1
|
Lee DRC, Yang X, Riccio-Ackerman F, Alemón B, Ballesteros-Escamilla M, Solav D, Lipsitz SR, Moerman KM, Meyer CI, Jaeger AM, Huegel JC, Herr HM. A clinical comparison of a digital versus conventional design methodology for transtibial prosthetic interfaces. Sci Rep 2024; 14:25833. [PMID: 39468101 PMCID: PMC11519600 DOI: 10.1038/s41598-024-74504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
A transtibial prosthetic interface typically comprises a compliant liner and an outer rigid socket. The preponderance of today's conventional liners are mass produced in standard sizes, and conventional socket design is labor-intensive and artisanal, lacking clear scientific rationale. This work tests the clinical efficacy of a novel, physics-based digital design framework to create custom prosthetic liner-socket interfaces. In this investigation, we hypothesize that the novel digital approach will improve comfort outcomes compared to a conventional method of liner-socket design. The digital design framework generates custom transtibial prosthetic interfaces starting from MRI or CT image scans of the residual limb. The interface design employs FEA to simulate limb deformation under load. Interfaces are fabricated for 9 limbs from 8 amputees (1 bilateral). Testing compares novel and conventional interfaces across four assessments: 5-min walking trial, thermal imaging, 90-s standing pressure trial, and an evaluation questionnaire. Outcome measures include antalgic gait criterion, skin surface pressures, skin temperature changes, and direct questionnaire feedback. Antalgic gait is compared via a repeated measures linear mixed model while the other assessments are compared via a non-parametric Wilcoxon sign-rank test. A statistically significant ([Formula: see text]) decrease in pain is demonstrated when walking on the novel interfaces compared to the conventional. Standing pressure data show a significant decrease in pressure on novel interfaces at the anterior distal tibia ([Formula: see text]), with no significant difference at other measured locations. Thermal results show no statistically significant difference related to skin temperature. Questionnaire feedback shows improved comfort on novel interfaces on posterior and medial sides while standing and the medial side while walking. Study results support the hypothesis that the novel digital approach improves comfort outcomes compared to the evaluated conventional method. The digital interface design methodology also has the potential to provide benefits in design time, repeatability, and cost.
Collapse
Affiliation(s)
- Duncan R C Lee
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Xingbang Yang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Francesca Riccio-Ackerman
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Mariana Ballesteros-Escamilla
- Tecnológico de Monterrey, Guadalajara, Mexico
- Medical Robotics and Biosignal Laboratory and CIDETEC, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dana Solav
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stuart R Lipsitz
- Center for Surgery and Public Health, Brigham and Women's Hospital, Boston, MA, 02120, USA
| | - Kevin M Moerman
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christina I Meyer
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Aaron M Jaeger
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Hugh M Herr
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Ranger BJ, Moerman KM, Feigin M, Herr HM, Anthony BW. 3D Ultrasound Shear Wave Elastography for Musculoskeletal Tissue Assessment Under Compressive Load: A Feasibility Study. ULTRASONIC IMAGING 2024; 46:251-262. [PMID: 38770999 DOI: 10.1177/01617346241253798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Given its real-time capability to quantify mechanical tissue properties, ultrasound shear wave elastography holds significant promise in clinical musculoskeletal imaging. However, existing shear wave elastography methods fall short in enabling full-limb analysis of 3D anatomical structures under diverse loading conditions, and may introduce measurement bias due to sonographer-applied force on the transducer. These limitations pose numerous challenges, particularly for 3D computational biomechanical tissue modeling in areas like prosthetic socket design. In this feasibility study, a clinical linear ultrasound transducer system with integrated shear wave elastography capabilities was utilized to scan both a calibrated phantom and human limbs in a water tank imaging setup. By conducting 2D and 3D scans under varying compressive loads, this study demonstrates the feasibility of volumetric ultrasound shear wave elastography of human limbs. Our preliminary results showcase a potential method for evaluating 3D spatially varying tissue properties, offering future extensions to computational biomechanical modeling of tissue for various clinical scenarios.
Collapse
Affiliation(s)
- Bryan J Ranger
- Department of Engineering, Boston College, Chestnut Hill, MA, USA
| | - Kevin M Moerman
- School of Engineering, University of Galway, Galway, Ireland
| | - Micha Feigin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugh M Herr
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian W Anthony
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Gu Y, He L, Zeng H, Li J, Zhang N, Zhang X, Liu T. A Data-Driven Design Framework for Structural Optimization to Enhance Wearing Adaptability of Prosthetic Hands. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2621-2632. [PMID: 39018213 DOI: 10.1109/tnsre.2024.3430070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Prosthetic hands have significant potential to restore the manipulative capabilities and self-confidence of amputees and enhance their quality of life. However, incompatibility between prosthetic devices and residual limbs can lead to secondary injuries such as skin pressure ulcers and restricted joint motion, contributing to a high prosthesis abandonment rate. To address these challenges, this study introduces a data-driven design framework (D3Frame) utilizing a multi-index optimization method. By incorporating motion/ pressure data, as well as clinical criteria such as pain threshold/ tolerance, from various anatomical sites on the residual limbs of amputees, this framework aims to optimize the structural design of the prosthetic socket, including the Antecubital Channel (AC), Lateral Epicondylar Region Contour (LC), Medial Epicondylar Region Contour (MC), Olecranon Region Contour (OC), Lateral Flexor/ Extensor Region (LR), and Medial Flexor/ Extensor Region (MR). Experiments on five forearm amputees verified the improved adaptability of the optimized socket compared to traditional sockets under three load conditions. The experimental results revealed a modest score enhancement on standard clinical scales and reduced muscle fatigue levels. Specifically, the percent effort of muscles and slope value of mean/ median frequency decreased by 19%, 70%, and 99% on average, respectively, and the average values of mean/ median frequency in the motion cycle both increased by approximately 5%. The proposed D3Frame in this study was applied to optimize the structural aspects of designated regions of the prosthetic socket, offering the potential to aid prosthetists in prosthesis design and, consequently, augmenting the adaptability of prosthetic devices.
Collapse
|
4
|
Fougeron N, Oddes Z, Ashkenazi A, Solav D. Identification of constitutive materials of bi-layer soft tissues from multimodal indentations. J Mech Behav Biomed Mater 2024; 155:106572. [PMID: 38754153 DOI: 10.1016/j.jmbbm.2024.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The personalisation of finite element models is an important problem in the biomechanical fields where subject-specific analyses are fundamental, particularly in studying soft tissue mechanics. The personalisation includes the choice of the constitutive law of the model's material, as well as the choice of the material parameters. In vivo identification of the material properties of soft tissues is challenging considering the complex behaviour of soft tissues that are, among other things, non-linear hyperelastic and heterogeneous. Hybrid experimental-numerical methods combining in vivo indentations and inverse finite element analyses are common to identify these material parameters. Yet, the uniqueness and the uncertainty of the multi-material hyperelastic model have not been evaluated. This study presents a sensitivity analysis performed on synthetic indentation data to investigate the identification uncertainties of the material parameters in a bi-material thigh phantom. Synthetic numerical data, used to replace experimental measurements, considered several measurement modalities: indenter force and displacement, stereo-camera 3D digital image correlation of the indented surface, and ultrasound B-mode images. A finite element model of the indentation was designed with either Ogden-Moerman or Mooney-Rivlin constitutive laws for both materials. The parameters' identifiability (i.e. the possibility of converging to a unique parameter set within an acceptable margin of error) was assessed with various cost functions formulated using the different synthetic data sets. The results underline the need for multiple experimental modalities to reduce the uncertainty of the identified parameters. Additionally, the experimental error can impede the identification of a unique parameter set, and the cost function depends on the constitutive law. This study highlights the need for sensitivity analyses before the design of the experimental protocol. Such studies can also be used to define the acceptable range of errors in the experimental measurement. Eventually, the impact of the evaluated uncertainty of the identified parameters should be further investigated according to the purpose of the finite element modelling.
Collapse
Affiliation(s)
- Nolwenn Fougeron
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel.
| | - Zohar Oddes
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Amit Ashkenazi
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Dana Solav
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Ballen-Moreno F, Langlois K, Ferrentino P, Brancart J, Van Vlerken C, Vanderborght B, Buls N, Verstraten T. Robotically Aided Method to Characterise the Soft Tissue Interaction with Wearable Robots. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941219 DOI: 10.1109/icorr58425.2023.10304757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Wearable robots are widely used to enhance, support or assist humans in different tasks. To accomplish this scope, the interaction between the human body and the device should be comfortable, smooth, high-efficient to transfer forces, and safe for the user. Nevertheless, the pressure and shear stress related to these goals have been overlooked or partially analysed. In this sense, it is crucial to understand the soft tissue response through the in-vivo characterisation of multiple areas of the human body. In fact, soft tissue characterisation plays an essential role in calculating the pressure distribution and shear stress. However, current approaches to estimating soft tissue properties are unsuitable for deployment with multiple human body areas. Hence, this work presents a novel methodology to ease the characterisation of soft tissues using a robotic arm and a 3D superficial scanner. First, the robotic arm is validated by comparing the tensile and compression tests to the indentation tests done by the robot, estimating a 10,4% error. The preliminary experimental tests present the hyperelastic model which fit two adjacent zones of the forearm. This analysis can be extended in several ways, such as: calculating the shear stress, the energy losses or deformations caused by the interaction, and investigating the pressure distribution of different types of physical interfaces.
Collapse
|
6
|
Oddes Z, Solav D. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation. J Mech Behav Biomed Mater 2023; 140:105708. [PMID: 36801779 DOI: 10.1016/j.jmbbm.2023.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Reliable identification of soft tissue material parameters is frequently required in a variety of applications, particularly for biomechanical simulations using finite element analysis (FEA). However, determining representative constitutive laws and material parameters is challenging and often comprises a bottleneck that hinders the successful implementation of FEA. Soft tissues exhibit a nonlinear response and are commonly modeled using hyperelastic constitutive laws. In-vivo material parameter identification, for which standard mechanical tests (e.g., uniaxial tension and compression) are inapplicable, is commonly achieved using finite macro-indentation test. Due to the lack of analytical solutions, the parameters are commonly identified using inverse FEA (iFEA), in which simulated results and experimental data are iteratively compared. However, determining what data must be collected to accurately identify a unique parameter set remains unclear. This work investigates the sensitivities of two types of measurements: indentation force-depth data (e.g., measured using an instrumented indenter) and full-field surface displacements (e.g., using digital image correlation). To eliminate model fidelity and measurement-related errors, we employed an axisymmetric indentation FE model to produce synthetic data for four 2-parameter hyperelastic constitutive laws: compressible Neo-Hookean, and nearly incompressible Mooney-Rivlin, Ogden, and Ogden-Moerman models. For each constitutive law, we computed the objective functions representing the discrepancies in the reaction force, the surface displacement, and their combination, and visualized them for hundreds of parameter sets, spanning a representative range as found in the literature for the bulk soft tissue complex in human lower limbs. Moreover, we quantified three identifiability metrics, which provided insights into the uniqueness (or lack thereof) and the sensitivities. This approach provides a clear and systematic evaluation of the parameter identifiability, which is independent of the selection of the optimization algorithm and initial guesses required in iFEA. Our analysis indicated that the indenter's force-depth data, despite being commonly used for parameter identification, was insufficient for reliably and accurately identifying both parameters for all the investigated material models and that the surface displacement data improved the parameter identifiability in all cases, although the Mooney-Rivlin parameters remained poorly identifiable. Informed by the results, we then discuss several identification strategies for each constitutive model. Finally, we openly provide the codes used in this study, to allow others to further investigate the indentation problem according to their specifications (e.g., by modifying the geometries, dimensions, mesh, material models, boundary conditions, contact parameters, or objective functions).
Collapse
Affiliation(s)
- Zohar Oddes
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Dana Solav
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Ranger BJ, Moerman KM, Anthony BW, Herr HM. Constitutive parameter identification of transtibial residual limb soft tissue using ultrasound indentation and shear wave elastography. J Mech Behav Biomed Mater 2023; 137:105541. [PMID: 36356423 DOI: 10.1016/j.jmbbm.2022.105541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Finite element analysis (FEA) can be used to evaluate applied interface pressures and internal tissue strains for computational prosthetic socket design. This type of framework requires realistic patient-specific limb geometry and constitutive properties. In recent studies, indentations and inverse FEA with MRI-derived 3D patient geometries were used for constitutive parameter identification. However, long computational times and use of specialized equipment presents challenges for clinical, deployment. In this study, we present a novel approach for constitutive parameter identification using a combination of FEA, ultrasound indentation, and shear wave elastography. Local shear modulus measurement using elastography during an ultrasound indentation experiment has particular significance for biomechanical modeling of the residual limb since there are known regional dependencies of soft tissue properties such as varying levels of scarring and atrophy. Beyond prosthesis design, this work has broader implications to the fields of muscle health and monitoring of disease progression.
Collapse
Affiliation(s)
- Bryan J Ranger
- Department of Engineering, Boston College, 245 Beacon Street, Chestnut Hill, MA, 02467, USA.
| | - Kevin M Moerman
- Department of Mechanical Engineering, University of Galway, Galway, H91HX31, Ireland
| | - Brian W Anthony
- Institute for Medical Engineering and Science, 45 Carleton Street, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Mechanical Engineering, 127 Massachusetts Avenue, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hugh M Herr
- MIT Media Lab, 75 Amherst Street, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Yang X, Zhao R, Solav D, Yang X, Lee DR, Sparrman B, Fan Y, Herr H. Material, design, and fabrication of custom prosthetic liners for lower-extremity amputees: A review. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Doherty S, Landis B, Owings TM, Erdemir A. Template models for simulation of surface manipulation of musculoskeletal extremities. PLoS One 2022; 17:e0272051. [PMID: 35969593 PMCID: PMC9377586 DOI: 10.1371/journal.pone.0272051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Capturing the surface mechanics of musculoskeletal extremities would enhance the realism of life-like mechanics imposed on the limbs within surgical simulations haptics. Other fields that rely on surface manipulation, such as garment or prosthetic design, would also benefit from characterization of tissue surface mechanics. Eight homogeneous tissue models were developed for the upper and lower legs and arms of two donors. Ultrasound indentation data was used to drive an inverse finite element analysis for individualized determination of region-specific material coefficients for the lumped tissue. A novel calibration strategy was implemented by using a ratio based adjustment of tissue properties from linear regression of model predicted and experimental responses. This strategy reduced requirement of simulations to an average of under four iterations. These free and open-source specimen-specific models can serve as templates for simulations focused on mechanical manipulations of limb surfaces.
Collapse
Affiliation(s)
- Sean Doherty
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ben Landis
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Tammy M. Owings
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ahmet Erdemir
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Barreto MA, Perez-Gonzalez J, Herr HM, Huegel JC. ARACAM: A RGB-D Multi-View Photogrammetry System for Lower Limb 3D Reconstruction Applications. SENSORS 2022; 22:s22072443. [PMID: 35408058 PMCID: PMC9003530 DOI: 10.3390/s22072443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022]
Abstract
In the world, there is a growing need for lower limb prostheses due to a rising number of amputations caused primarily, by diabetic foot. Researchers enable functional and comfortable prostheses through prosthetic design by integrating new technologies applied to the traditional handcrafted method for prosthesis fabrication that is still current. That is why computer vision shows to be a promising tool for the integration of 3D reconstruction that may be useful for prosthetic design. This work has the objective to design, prototype, and test a functional system to scan plaster cast molds, which may serve as a platform for future technologies for lower limb reconstruction applications. The image capture system comprises 5 stereoscopic color and depth cameras, each with 4 DOF mountings on an enveloping frame, as well as algorithms for calibration, segmentation, registration, and surface reconstruction. The segmentation metrics of dice coefficient and Hausdorff distance (HD) show strong visual similarity with an average similarity of 87% and average error of 6.40 mm, respectively. Moving forward, the system was tested on a known 3D printed model obtained from a computer tomography scan to which comparison results via HD show an average error of ≤1.93 mm thereby making the system competitive against the systems reviewed from the state-of-the-art.
Collapse
Affiliation(s)
- Marco A. Barreto
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Zapopan 45138, Mexico; (M.A.B.); (J.C.H.)
| | - Jorge Perez-Gonzalez
- Unidad Académica del Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera Sierra Papacal-Chuburna, Mérida 97302, Mexico
- Correspondence:
| | - Hugh M. Herr
- Lisa K Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA 02142-1308, USA;
| | - Joel C. Huegel
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Zapopan 45138, Mexico; (M.A.B.); (J.C.H.)
- Lisa K Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA 02142-1308, USA;
| |
Collapse
|
11
|
Bosnic M, Rasoulian A, Brandon S. Investigating the Effects of Activation State and Location on Lower Limb Tissue Stiffness. J Biomech 2022; 135:111032. [DOI: 10.1016/j.jbiomech.2022.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
12
|
Experimental characterisation of porcine subcutaneous adipose tissue under blunt impact up to irreversible deformation. Int J Legal Med 2021; 136:897-910. [PMID: 34862924 PMCID: PMC9005403 DOI: 10.1007/s00414-021-02755-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022]
Abstract
A deeper understanding of the mechanical characteristics of adipose tissue under large deformation is important for the analysis of blunt force trauma, as adipose tissue alters the stresses and strains that are transferred to subjacent tissues. Hence, results from drop tower tests of subcutaneous adipose tissue are presented (i) to characterise adipose tissue behaviour up to irreversible deformation, (ii) to relate this to the microstructural configuration, (iii) to quantify this deformation and (iv) to provide an analytical basis for computational modelling of adipose tissue under blunt impact. The drop tower experiments are performed exemplarily on porcine subcutaneous adipose tissue specimens for three different impact velocities and two impactor geometries. An approach based on photogrammetry is used to derive 3D representations of the deformation patterns directly after the impact. Median values for maximum impactor acceleration for tests with a flat cylindrical impactor geometry at impact velocities of 886 mm/s, 1253 mm/s and 2426 mm/s amount to 61.1 g, 121.6 g and 264.2 g, respectively, whereas thickness reduction of the specimens after impact amount to 16.7%, 30.5% and 39.3%, respectively. The according values for tests with a spherically shaped impactor at an impact velocity of 1253 mm/s are 184.2 g and 78.7%. Based on these results, it is hypothesised that, in the initial phase of a blunt impact, adipose tissue behaviour is mainly governed by the behaviour of the lipid inside the adipocytes, whereas for further loading, contribution of the extracellular collagen fibre network becomes more dominant.
Collapse
|
13
|
Bramley JL, Worsley PR, Bader DL, Everitt C, Darekar A, King L, Dickinson AS. Changes in Tissue Composition and Load Response After Transtibial Amputation Indicate Biomechanical Adaptation. Ann Biomed Eng 2021; 49:3176-3188. [PMID: 34580782 PMCID: PMC8671271 DOI: 10.1007/s10439-021-02858-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022]
Abstract
Despite the potential for biomechanical conditioning with prosthetic use, the soft tissues of residual limbs following lower-limb amputation are vulnerable to damage. Imaging studies revealing morphological changes in these soft tissues have not distinguished between superficial and intramuscular adipose distribution, despite the recognition that intramuscular fat levels indicate reduced tolerance to mechanical loading. Furthermore, it is unclear how these changes may alter tissue tone and stiffness, which are key features in prosthetic socket design. This study was designed to compare the morphology and biomechanical response of limb tissues to mechanical loading in individuals with and without transtibial amputation, using magnetic resonance imaging in combination with tissue structural stiffness. The results revealed higher adipose infiltrating muscle in residual limbs than in intact limbs (residual: median 2.5% (range 0.2-8.9%); contralateral: 1.7% (0.1-5.1%); control: 0.9% (0.4-1.3%)), indicating muscle atrophy and adaptation post-amputation. The intramuscular adipose content correlated negatively with daily socket use, although there was no association with time post-amputation. Residual limbs were significantly stiffer than intact limbs at the patellar tendon site, which plays a key role in load transfer across the limb-prosthesis interface. The tissue changes following amputation have relevance in the clinical understanding of prosthetic socket design variables and soft tissue damage risk in this vulnerable group.
Collapse
Affiliation(s)
- J L Bramley
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Mailpoint M7, University Road, Southampton, SO17 1BJ, UK
| | - P R Worsley
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - D L Bader
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - C Everitt
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - A Darekar
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - L King
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - A S Dickinson
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Mailpoint M7, University Road, Southampton, SO17 1BJ, UK.
| |
Collapse
|
14
|
Cabrera IA, Pike TC, McKittrick JM, Meyers MA, Rao RR, Lin AY. Digital healthcare technologies: Modern tools to transform prosthetic care. Expert Rev Med Devices 2021; 18:129-144. [PMID: 34644232 DOI: 10.1080/17434440.2021.1991309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Digital healthcare technologies are transforming the face of prosthetic care. Millions of people with limb loss around the world do not have access to any form of rehabilitative healthcare. However, digital technologies provide a promising solution to augment the range and efficiency of prosthetists. AREAS COVERED The goal of this review is to introduce the digital technologies that have the potential to change clinical methods in prosthetic healthcare. Our target audience are researchers who are unfamiliar with the field of prostheses in general, especially with the newest technological developments. This review addresses technologies for: scanning of amputated limbs, limb-to-socket rectification, additive manufacturing of prosthetic sockets, and quantifying patient response to wearing sockets. This review does not address biomechatronic prostheses or biomechanical design practices. EXPERT OPINION Digital technologies will enable affordable prostheses to be built on a scale larger than with today's clinical practices. Large technological gaps need to be overcome to enable the mass production and distribution of prostheses digitally. However, recent advances in computational methods and CAD/CAM technologies are bridging this gap faster than ever before. We foresee that these technologies will return mobility and economic opportunity to amputees on a global scale in the near future.
Collapse
Affiliation(s)
- Isaac A Cabrera
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, United States
| | - Trinity C Pike
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, United States
| | - Joanna M McKittrick
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, United States
| | - Marc A Meyers
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, United States.,Department of Nanoengineering, University of California San Diego, La Jolla, United States
| | - Ramesh R Rao
- California Institute for Telecommunications and Information Technology (Calit2), La Jolla, United States
| | - Albert Y Lin
- California Institute for Telecommunications and Information Technology (Calit2), La Jolla, United States
| |
Collapse
|
15
|
Mo Y, Qaiser Z, Ou H, Johnson S. A Reconfigurable and Adjustable Compliance System for the Measurement of Interface Orthotic Properties. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1886-1894. [PMID: 34478374 DOI: 10.1109/tnsre.2021.3109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Custom foot orthoses (CFOs) have shown treatment effectiveness by providing improved pressure/load redistribution, skeletal support and comfort level. However, the current design methodologies of CFOs have some problems: (1) the plantar surface is captured without considering the soft tissue impedance, (2) the stiffness of the CFOs is limited to rigid, semi-rigid and soft, which ignores the potential effect of local variation of stiffness on the interface pressure/load distribution and subjective evaluations, and (3) the lack of a human-in-the-loop may lead to multiple design-to-deliver iterations. A new prescription methodology of CFOs is required to satisfy the pressure/load distribution, improve comfort level and decrease iterations. METHOD A measurement system which provides INterface with Tunable Ergonomic properties using a Reconfigurable Framework with Adjustable Compliant Elements (INTERFACE system) is developed to implement the Rapid Evaluate and Adjust Device (READ) methodology. The geometry and stiffness of the Medial Longitudinal Arch (MLA) support provided by the INTERFACE system can be adjusted via linear actuators and tunable stiffness mechanisms, based on objective interface pressure/load distribution and subjective feedback evaluations. Validation tests were conducted on 13 subjects to measure the plantar pressure/load distribution and record the subjective feedback in different combinations of geometry and stiffness. RESULTS The interface pressure/load distribution and subjective feedback of the support level indicate the efficacy of the adjustable geometry and stiffness. As the stiffness and geometrical height increased, the plantar loadings increased in the MLA region and decreased in the rear foot. Geometrical fitting can be achieved with the reconfigurable MLA support. The integration of locally adjustable stiffness makes it possible to fine tune the plantar pressure/load and provides the subjects with options of orthotic stiffness. CONCLUSION The proposed INTERFACE system can be applied to conduct the measurement of the desired orthotic properties which satisfy the interface pressure/load requirement and the subject's comfort.
Collapse
|
16
|
Steer JW, Worsley PR, Browne M, Dickinson A. Key considerations for finite element modelling of the residuum-prosthetic socket interface. Prosthet Orthot Int 2021; 45:138-146. [PMID: 33176573 DOI: 10.1177/0309364620967781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 09/22/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Finite element modelling has long been proposed to support prosthetic socket design. However, there is minimal detail in the literature to inform practice in developing and interpreting these complex, highly nonlinear models. OBJECTIVES To identify best practice recommendations for finite element modelling of lower limb prosthetics, considering key modelling approaches and inputs. STUDY DESIGN Computational modelling. METHODS This study developed a parametric finite element model using magnetic resonance imaging data from a person with transtibial amputation. Comparative analyses were performed considering socket loading methods, socket-residuum interface parameters and soft tissue material models from the literature, to quantify their effect on the residuum's biomechanical response to a range of parameterised socket designs. RESULTS These variables had a marked impact on the finite element model's predictions for limb-socket interface pressure and soft tissue shear distribution. CONCLUSIONS All modelling decisions should be justified biomechanically and clinically. In order to represent the prosthetic loading scenario in silico, researchers should (1) consider the effects of donning and interface friction to capture the generated soft tissue shear stresses, (2) use representative stiffness hyperelastic material models for soft tissues when using strain to predict injury and (3) interrogate models comparatively, against a clinically-used control.
Collapse
Affiliation(s)
- Joshua W Steer
- Bioengineering Science Research Group, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Peter R Worsley
- Clinical Academic Facility, School of Health Sciences, Faculty of Environment and Life Sciences, University of Southampton, Southampton, UK
| | - Martin Browne
- Bioengineering Science Research Group, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Alex Dickinson
- Bioengineering Science Research Group, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
17
|
Safari R. Lower limb prosthetic interfaces: Clinical and technological advancement and potential future direction. Prosthet Orthot Int 2020; 44:384-401. [PMID: 33164655 DOI: 10.1177/0309364620969226] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human-prosthesis interface is one of the most complicated challenges facing the field of prosthetics, despite substantive investments in research and development by researchers and clinicians around the world. The journal of the International Society for Prosthetics and Orthotics, Prosthetics and Orthotics International, has contributed substantively to the growing body of knowledge on this topic. In celebrating the 50th anniversary of the International Society for Prosthetics and Orthotics, this narrative review aims to explore how human-prosthesis interfaces have changed over the last five decades; how research has contributed to an understanding of interface mechanics; how clinical practice has been informed as a result; and what might be potential future directions. Studies reporting on comparison, design, manufacturing and evaluation of lower limb prosthetic sockets, and osseointegration were considered. This review demonstrates that, over the last 50 years, clinical research has improved our understanding of socket designs and their effects; however, high-quality research is still needed. In particular, there have been advances in the development of volume and thermal control mechanisms with a few designs having the potential for clinical application. Similarly, advances in sensing technology, soft tissue quantification techniques, computing technology, and additive manufacturing are moving towards enabling automated, data-driven manufacturing of sockets. In people who are unable to use a prosthetic socket, osseointegration provides a functional solution not available 50 years ago. Furthermore, osseointegration has the potential to facilitate neuromuscular integration. Despite these advances, further improvement in mechanical features of implants, and infection control and prevention are needed.
Collapse
Affiliation(s)
- Reza Safari
- Health and Social Care Research Centre, University of Derby, Derby, UK
| |
Collapse
|
18
|
Eysenbach G, Subburaj K, Wong Y, Blessing LTM. Leveraging Digital Technology to Overcome Barriers in the Prosthetic and Orthotic Industry: Evaluation of its Applicability and Use During the COVID-19 Pandemic. JMIR Rehabil Assist Technol 2020; 7:e23827. [PMID: 33006946 PMCID: PMC7677018 DOI: 10.2196/23827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The prosthetic and orthotic industry typically provides an artisan "hands-on" approach to the assessment and fitting of orthopedic devices. Despite growing interest in digital technology for prosthetic and orthotic service provision, little is known of the quantum of use and the extent to which the current pandemic has accelerated the adoption. OBJECTIVE This study's aim is to assess the use of digital technology in prosthetics and orthotics, and whether its use can help overcome challenges posed by the current COVID-19 pandemic. METHODS A web-based survey of working prosthetists, orthotists, and lower limb patients was conducted between June and July 2020 and divided into three sections: lower limb amputees, prosthetist and orthotist (P&O) currently using digital technologies in their practice, and P&O not using any digital technology. Input was sought from industry and academia experts for the development of the survey. Descriptive analyses were performed for both qualitative (open-ended questions) and quantitative data. RESULTS In total, 113 individuals responded to the web-based survey. There were 83 surveys included in the analysis (patients: n=13, 15%; prosthetists and orthotists: n=70, 85%). There were 30 surveys excluded because less than 10% of the questions were answered. Out of 70 P&Os, 31 (44%) used digital technologies. Three dimensional scanning and digital imaging were the leading technologies being used (27/31, 88%), primarily for footwear (18/31, 58%), ankle-foot orthoses, and transtibial and transfemoral sockets (14/31, 45%). Digital technology enables safer care during COVID-19 with 24 out of 31 (77%) respondents stating it improves patient outcomes. Singapore was significantly less certain that the industry's future is digital (P=.04). The use of virtual care was reported by the P&O to be beneficial for consultations, education, patient monitoring, or triaging purposes. However, the technology could not overcome inherent barriers such as the lack of details normally obtained during a physical assessment. CONCLUSIONS Digital technology is transforming health care. The current pandemic highlights its usefulness in providing safer care, but digital technology must be implemented thoughtfully and designed to address issues that are barriers to current adoption. Technology advancements using virtual platforms, digitalization methods, and improved connectivity will continue to change the future of health care delivery. The prosthetic and orthotic industry should keep an open mind and move toward creating the required infrastructure to support this digital transformation, even if the world returns to pre-COVID-19 days.
Collapse
Affiliation(s)
| | - Karupppasamy Subburaj
- SUTD-MIT International Design Centre, Singapore University of Technology and Design, Singapore, Singapore.,Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore, Singapore
| | - Yoko Wong
- Consortium for Clinical Research and Innovation Singapore, Singapore Clinical Research Institutes, Singapore, Singapore
| | - Lucienne T M Blessing
- SUTD-MIT International Design Centre, Singapore University of Technology and Design, Singapore, Singapore.,Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore, Singapore
| |
Collapse
|
19
|
Towards Management of Residual Limb Volume: Monitoring the Prosthetic Interface Pressure to Detect Volume Fluctuations—A Feasibility Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
(1) Motivation: Variations in the volume of the residual limb negatively impact various aspects of prosthesis use including the prosthetic socket fit. Although volume adjustment systems mitigate corresponding fit problems to some extent, some users still find the management of these systems challenging. With the ultimate goal of creating a feedback system that assists users with the management of their volume adjustment systems, this study demonstrates the feasibility of detecting variations in the volume of the residual limb. (2) Methods: Measurements of the interface force at the bottom of the prosthetic socket were used as indicators of variations in the volume of the residual limb. Force sensitive resistors (FSRs) were placed at the bottom of participants’ prosthetic sockets to monitor the interface limb–socket force as participants walked on a flat surface. Two phases of experiments were carried out: The first phase considered variations simulated by three prosthetic sock plies, established the feasibility of detecting variations in the volume of the limb based on the interface force, and further determined the locations at which the interface force could be used to detect variations in the limb’s volume. Having validated the effectiveness of the proposed method in the first phase, the second phase was carried out to determine the smallest detectable variation of the limb’s volume using the proposed method. In this phase, variations simulated by one and two prosthetic sock plies were considered. Four and three volunteers with transtibial amputations participated in the first and the second phases, respectively. (3) Results: Results of the first phase showed that an increase in the volume of the limb resulted in a decrease in the force measured at the distal location of the prosthetic sockets of all participants; however, the smallest detected variation could not be statistically confirmed.
Collapse
|
20
|
Fougeron N, Rohan PY, Haering D, Rose JL, Bonnet X, Pillet H. Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modeling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues. J Biomech Eng 2020; 142:091004. [PMID: 32086518 DOI: 10.1115/1.4046444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 11/08/2022]
Abstract
Finite element analysis (FEA) is a numerical modeling tool vastly employed in research facilities to analyze and predict load transmission between the human body and a medical device, such as a prosthesis or an exoskeleton. Yet, the use of finite element modeling (FEM) in a framework compatible with clinical constraints is hindered by, among others, heavy and time-consuming assessments of material properties. Ultrasound (U.S.) imaging opens new and unique opportunities for the assessment of in vivo material properties of soft tissues. Confident of these advances, a method combining a freehand U.S. probe and a force sensor was developed in order to compute the hyperelastic constitutive parameters of the soft tissues of the thigh in both relaxed (R) and contracted (C) muscles' configurations. Seven asymptomatic subjects were included for the experiment. Two operators in each configuration performed the acquisitions. Inverse FEM allowed for the optimization of an Ogden's hyperelastic constitutive model of soft tissues of the thigh in large displacement. The mean shear modulus identified for configurations R and C was, respectively, 3.2 ± 1.3 kPa and 13.7 ± 6.5 kPa. The mean alpha parameter identified for configurations R and C was, respectively, 10 ± 1 and 9 ± 4. An analysis of variance showed that the configuration had an effect on constitutive parameters but not on the operator.
Collapse
Affiliation(s)
- Nolwenn Fougeron
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Paristech, 151 Boulevard de l'Hôpital, Paris 75013, France; Recherche et Développement, Proteor, 5 boulevard Winston Churchill, Dijon 21000, France
| | - Pierre-Yves Rohan
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Paristech, 151 Boulevard de l'Hôpital, Paris 75013, France
| | - Diane Haering
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Paristech, 151 Boulevard de l'Hôpital, Paris 75013, France
| | - Jean-Loïc Rose
- Recherche et Développement, Proteor, 5 boulevard Winston Churchill, Dijon 21000, France
| | - Xavier Bonnet
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Paristech, 151 Boulevard de l'Hôpital, Paris 75013, France
| | - Hélène Pillet
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Paristech, 151 Boulevard de l'Hôpital, Paris 75013, France
| |
Collapse
|
21
|
A digital workflow for design and fabrication of bespoke orthoses using 3D scanning and 3D printing, a patient-based case study. Sci Rep 2020; 10:7028. [PMID: 32341404 PMCID: PMC7184736 DOI: 10.1038/s41598-020-63937-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
This study demonstrates the development and application of a novel workflow for designing and fabricating orthoses, using a combination of 3D scanning and 3D printing technologies. The workflow is applied to a clinically relevant translational case study in a patient with a neurological disorder and complex clinical needs. All traditional and commercial approaches to helping the patient’s cervical instability and resulting ‘head-drop’ had previously failed, with associated progressive deterioration in the patient’s clinical state and posture. The workflow was developed to design and fabricate a bespoke device for this patient with no viable alternative therapy. The workflow was developed to generate 3D printable geometry from obtained 3D scan data. The workflow includes algorithms to relax geometry, distribute material efficiently and for variational cutting of orthosis padding material. The 3D patient scan was validated against actual measurements to ensure accuracy of measurements. A total of four prototypes were produced with each iteration being improved based on patient and clinical feedback. There was a progressive improvement in subjective feedback through each iteration at sites of discomfort and overall comfort score. There was a marked improvement in the patient’s posture with correction at the cervical and lumbar spine with the 3D-printed padded collar being worn for 4 hour periods. This study has implications for the rapid production of personalised orthoses which can help reduce patient waiting time, improve patient compliance, reduce pain and reduce further deterioration. The workflow could form the basis for an integrated process, whereby a single hospital visit results in a bespoke orthosis optimised and personalised for each patient.
Collapse
|
22
|
Analysis of Pressure Distribution in Transfemoral Prosthetic Socket for Prefabrication Evaluation via the Finite Element Method. Bioengineering (Basel) 2019; 6:bioengineering6040098. [PMID: 31652967 PMCID: PMC6956391 DOI: 10.3390/bioengineering6040098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, we estimated and validated the pressure distribution profile between the residuum and two types of prosthetic sockets for transfemoral amputees by utilizing a finite element analysis. Correct shaping of the socket for an appropriate load distribution is a critical process in the design of lower-limb prosthesis sockets. The pressure distribution profile provides an understanding of the relationship between the socket design and the level of subject comfortability. Estimating the pressure profile is important, as it helps improve the prosthesis through an evaluation of the socket design before it undergoes the fabrication process. This study focused on utilizing a magnetic resonance imaging (MRI)-based three-dimensional (3D) model inside a predetermined finite element simulation. The simulation was predetermined by mimicking the actual socket-fitting environment. The results showed that the potential MRI-based 3D model simulation could be used as an estimation tool for a pressure distribution profile due to the high correlation coefficient value (R2 > 0.8) calculated when the pressure profiles were compared to the experiment data. The simulation also showed that the pressure distribution in the proximal area was higher (~30%) than in the distal area of the prosthetic socket for every subject. The results of this study will be of tremendous interest for fabricators through the use of a finite element model as an alternative method for the prefabrication and evaluation of prosthetic sockets. In future prosthetic socket fabrications, less intervention will be required in the development of a socket, and the participation of the subject in the socket-fitting session will not be necessary. The results suggest that this study will contribute to expanding the development of an overall prefabrication evaluation system to allow healthcare providers and engineers to simulate the fit and comfort of transfemoral prosthetics.
Collapse
|
23
|
Grabke EP, Masani K, Andrysek J. Lower Limb Assistive Device Design Optimization Using Musculoskeletal Modeling: A Review. J Med Device 2019. [DOI: 10.1115/1.4044739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractMany individuals with lower limb amputations or neuromuscular impairments face mobility challenges attributable to suboptimal assistive device design. Forward dynamic modeling and simulation of human walking using conventional biomechanical gait models offer an alternative to intuition-based assistive device design, providing insight into the biomechanics underlying pathological gait. Musculoskeletal models enable better understanding of prosthesis and/or exoskeleton contributions to the human musculoskeletal system, and device and user contributions to both body support and propulsion during gait. This paper reviews current literature that have used forward dynamic simulation of clinical population musculoskeletal models to perform assistive device design optimization using optimal control, optimal tracking, computed muscle control (CMC) and reflex-based control. Musculoskeletal model complexity and assumptions inhibit forward dynamic musculoskeletal modeling in its current state, hindering computational assistive device design optimization. Future recommendations include validating musculoskeletal models and resultant assistive device designs, developing less computationally expensive forward dynamic musculoskeletal modeling methods, and developing more efficient patient-specific musculoskeletal model generation methods to enable personalized assistive device optimization.
Collapse
Affiliation(s)
- Emerson Paul Grabke
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kei Masani
- KITE—Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada
| | - Jan Andrysek
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G1R8, Canada
| |
Collapse
|
24
|
Regional variations of in vivo surface stiffness of soft tissue layers of musculoskeletal extremities. J Biomech 2019; 95:109307. [DOI: 10.1016/j.jbiomech.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022]
|
25
|
Solav D, Moerman KM, Jaeger AM, Herr HM. A Framework for Measuring the Time-Varying Shape and Full-Field Deformation of Residual Limbs Using 3-D Digital Image Correlation. IEEE Trans Biomed Eng 2019; 66:2740-2752. [PMID: 30676943 PMCID: PMC6783393 DOI: 10.1109/tbme.2019.2895283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Effective prosthetic socket design following lower limb amputation depends upon the accurate characterization of the shape of the residual limb as well as its volume and shape fluctuations. OBJECTIVE This study proposes a novel framework for the measurement and analysis of residual limb shape and deformation, using a high-resolution and low-cost system. METHODS A multi-camera system was designed to capture sets of simultaneous images of the entire residuum surface. The images were analyzed using a specially developed open-source three-dimensional digital image correlation (3D-DIC) toolbox, to obtain the accurate time-varying shapes as well as the full-field deformation and strain maps on the residuum skin surface. Measurements on a transtibial amputee residuum were obtained during knee flexions, muscle contractions, and swelling upon socket removal. RESULTS It was demonstrated that 3D-DIC can be employed to quantify with high resolution time-varying residuum shapes, deformations, and strains. Additionally, the enclosed volumes and cross-sectional areas were computed and analyzed. CONCLUSION This novel low-cost framework provides a promising solution for the in vivo evaluation of residuum shapes and strains, as well as has the potential for characterizing the mechanical properties of the underlying soft tissues. SIGNIFICANCE These data may be used to inform data-driven computational algorithms for the design of prosthetic sockets, as well as of other wearable technologies mechanically interfacing with the skin.
Collapse
|
26
|
Ranger BJ, Feigin M, Zhang X, Moerman KM, Herr H, Anthony BW. 3D Ultrasound Imaging of Residual Limbs With Camera-Based Motion Compensation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:207-217. [PMID: 30676967 DOI: 10.1109/tnsre.2019.2894159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ultrasound is a cost-effective, readily available, and non-ionizing modality for musculoskeletal imaging. Though some research groups have pursued methods that involve submerging the transducer and imaged body segment into a water bath, many limitations remain in regards to acquiring an unloaded volumetric image of an entire human limb in a fast, safe, and adequately accurate manner. A 3D dataset of a limb is useful in several rehabilitative applications including biomechanical modeling of soft tissue, prosthetic socket design, monitoring muscle condition and disease progression, bone health, and orthopedic surgery. This paper builds on previous work from our group and presents the design, prototyping, and preliminary testing of a novel multi-modal imaging system for rapidly acquiring volumetric ultrasound imagery of human limbs, with a particular focus on residual limbs for improved prosthesis design. Our system employs a mechanized water tank setup to scan a limb with a clinical ultrasound transducer and 3D optical imagery to track motion during a scan. The iterative closest point algorithm is utilized to compensate for motion and stitch the images into a final dataset. The results show preliminary 2D and 3D imaging of both a tissue-mimicking phantom and residual limbs. A volumetric error compares the ultrasound image data obtained to a previous MRI method. The results indicate potential for future clinical implementation. Concepts presented in this paper could reasonably transfer to other imaging applications such as acoustic tomography, where motion artifact may distort image reconstruction.
Collapse
|
27
|
Ramasamy E, Avci O, Dorow B, Chong SY, Gizzi L, Steidle G, Schick F, Röhrle O. An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models. Front Bioeng Biotechnol 2018; 6:126. [PMID: 30283777 PMCID: PMC6156538 DOI: 10.3389/fbioe.2018.00126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/23/2018] [Indexed: 11/30/2022] Open
Abstract
The lack of an efficient modelling-simulation-analysis workflow for creating and utilising detailed subject-specific computational models is one of the key reasons why simulation-based approaches for analysing socket-stump interaction have not yet been successfully established. Herein, we propose a novel and efficient modelling-simulation-analysis workflow that uses commercial software for generating a detailed subject-specific, three-dimensional finite element model of an entire residual limb from Diffusion Tensor MRI images in <20 min. Moreover, to complete the modelling-simulation-analysis workflow, the generated subject-specific residual limb model is used within an implicit dynamic FE simulation of bipedal stance to predict the potential sites of deep tissue injury. For this purpose, a nonlinear hyperelastic, transversely isotropic skeletal muscle constitutive law containing a deep tissue injury model was implemented in LS-DYNA. To demonstrate the feasibility of the entire modelling-simulation-analysis workflow and the fact that detailed, anatomically realistic, multi-muscle models are superior to state-of-the-art, fused-muscle models, an implicit dynamic FE analysis of 2-h bipedal stance is carried out. By analysing the potential volume of damaged muscle tissue after donning an optimally-fitted and a misfitted socket, i.e., a socket whose volume was isotropically shrunk by 10%, we were able to highlight the differences between the detailed individual- and fused-muscle models. The results of the bipedal stance simulation showed that peak stresses in the fused-muscle model were four times lower when compared to the multi-muscle model. The peak interface stress in the individual-muscle model, at the end of bipedal stance analysis, was 2.63 times lower than that in the deep tissues of the stump. At the end of the bipedal stance analysis using the misfitted socket, the fused-muscle model predicted that 7.65% of the residual limb volume was injured, while the detailed-model predicted 16.03%. The proposed approach is not only limited to modelling residual limbs but also has applications in predicting the impact of plastic surgery, for detailed forward-dynamics simulations of normal musculoskeletal systems.
Collapse
Affiliation(s)
- Ellankavi Ramasamy
- Department of Biomechatronic Systems, Fraunhofer-Institut für Produktionstechnik und Automatisierung (Fraunhofer IPA), Stuttgart, Germany
| | - Okan Avci
- Department of Biomechatronic Systems, Fraunhofer-Institut für Produktionstechnik und Automatisierung (Fraunhofer IPA), Stuttgart, Germany
| | - Beate Dorow
- Department of Biomechatronic Systems, Fraunhofer-Institut für Produktionstechnik und Automatisierung (Fraunhofer IPA), Stuttgart, Germany
| | - Sook-Yee Chong
- Diagnostische und Interventionelle Radiologie, Sektion für Experimentelle Radiologie, Department für Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Leonardo Gizzi
- Institut für Mechanik (Bauwesen), Universität Stuttgart, Stuttgart, Germany
| | - Günter Steidle
- Diagnostische und Interventionelle Radiologie, Sektion für Experimentelle Radiologie, Department für Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Fritz Schick
- Diagnostische und Interventionelle Radiologie, Sektion für Experimentelle Radiologie, Department für Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Oliver Röhrle
- Department of Biomechatronic Systems, Fraunhofer-Institut für Produktionstechnik und Automatisierung (Fraunhofer IPA), Stuttgart, Germany.,Diagnostische und Interventionelle Radiologie, Sektion für Experimentelle Radiologie, Department für Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany.,Stuttgart Centre for Simulation Sciences, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
28
|
Liu Y, Chen X, Guo A, Liu S, Hu G. Quantitative Assessments of Mechanical Responses upon Radial Extracorporeal Shock Wave Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700797. [PMID: 29593978 PMCID: PMC5867036 DOI: 10.1002/advs.201700797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 05/03/2023]
Abstract
Although radial extracorporeal shock wave therapy (rESWT) has been widely used to treat orthopedic disorders with promising clinical results, rESWT largely relies on clinicians' personal experiences and arbitrary judgments, without knowing relationships between administration doses and effective doses at target sites. In fact, practitioners lack a general and reliable way to assess propagation and distribution of pressure waves inside biological tissues quantitatively. This study develops a methodology to combine experimental measurements and computational simulations to obtain pressure fields from rESWT through calibrating and validating computational models with experimental measurements. Wave pressures at the bottom of a petri dish and inside biological tissues are measured, respectively, by attaching and implanting flexible membrane sensors. Detailed wave dynamics are simulated through explicit finite element analyses. The data decipher that waves from rESWT radiate directionally and can be modeled as acoustic waves generated from a vibrating circular piston. Models are thus established to correlate pressure amplitudes at the bottom of petri dishes and in the axial direction of biological tissues. Additionally, a pilot simulation upon rESWT for human lumbar reveals a detailed and realistic pressure field mapping. This study will open a new avenue of personalized treatment planning and mechanism research for rESWT.
Collapse
Affiliation(s)
- Yajun Liu
- Orthopedic Shock Wave Treatment CenterSpine Surgery DepartmentBeijing Jishuitan HospitalBeijing100035China
| | - Xiaodong Chen
- The State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Anyi Guo
- Orthopedic Shock Wave Treatment CenterSpine Surgery DepartmentBeijing Jishuitan HospitalBeijing100035China
| | - Sijin Liu
- The State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Guoqing Hu
- The State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
29
|
Kim Y, Kim J, Son H, Choi Y. Dynamic elasticity measurement for prosthetic socket design. IEEE Int Conf Rehabil Robot 2017; 2017:1281-1286. [PMID: 28813997 DOI: 10.1109/icorr.2017.8009425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
Collapse
|
30
|
Dickinson A, Steer J, Worsley P. Finite element analysis of the amputated lower limb: A systematic review and recommendations. Med Eng Phys 2017; 43:1-18. [DOI: 10.1016/j.medengphy.2017.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/17/2017] [Accepted: 02/10/2017] [Indexed: 01/18/2023]
|
31
|
Lin B, Moerman KM, McMahan CG, Pasch KA, Herr HM. Low-Cost Methodology for Skin Strain Measurement of a Flexed Biological Limb. IEEE Trans Biomed Eng 2016; 64:2750-2759. [PMID: 27849521 DOI: 10.1109/tbme.2016.2626442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The purpose of this manuscript is to compute skin strain data from a flexed biological limb, using portable, inexpensive, and easily available resources. METHODS We apply and evaluate this approach on a person with bilateral transtibial amputations, imaging left and right residual limbs in extended and flexed knee postures. We map 3-D deformations to a flexed biological limb using freeware and a simple point-and-shoot camera. Mean principal strain, maximum shear strain, as well as lines of maximum, minimum, and nonextension are computed from 3-D digital models to inform directional mappings of the strain field for an unloaded residual limb. RESULTS Peak tensile strains are ∼0.3 on the anterior surface of the knee in the proximal region of the patella, whereas peak compressive strains are ∼ -0.5 on the posterior surface of the knee. Peak maximum shear strains are ∼0.3 on the posterior surface of the knee. The accuracy and precision of this methodology are assessed for a ground-truth model. The mean point location distance is found to be 0.08 cm, and the overall standard deviation for point location difference vectors is 0.05 cm. CONCLUSION This low-cost and mobile methodology may prove critical for applications such as the prosthetic socket interface where whole-limb skin strain data are required from patients in the field outside of traditional, large-scale clinical centers. SIGNIFICANCE Such data may inform the design of wearable technologies that directly interface with human skin.
Collapse
|
32
|
Clemen CB, Benderoth GEK, Schmidt A, Hübner F, Vogl TJ, Silber G. Human skeletal muscle behavior in vivo: Finite element implementation, experiment, and passive mechanical characterization. J Mech Behav Biomed Mater 2016; 65:679-687. [PMID: 27743943 DOI: 10.1016/j.jmbbm.2016.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022]
Abstract
In this study, useful methods for active human skeletal muscle material parameter determination are provided. First, a straightforward approach to the implementation of a transversely isotropic hyperelastic continuum mechanical material model in an invariant formulation is presented. This procedure is found to be feasible even if the strain energy is formulated in terms of invariants other than those predetermined by the software's requirements. Next, an appropriate experimental setup for the observation of activation-dependent material behavior, corresponding data acquisition, and evaluation is given. Geometry reconstruction based on magnetic resonance imaging of different deformation states is used to generate realistic, subject-specific finite element models of the upper arm. Using the deterministic SIMPLEX optimization strategy, a convenient quasi-static passive-elastic material characterization is pursued; the results of this approach used to characterize the behavior of human biceps in vivo indicate the feasibility of the illustrated methods to identify active material parameters comprising multiple loading modes. A comparison of a contact simulation incorporating the optimized parameters to a reconstructed deformed geometry of an indented upper arm shows the validity of the obtained results regarding deformation scenarios perpendicular to the effective direction of the nonactivated biceps. However, for a valid, activatable, general-purpose material characterization, the material model needs some modifications as well as a multicriteria optimization of the force-displacement data for different loading modes.
Collapse
Affiliation(s)
- Christof B Clemen
- Institute for Materials Science, Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany.
| | - Günther E K Benderoth
- Institute for Materials Science, Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany.
| | - Andreas Schmidt
- Institute for Materials Science, Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany.
| | - Frank Hübner
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Gerhard Silber
- Institute for Materials Science, Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany.
| |
Collapse
|