ventricular ejection fractions [LVEFs] ≥ 53% [group 2] and 17 with LVEFs < 53% [group 3]) were evaluated using two-dimensional speckle-tracking echocardiography. A control group of mass-matched patients (n = 20) with left ventricular (LV) hypertrophy and LVEFs ≥ 53% was also included. Longitudinal strain (LS), circumferential strain, and LV twist and torsion were calculated. Deformation index (DefI), a new parameter of wringing, calculated as twist/LS, that takes into account actions that occur simultaneously during LV systole (i.e., longitudinal shortening and twist), was evaluated. Torsional and wringing parameters were calculated according to LVEF. RESULTS Lower global values of LS and circumferential strain were observed among patients with CA (LS: group 1, -20.6 ± 2.5%; group 2, -11.6 ± 4.1%; group 3, -9.0 ± 3.1%; circumferential strain: group 1, -22.7 ± 4.9%; group 2, -14.4 ± 8.0%; group 3, -13.6 ± 3.8%; P < .001 for both). Torsion did not vary between group 2 and group 1 (2.5 ± 1.1°/cm vs 2.7 ± 0.8°/cm, P = NS). In contrast, DefI was greater in group 2 than in group 1 (-1.8 ± 0.8°/% vs -1.0 ± 0.3°/%, P < .01). Torsion and DefI were lower in group 3 (1.2 ± 0.7°/cm and -1.1 ± 0.6°/%, respectively, P < .001 for both) than in group 2. DefI was similar in patients with LV hypertrophy (-1.7 ± 0.6°/%, P = NS) and group 2. CONCLUSIONS In patients with CA, preservation of LVEF depends on greater ventricular wringing. DefI, a parameter that integrates the twist and the simultaneous longitudinal shortening of the left ventricle, is a more accurate indicator of the efficacy of this mechanism.
Collapse
Affiliation(s)
- Vicente Mora
- Department of Cardiology, Hospital Universitario Dr. Peset, Valencia, Spain.
| | - Ildefonso Roldán
- Department of Cardiology, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Javier Bertolín
- Department of Cardiology, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Valentina Faga
- Department of Cardiology, Hospital Universitario Dr. Peset, Valencia, Spain
| | | | - Ariel Saad
- Cardiodiagnosis Department, Medical Research, Buenos Aires, Argentina
| | - Rocío Serrats
- Department of Cardiology, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Ricardo Callizo
- Department of Cardiology, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Rosina Arbucci
- Cardiodiagnosis Department, Medical Research, Buenos Aires, Argentina
| | - Jorge Lowenstein
- Cardiodiagnosis Department, Medical Research, Buenos Aires, Argentina
| |
Collapse
|
4
|
Yu S, Jiang K, Zhu XY, Ferguson CM, Krier JD, Lerman A, Lerman LO. Endovascular reversal of renovascular hypertension blunts cardiac dysfunction and deformation in swine. J Hypertens 2021; 39:556-562. [PMID: 33399301 PMCID: PMC8400925 DOI: 10.1097/hjh.0000000000002654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Renovascular hypertension (RVH) induces hemodynamic and humoral aberrations that may impair cardiac function, structure and mechanics, including cardiac twist and deformation. Revascularization of a stenotic renal artery can decrease blood pressure (BP), but its ability to restore cardiac mechanics in RVH remains unclear. We hypothesized that percutaneous transluminal renal angioplasty (PTRA) would improve cardiac function and left ventricular (LV) deformation in swine RVH. METHODS Seventeen domestic pigs were studied for 16 weeks: RVH, RVH + PTRA and normal controls (n = 5-6 each). Global LV function was estimated by multidetector computed-tomography, and LV deformation by electrocardiographically triggered MRI tagging at the apical, mid, and basal LV levels. Cardiomyocyte hypertrophy, myocardial capillary density, and fibrosis were evaluated ex vivo. RESULTS BP and wall thickness were elevated in RVH and decreased by PTRA, yet remained higher than in controls. LV myocardial muscle mass increased in RVH pigs, which also developed diastolic dysfunction, whereas cardiac output increased. Furthermore, both apical rotation and peak torsion angle increased in RVH compared with controls. Ex vivo, RVH induced myocardial fibrosis and vascular rarefaction. PTRA restored cardiac function and alleviated hypertrophy, vascular rarefaction, and fibrosis. PTRA also normalized apical rotation and peak torsion angle, and elevated basal peak radial strain and apical peak radial strain compared with RVH. CONCLUSION In addition to cardiac LV adaptive hypertrophy and diastolic dysfunction, short-term RVH causes cardiac deformation. Despite only partial improvement in BP, PTRA effectively restored cardiac function and reversed abnormal mechanics. Hence, renal revascularization may be a useful strategy to preserve cardiac function in RVH.
Collapse
Affiliation(s)
- Shasha Yu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiang Y. Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Wu YL. Cardiac MRI Assessment of Mouse Myocardial Infarction and Regeneration. Methods Mol Biol 2021; 2158:81-106. [PMID: 32857368 DOI: 10.1007/978-1-0716-0668-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Small animal models are indispensable for cardiac regeneration research. Studies in mouse and rat models have provided important insights into the etiology and mechanisms of cardiovascular diseases and accelerated the development of therapeutic strategies. It is vitally important to be able to evaluate the therapeutic efficacy and have reliable surrogate markers for therapeutic development for cardiac regeneration research. Magnetic resonance imaging (MRI), a versatile and noninvasive imaging modality with excellent penetration depth, tissue coverage, and soft-tissue contrast, is becoming a more important tool in both clinical settings and research arenas. Cardiac MRI (CMR) is versatile, noninvasive, and capable of measuring many different aspects of cardiac functions, and, thus, is ideally suited to evaluate therapeutic efficacy for cardiac regeneration. CMR applications include assessment of cardiac anatomy, regional wall motion, myocardial perfusion, myocardial viability, cardiac function assessment, assessment of myocardial infarction, and myocardial injury. Myocardial infarction models in mice are commonly used model systems for cardiac regeneration research. In this chapter, we discuss various CMR applications to evaluate cardiac functions and inflammation after myocardial infarction.
Collapse
Affiliation(s)
- Yijen L Wu
- Department of Developmental Biology, Rangos Research Center Animal Imaging Core, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Peirlinck M, Sack KL, De Backer P, Morais P, Segers P, Franz T, De Beule M. Kinematic boundary conditions substantially impact in silico ventricular function. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3151. [PMID: 30188608 DOI: 10.1002/cnm.3151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Computational cardiac mechanical models, individualized to the patient, have the potential to elucidate the fundamentals of cardiac (patho-)physiology, enable non-invasive quantification of clinically significant metrics (eg, stiffness, active contraction, work), and anticipate the potential efficacy of therapeutic cardiovascular intervention. In a clinical setting, however, the available imaging resolution is often limited, which limits cardiac models to focus on the ventricles, without including the atria, valves, and proximal arteries and veins. In such models, the absence of surrounding structures needs to be accounted for by imposing realistic kinematic boundary conditions, which, for prognostic purposes, are preferably generic and thus non-image derived. Unfortunately, the literature on cardiac models shows no consistent approach to kinematically constrain the myocardium. The impact of different approaches (eg, fully constrained base, constrained epi-ring) on the predictive capacity of cardiac mechanical models has not been thoroughly studied. For that reason, this study first gives an overview of current approaches to kinematically constrain (bi) ventricular models. Next, we developed a patient-specific in silico biventricular model that compares well with literature and in vivo recorded strains. Alternative constraints were introduced to assess the influence of commonly used mechanical boundary conditions on both the predicted global functional behavior of the in-silico heart (cavity volumes, stroke volume, ejection fraction) and local strain distributions. Meaningful differences in global functioning were found between different kinematic anchoring strategies, which brought forward the importance of selecting appropriate boundary conditions for biventricular models that, in the near future, may inform clinical intervention. However, whilst statistically significant differences were also found in local strain distributions, these differences were minor and mostly confined to the region close to the applied boundary conditions.
Collapse
Affiliation(s)
- Mathias Peirlinck
- Biofluid, Tissue and Solid Mechanics for Medical Applications Lab (IBiTech, bioMMeda), Ghent University, Ghent, Belgium
| | - Kevin L Sack
- Department of Surgery, University of California at San Francisco, San Francisco, CA, USA
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Observatory, South Africa
| | | | - Pedro Morais
- Lab on Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KULeuven-University of Leuven, Leuven, Belgium
| | - Patrick Segers
- Biofluid, Tissue and Solid Mechanics for Medical Applications Lab (IBiTech, bioMMeda), Ghent University, Ghent, Belgium
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Observatory, South Africa
- Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Matthieu De Beule
- Biofluid, Tissue and Solid Mechanics for Medical Applications Lab (IBiTech, bioMMeda), Ghent University, Ghent, Belgium
- FEops nv, Ghent, Belgium
| |
Collapse
|
7
|
Mora V, Roldán I, Romero E, Romero D, Bertolín J, Ugalde N, Pérez-Olivares C, Rodriguez-Israel M, Pérez-Gozalbo J, Lowenstein JA. Comprehensive assessment of left ventricular myocardial function by two-dimensional speckle-tracking echocardiography. Cardiovasc Ultrasound 2018; 16:16. [PMID: 30223828 PMCID: PMC6142420 DOI: 10.1186/s12947-018-0135-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/23/2018] [Indexed: 11/23/2022] Open
Abstract
Background Left ventricular ejection fraction (LVEF) results from the combined action of longitudinal and circumferential contraction, radial thickening, and basal and apical rotation. The study of these parameters together may lead to an accurate assessment of the cardiac function. Methods Ninety healthy volunteers, categorized by gender and age (≤ 55 and > 55 years), were evaluated using two-dimensional speckle tracking echocardiography. Transversal views of the left ventricle (LV) were obtained to calculate circumferential strain and left ventricular twist, while three apical views were obtained to determine longitudinal strain (LS) and mitral annular plane systolic excursion (MAPSE). We established the integral myocardial function of the LV according to: 1. The Combined Deformation Parameter (CDP), which includes Deformation Product (DP) - Twist x LS (° x %) - and Deformation Index (DefI) -Twist / LS (° / %)-; and 2. the Torsion Index (TorI): Twist / MAPSE (° / cm). Results The mean age of our patients was 50.3 ± 11.1 years. CDP did not vary with gender or age. The average DP was − 432 ± 172 ° x %, and the average DefI was − 0.96 ± 0.36 ° / %. DP provides information about myocardial function (normal, pseudonormal, depressed), and the DefI quotient indicates which component (s) is/are affected in cases of abnormality. TorI was higher in volunteers over 55 years (16.5 ± 15.2 vs 13.1 ± 5.0 °/cm, p = 0.003), but did not vary with gender. Conclusions The proposed parameters integrate values of twisting and longitudinal shortening. They allow a complete physiological assessment of cardiac systolic function, and could be used for the early detection and characterization of its alteration.
Collapse
Affiliation(s)
- Vicente Mora
- Cardiology Department, Hospital Dr Peset, Valencia, Spain.
| | | | - Elena Romero
- Cardiology Department, Hospital Dr Peset, Valencia, Spain
| | - Diana Romero
- Cardiodiagnosis Department Medical Research of Buenos Aires, Buenos Aires, Argentina
| | | | - Natalia Ugalde
- Cardiodiagnosis Department Medical Research of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | - Jorge A Lowenstein
- Cardiodiagnosis Department Medical Research of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
|
9
|
Scardulla F, Agnese V, Romano G, Di Gesaro G, Sciacca S, Bellavia D, Clemenza F, Pilato M, Pasta S. Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis. Cardiovasc Eng Technol 2018; 9:427-437. [PMID: 29700783 DOI: 10.1007/s13239-018-0358-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/21/2018] [Indexed: 01/13/2023]
Abstract
The risk of right ventricle (RV) failure remains a major contraindication for continuous-flow left ventricular assist device (CF-LVAD) implantation in patients with heart failure. It is therefore critical to identify the patients who will benefit from early intervention to avoid adverse outcomes. We sought to advance the computational modeling description of the mechanisms underlying RV failure in LVAD-supported patients. RV failure was studied by computational modeling of hemodynamic and cardiac mechanics using lumped-parameter and biventricular finite element (FE) analysis. Findings were validated by comparison of bi-dimensional speckle-tracking echocardiographic strain assessment of the RV free wall vs. patient-specific computational strain estimations, and by non-invasive lumped-based hemodynamic predictions vs. invasive right heart catheterization data. Correlation analysis revealed that lumped-derived RV cardiac output (R = 0.94) and RV stroke work index (R = 0.85) were in good agreement with catheterization data collected from 7 patients with CF-LVAD. Biventricular FE analysis showed abnormal motion of the interventricular septum towards the left ventricular free wall, suggesting impaired right heart mechanics. Good agreement between computationally predicted and echocardiographic measured longitudinal strains was found at basal (- 19.1 ± 3.0% for ECHO, and - 16.4 ± 3.2% for FEM), apical (- 20.0 ± 3.7% for ECHO, and - 17.4 ± 2.7% for FEM), and mid-level of the RV free wall (- 20.1 ± 5.9% for echo, and - 18.0 ± 5.4% for FEM). Simulation approach here presented could serve as a tool for less invasive and early diagnosis of the severity of RV failure in patients with LVAD, although future studies are needed to validate our findings against clinical outcomes.
Collapse
Affiliation(s)
- Francesco Scardulla
- Dipartimento dell'Innovazione Industriale e Digitale (DIID), Universita' di Palermo, Viale delle Scienze, Palermo, Italy
| | - Valentina Agnese
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Giuseppe Romano
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Gabriele Di Gesaro
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Sergio Sciacca
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Diego Bellavia
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Francesco Clemenza
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Salvatore Pasta
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy. .,Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
10
|
Cutrì E, Meoli A, Dubini G, Migliavacca F, Hsia TY, Pennati G. Patient-specific biomechanical model of hypoplastic left heart to predict post-operative cardio-circulatory behaviour. Med Eng Phys 2017; 47:85-92. [DOI: 10.1016/j.medengphy.2017.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/02/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
|