1
|
Xiao Y, Tao Z, Ju Y, Huang X, Zhang X, Liu X, Volotovski PA, Huang C, Chen H, Zhang Y, Liu S. Diamond-Like Carbon Depositing on the Surface of Polylactide Membrane for Prevention of Adhesion Formation During Tendon Repair. NANO-MICRO LETTERS 2024; 16:186. [PMID: 38687411 PMCID: PMC11061095 DOI: 10.1007/s40820-024-01392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine. This study proposes the use of diamond-like carbon (DLC) deposited on polylactic acid (PLA) membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats. The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane, with histological score decreasing from 3.12 ± 0.27 to 2.20 ± 0.22 and anti-adhesion effectiveness increasing from 21.61% to 44.72%. Mechanistically, the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively; thus, the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited. Consequently, excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) is largely reduced. For biocompatibility evaluation, PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes. Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds, which further delays the fibrosis process. It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Yufeng Ju
- Shanghai Tongji Hospital, 389 Xincun Rd, Shanghai, 200065, People's Republic of China
| | - Xiaolu Huang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Xiaonan Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Pavel A Volotovski
- Orthopedic Trauma Department, Belarus Republic Scientific and Practical Center for Traumatology and Orthopedics, Kizhevatova str., 60/4, 220024, Minsk, Belarus
| | - Chao Huang
- Shanghai Haohai Biological Technology Limited Liability Company, 1386 Hongqiao Rd, Shanghai, 200336, People's Republic of China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| | - Yaozhong Zhang
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
2
|
Sun F, Cheng W, Zhao B, Lin Z. Fatigue properties of plasma nitriding for dental implant application. J Prosthet Dent 2024; 131:329.e1-329.e8. [PMID: 35339281 DOI: 10.1016/j.prosdent.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 10/18/2022]
Abstract
STATEMENT OF PROBLEM Fatigue failure of implant components is a common clinical problem. Plasma nitriding, an in situ surface-strengthening method, may improve fatigue properties of dental implants. PURPOSE The purpose of this in vitro study was to evaluate the effect of plasma nitriding on the fatigue behavior of implant systems. MATERIAL AND METHODS The preload and friction coefficient of plasma nitrided abutment screws, as well as settlement of the implant-abutment interface, were measured. Then, the reverse torque values and pullout force were evaluated after cyclic loading. Finally, the fatigue properties of the implant system were investigated with static fracture and dynamic fatigue life tests, and the morphology of the fracture on the surface of the implant system was observed. RESULTS The plasma nitriding treatment reduced the friction coefficient; increased the preload, settlement value, reverse torque values, pullout force, and static fracture load; and prolonged fatigue life. Furthermore, abutment screws with plasma nitriding treatment showed a different fatigue fracture mode. CONCLUSIONS Plasma nitriding improved mechanical performance and may be a suitable way to optimize the fatigue behavior of dental implants.
Collapse
Affiliation(s)
- Fei Sun
- PhD student, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, PR China
| | - Wei Cheng
- Postgraduate student, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, PR China
| | - Baohong Zhao
- Professor, School and Hospital of Stomatology, Key Laboratory of Oral Diseases of Liaoning province, China Medical University, Shenyang, PR China
| | - Zeng Lin
- Professor, School of Mechanical Engineering and Automation, Key Laboratory of Implant device and Interface Science of Liaoning province, Northeastern University, Shenyang, PR China.
| |
Collapse
|
3
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
4
|
Evaluation the loosening of abutment screws in fluid contamination: an in vitro study. Sci Rep 2022; 12:10797. [PMID: 35750776 PMCID: PMC9232564 DOI: 10.1038/s41598-022-14791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022] Open
Abstract
Screw loosening is one of the most common clinical problems of dental implants. Research on the influencing factors of screw loosening is very important to prevent screw loosening. The purpose of this in vitro study was to evaluate the influence of liquid contamination on the screw loosening. According to the contamination condition, forty-five abutment screws were divided into three groups (n = 15): no contamination, artificial saliva contamination, and mouthwash contamination. The preload and friction coefficient of the abutment screws were recorded. Then, the reverse torque values (RTVs) and settlement were measured after 3.0 × 105 and 6.0 × 105 cycles. The surface wear of the screws was analyzed. Finally, the stress distribution of the abutment screws was calculated by finite element analysis (FEA). The results showed that fluid contamination reduced the friction coefficient, increased the preload, decrease the settlement, improved resistance to screw loosening, and reduced wear on the thread surface. Appropriate antimicrobial lubrication may improve the anti-loosening performance of abutment screws and prevent excessive wear on the threaded surface.
Collapse
|
5
|
Effect of central screw taper angles on the loosening performance and fatigue characteristics of dental implants. J Mech Behav Biomed Mater 2022; 129:105136. [DOI: 10.1016/j.jmbbm.2022.105136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023]
|
6
|
Gan XQ, Xiao Y, Ma RY, Huang CP, Wu Y, Yang BC, Yang Q, Bao CY, Yu HY. [Expert consensus on biomechanical research of dental implant]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:115-123. [PMID: 31168976 PMCID: PMC7030149 DOI: 10.7518/hxkq.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/15/2019] [Indexed: 02/05/2023]
Abstract
Current biomechanical research of dental implants focuses on the mechanical damage and enhancement mechanism of the implant-abutment interface as well as how to obtain better mechanical strength and longer fatigue life of dental implants. The mechanical properties of implants can be comprehensively evaluated by strain gauge analysis, photo elastic stress analysis, digital image correlation, finite element analysis, implant bone bonding strength test, and measurement of mechanical properties. Finite element analysis is the most common method for evaluating stress distribution in dental implants, and static pressure and fatigue tests are commonly used in mechanical strength test. This article reviews biomechanical research methods and evaluation indices of dental implants. Results provide methodology guidelines in the field of biomechanics by introducing principles, ranges of application, advantages, and limitations, thereby benefitting researchers in selecting suitable methods. The influencing factors of the experimental results are presented and discussed to provide implant design ideas for researchers.
Collapse
Affiliation(s)
- Xue-Qi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases
& Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui-Yang Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chun-Peng Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases
& Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Wu
- Engineering Research Center in Biomaterials, Sichuan University & Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China
| | - Bang-Cheng Yang
- Engineering Research Center in Biomaterials, Sichuan University & Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China
| | - Qi Yang
- Chengdu Puchuan Biomaterials Co., Ltd, Chengdu 611731, China
| | - Chong-Yun Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases
& Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hai-Yang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
The effect of DLC-coating deposition method on the reliability and mechanical properties of abutment's screws. Dent Mater 2018; 34:e128-e137. [PMID: 29653724 DOI: 10.1016/j.dental.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/20/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To characterize the mechanical properties of different coating methods of DLC (diamond-like carbon) onto dental implant abutment screws, and their effect on the probability of survival (reliability). METHODS Seventy-five abutment screws were allocated into three groups according to the coating method: control (no coating); UMS - DLC applied through unbalanced magnetron sputtering; RFPA-DLC applied through radio frequency plasma-activated (n=25/group). Twelve screws (n=4) were used to determine the hardness and Young's modulus (YM). A 3D finite element model composed of titanium substrate, DLC-layer and a counterpart were constructed. The deformation (μm) and shear stress (MPa) were calculated. The remaining screws of each group were torqued into external hexagon abutments and subjected to step-stress accelerated life-testing (SSALT) (n=21/group). The probability Weibull curves and reliability (probability survival) were calculated considering the mission of 100, 150 and 200N at 50,000 and 100,000 cycles. RESULTS DLC-coated experimental groups evidenced higher hardness than control (p<0.05). In silico analysis depicted that the higher the surface Young's modulus, the higher the shear stress. Control and RFPA showed β<1, indicating that failures were attributed to materials strength; UMS showed β>1 indicating that fatigue contributed to failure. High reliability was depicted at a mission of 100N. At 200N a significant decrease in reliability was detected for all groups (ranging from 39% to 66%). No significant difference was observed among groups regardless of mission. Screw fracture was the chief failure mode. SIGNIFICANCE DLC-coating have been used to improve titanium's mechanical properties and increase the reliability of dental implant-supported restorations.
Collapse
|
8
|
Whitlow J, Pacelli S, Paul A. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. J Control Release 2017; 261:62-86. [PMID: 28596105 PMCID: PMC5560434 DOI: 10.1016/j.jconrel.2017.05.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/26/2022]
Abstract
With recent advances in the field of nanomedicine, many new strategies have emerged for diagnosing and treating diseases. At the forefront of this multidisciplinary research, carbon nanomaterials have demonstrated unprecedented potential for a variety of regenerative medicine applications including novel drug delivery platforms that facilitate the localized and sustained release of therapeutics. Nanodiamonds (NDs) are a unique class of carbon nanoparticles that are gaining increasing attention for their biocompatibility, highly functional surfaces, optical properties, and robust physical properties. Their remarkable features have established NDs as an invaluable regenerative medicine platform, with a broad range of clinically relevant applications ranging from targeted delivery systems for insoluble drugs, bioactive substrates for stem cells, and fluorescent probes for long-term tracking of cells and biomolecules in vitro and in vivo. This review introduces the synthesis techniques and the various routes of surface functionalization that allow for precise control over the properties of NDs. It also provides an in-depth overview of the current progress made toward the use of NDs in the fields of drug delivery, tissue engineering, and bioimaging. Their future outlook in regenerative medicine including the current clinical significance of NDs, as well as the challenges that must be overcome to successfully translate the reviewed technologies from research platforms to clinical therapies will also be discussed.
Collapse
Affiliation(s)
- Jonathan Whitlow
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS 66045, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|