1
|
Amorim MDSDN, Batista JA, Junior FM, Fontes A, Santos-Oliveira R, Rebelo Alencar LM. New Insights into Hemolytic Anemias: Ultrastructural and Nanomechanical Investigation of Red Blood Cells Showed Early Morphological Changes. J Biomed Nanotechnol 2022; 18:405-421. [PMID: 35484760 DOI: 10.1166/jbn.2022.3267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several diseases are characterized by changes in the mechanical properties of erythrocytes. Hemolytic anemias are an example of these diseases. Among the hemolytic anemias, Sickle Cell Disease and Thalassemia are the most common, characterized by alterations in the structure of their hemoglobin. Sickle cell disease has a pathological origin in synthesizing abnormal hemoglobin, HbS. In contrast, thalassemia results in extinction or decreased synthesis of α and β hemoglobin chains. This work presents a detailed study of biophysical and ultrastructural early erythrocytes membrane alterations at the nanoscale using Atomic Force Microscopy (AFM). Cells from individuals with sickle cell anemia and thalassemia mutations were studied. The analysis methodology in the AFM was given by blood smear and exposure of the inner membrane for ghost analysis. A robust statistic was used with 65,536 force curves for each map, ten cells of each type, with three individuals for each sample group. The results showed significant differences in cell rigidity, adhesion, volume, and roughness at early morphological alterations, bringing new perspectives for understanding pathogenesis. The sickle cell trait (HbAS) results stand out. Significant alterations were observed in the membrane properties, bringing new perspectives for the knowledge of this mutation. This work presents ultrastructural and biomechanical signatures of sickle cell anemia and thalassemia genotypes, which may help determine a more accurate biophysical description and clinical prognosis for these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do N Amorim
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Jerias A Batista
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Francisco Maia Junior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró, 59625-900, Rio Grande do Norte, Brazil
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Center for Biosciences, Federal University of Pernambuco, Recife, 52171-011, Brazil
| | - Ralph Santos-Oliveira
- Zona Oeste State University, Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro, 23070200, Brazil
| | - Luciana M Rebelo Alencar
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| |
Collapse
|
2
|
Chester D, Lee V, Wagner P, Nordberg M, Fisher MB, Brown AC. Elucidating the combinatorial effect of substrate stiffness and surface viscoelasticity on cellular phenotype. J Biomed Mater Res A 2022; 110:1224-1237. [PMID: 35107204 PMCID: PMC9305170 DOI: 10.1002/jbm.a.37367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 12/03/2022]
Abstract
Cells maintain tensional homeostasis by monitoring the mechanics of their microenvironment. In order to understand this mechanotransduction phenomenon, hydrogel materials have been developed with either controllable linear elastic or viscoelastic properties. Native biological tissues, and biomaterials used for medical purposes, often have complex mechanical properties. However, due to the difficulty in completely decoupling the elastic and viscous components of hydrogel materials, the effect of complex composite materials on cellular responses has largely gone unreported. Here, we characterize a novel composite hydrogel system capable of decoupling and individually controlling both the bulk stiffness and surface viscoelasticity of the material by combining polyacrylamide (PA) gels with microgel thin films. By taking advantage of the high degree of control over stiffness offered by PA gels and viscoelasticity, in terms of surface loss tangent, of microgel thin films, it is possible to study the influence that bulk substrate stiffness and surface loss tangent have on complex fibroblast responses, including cellular and nuclear morphology and gene expression. This material system provides a facile method for investigating cellular responses to complex material mechanics with great precision and allows for a greater understanding of cellular mechanotransduction mechanisms than previously possible through current model material platforms.
Collapse
Affiliation(s)
- Daniel Chester
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Veronica Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Wagner
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew Nordberg
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Doué M, Okwieka A, Berquand A, Gorisse L, Maurice P, Velard F, Terryn C, Molinari M, Duca L, Piétrement C, Gillery P, Jaisson S. Carbamylation of elastic fibers is a molecular substratum of aortic stiffness. Sci Rep 2021; 11:17827. [PMID: 34497312 PMCID: PMC8426361 DOI: 10.1038/s41598-021-97293-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Because of their long lifespan, matrix proteins of the vascular wall, such as elastin, are subjected to molecular aging characterized by non-enzymatic post-translational modifications, like carbamylation which results from the binding of cyanate (mainly derived from the dissociation of urea) to protein amino groups. While several studies have demonstrated a relationship between increased plasma concentrations of carbamylated proteins and the development of cardiovascular diseases, molecular mechanisms explaining the involvement of protein carbamylation in these pathological contexts remain to be fully elucidated. The aim of this work was to determine whether vascular elastic fibers could be carbamylated, and if so, what impact this phenomenon would have on the mechanical properties of the vascular wall. Our experiments showed that vascular elastin was carbamylated in vivo. Fiber morphology was unchanged after in vitro carbamylation, as well as its sensitivity to elastase degradation. In mice fed with cyanate-supplemented water in order to increase protein carbamylation within the aortic wall, an increased stiffness in elastic fibers was evidenced by atomic force microscopy, whereas no fragmentation of elastic fiber was observed. In addition, this increased stiffness was also associated with an increase in aortic pulse wave velocity in ApoE-/- mice. These results provide evidence for the carbamylation of elastic fibers which results in an increase in their stiffness at the molecular level. These alterations of vessel wall mechanical properties may contribute to aortic stiffness, suggesting a new role for carbamylation in cardiovascular diseases.
Collapse
Affiliation(s)
- Manon Doué
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Anaïs Okwieka
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Alexandre Berquand
- LRN EA 4682 Laboratoire de Recherche en Nanosciences and NanoMat' Platform, University of Reims Champagne-Ardenne, Reims, France
| | - Laëtitia Gorisse
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Pascal Maurice
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Frédéric Velard
- BIOS EA 4691 Biomatériaux et Inflammation en site osseux, University of Reims Champagne-Ardenne, Reims, France
| | - Christine Terryn
- PICT Platform, University of Reims Champagne-Ardenne, Reims, France
| | - Michaël Molinari
- IPB, CNRS UMR N°5248 CBMN Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, Bordeaux, France
| | - Laurent Duca
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Christine Piétrement
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
- Department of Pediatrics (Nephrology Unit), University Hospital of Reims, Reims, France
| | - Philippe Gillery
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
- Department of Biochemistry-Pharmacology-Toxicology, University Hospital of Reims, Reims, France
| | - Stéphane Jaisson
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France.
- Department of Biochemistry-Pharmacology-Toxicology, University Hospital of Reims, Reims, France.
| |
Collapse
|
4
|
Giudici A, Wilkinson IB, Khir AW. Review of the Techniques Used for Investigating the Role Elastin and Collagen Play in Arterial Wall Mechanics. IEEE Rev Biomed Eng 2021; 14:256-269. [PMID: 32746366 DOI: 10.1109/rbme.2020.3005448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The arterial wall is characterised by a complex microstructure that impacts the mechanical properties of the vascular tissue. The main components consist of collagen and elastin fibres, proteoglycans, Vascular Smooth Muscle Cells (VSMCs) and ground matrix. While VSMCs play a key role in the active mechanical response of arteries, collagen and elastin determine the passive mechanics. Several experimental methods have been designed to investigate the role of these structural proteins in determining the passive mechanics of the arterial wall. Microscopy imaging of load-free or fixed samples provides useful information on the structure-function coupling of the vascular tissue, and mechanical testing provides information on the mechanical role of collagen and elastin networks. However, when these techniques are used separately, they fail to provide a full picture of the arterial micromechanics. More recently, advances in imaging techniques have allowed combining both methods, thus dynamically imaging the sample while loaded in a pseudo-physiological way, and overcoming the limitation of using either of the two methods separately. The present review aims at describing the techniques currently available to researchers for the investigation of the arterial wall micromechanics. This review also aims to elucidate the current understanding of arterial mechanics and identify some research gaps.
Collapse
|
5
|
Berquand A, Wahart A, Henry A, Gorisse L, Maurice P, Blaise S, Romier-Crouzet B, Pietrement C, Bennasroune A, Sartelet H, Jaisson S, Gillery P, Martiny L, Touré F, Duca L, Molinari M. Revealing the elasticity of an individual aortic fiber during ageing at nanoscale by in situ atomic force microscopy. NANOSCALE 2021; 13:1124-1133. [PMID: 33399602 DOI: 10.1039/d0nr06753a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arterial stiffness is a complex process affecting the aortic tree that significantly contributes to cardiovascular diseases (systolic hypertension, coronary artery disease, heart failure or stroke). This process involves a large extracellular matrix remodeling mainly associated with elastin content decrease and collagen content increase. Additionally, various chemical modifications that accumulate with ageing have been shown to affect long-lived assemblies, such as elastic fibers, that could affect their elasticity. To precisely characterize the fiber changes and the evolution of its elasticity with ageing, high resolution and multimodal techniques are needed for precise insight into the behavior of a single fiber and its surrounding medium. In this study, the latest developments in atomic force microscopy and the related nanomechanical modes are used to investigate the evolution and in a near-physiological environment, the morphology and elasticity of aorta cross sections obtained from mice of different ages with an unprecedented resolution. In correlation with more classical approaches such as pulse wave velocity and fluorescence imaging, we demonstrate that the relative Young's moduli of elastic fibers, as well as those of the surrounding areas, significantly increase with ageing. This nanoscale characterization presents a new view on the stiffness process, showing that, besides the elastin and collagen content changes, elasticity is impaired at the molecular level, allowing a deeper understanding of the ageing process. Such nanomechanical AFM measurements of mouse tissue could easily be applied to studies of diseases in which elastic fibers suffer pathologies such as atherosclerosis and diabetes, where the precise quantification of fiber elasticity could better follow the fiber remodeling and predict plaque rupture.
Collapse
Affiliation(s)
- Alexandre Berquand
- Laboratoire de Recherche en Nanosciences, LRN EA4682, University of Reims Champagne-Ardenne, 51685 Reims, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Butlin M, Tan I, Spronck B, Avolio AP. Measuring Arterial Stiffness in Animal Experimental Studies. Arterioscler Thromb Vasc Biol 2020; 40:1068-1077. [PMID: 32268787 PMCID: PMC7176337 DOI: 10.1161/atvbaha.119.313861] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The arterial wall is a composite material of elastin, collagen, and extracellular matrix with acutely modifiable material properties through the action of smooth muscle cells. Therefore, arterial stiffness is a complex parameter that changes not only with long-term remodeling of the wall constituents but also with acute contraction or relaxation of smooth muscle or with changes in the acute distending pressure to which the artery is exposed. It is not possible to test all these aspects using noninvasive or even invasive techniques in humans. Full characterization of the mechanical properties of the artery and the specific arterial factors causing changes to stiffness with disease or modified lifestyle currently require animal studies. This article summarizes the major in vivo and ex vivo techniques to measure the different aspects of arterial stiffness in animal studies.
Collapse
Affiliation(s)
- Mark Butlin
- From the Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia (M.B., I.T., A.P.A.)
| | - Isabella Tan
- From the Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia (M.B., I.T., A.P.A.)
| | - Bart Spronck
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT (B.S.).,Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands (B.S.)
| | - Alberto P Avolio
- From the Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia (M.B., I.T., A.P.A.)
| |
Collapse
|
7
|
Scott RA, Robinson KG, Kiick KL, Akins RE. Human Adventitial Fibroblast Phenotype Depends on the Progression of Changes in Substrate Stiffness. Adv Healthc Mater 2020; 9:e1901593. [PMID: 32105417 PMCID: PMC7274877 DOI: 10.1002/adhm.201901593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Adventitial fibroblasts (AFs) are major contributors to vascular remodeling and maladaptive cascades associated with arterial disease, where AFs both contribute to and respond to alterations in their surrounding matrix. The relationships between matrix modulus and human aortic AF (AoAF) function are investigated using poly(ethylene glycol)-based hydrogels designed with matrix metalloproteinase (MMP)-sensitive and integrin-binding peptides. Initial equilibrium shear storage moduli for the substrates examined are 0.33, 1.42, and 2.90 kPa; after 42 days of culture, all hydrogels exhibit similar storage moduli (0.3-0.7 kPa) regardless of initial modulus, with encapsulated AoAFs spreading and proliferating. In 10 and 7.5 wt% hydrogels, modulus decreases monotonically throughout culture; however, in 5 wt% hydrogels, modulus increases after an initial 7 days of culture, accompanied by an increase in myofibroblast transdifferentiation and expression of collagen I and III through day 28. Thereafter, significant reductions in both collagens occur, with increased MMP-9 and decreased tissue inhibitor of metalloproteinase-1/-2 production. Releasing cytoskeletal tension or inhibiting cellular protein secretion in 5 wt% hydrogels block the stiffening of the polymer matrix. Results indicate that encapsulated AoAFs initiate cell-mediated matrix remodeling and demonstrate the utility of dynamic 3D systems to elucidate the complex interactions between cell behavior and substrate properties.
Collapse
Affiliation(s)
- Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Karyn G. Robinson
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Robert E. Akins
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| |
Collapse
|
8
|
Kiio TM, Park S. Nano-scientific Application of Atomic Force Microscopy in Pathology: from Molecules to Tissues. Int J Med Sci 2020; 17:844-858. [PMID: 32308537 PMCID: PMC7163363 DOI: 10.7150/ijms.41805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The advantages of atomic force microscopy (AFM) in biological research are its high imaging resolution, sensitivity, and ability to operate in physiological conditions. Over the past decades, rigorous studies have been performed to determine the potential applications of AFM techniques in disease diagnosis and prognosis. Many pathological conditions are accompanied by alterations in the morphology, adhesion properties, mechanical compliances, and molecular composition of cells and tissues. The accurate determination of such alterations can be utilized as a diagnostic and prognostic marker. Alteration in cell morphology represents changes in cell structure and membrane proteins induced by pathologic progression of diseases. Mechanical compliances are also modulated by the active rearrangements of cytoskeleton or extracellular matrix triggered by disease pathogenesis. In addition, adhesion is a critical step in the progression of many diseases including infectious and neurodegenerative diseases. Recent advances in AFM techniques have demonstrated their ability to obtain molecular composition as well as topographic information. The quantitative characterization of molecular alteration in biological specimens in terms of disease progression provides a new avenue to understand the underlying mechanisms of disease onset and progression. In this review, we have highlighted the application of diverse AFM techniques in pathological investigations.
Collapse
Affiliation(s)
| | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Daegu 42601, Republic of Korea
| |
Collapse
|
9
|
Vania V, Wang L, Tjakra M, Zhang T, Qiu J, Tan Y, Wang G. The interplay of signaling pathway in endothelial cells-matrix stiffness dependency with targeted-therapeutic drugs. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165645. [PMID: 31866415 DOI: 10.1016/j.bbadis.2019.165645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVDs) have been one of the major causes of human deaths in the world. The study of CVDs has focused on cell chemotaxis for decades. With the advances in mechanobiology, accumulating evidence has demonstrated the influence of mechanical stimuli on arterial pathophysiology and endothelial dysfunction that is a hallmark of atherosclerosis development. An increasing number of drugs have been exploited to decrease the stiffness of vascular tissue for CVDs therapy. However, the underlying mechanisms have yet to be explored. This review aims to summarize how matrix stiffness mediates atherogenesis through various important signaling pathways in endothelial cells and cellular mechanophenotype, including RhoA/Rho-associated protein kinase (ROCK), mitogen-activated protein kinase (MAPK), and Hippo pathways. We also highlight the roles of putative mechanosensitive non-coding RNAs in matrix stiffness-mediated atherogenesis. Finally, we describe the usage of tunable hydrogel and its future strategy to improve our knowledge underlying matrix stiffness-mediated CVDs mechanism.
Collapse
Affiliation(s)
- Vicki Vania
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Marco Tjakra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
10
|
Meekel JP, Mattei G, Costache VS, Balm R, Blankensteijn JD, Yeung KK. A multilayer micromechanical elastic modulus measuring method in ex vivo human aneurysmal abdominal aortas. Acta Biomater 2019; 96:345-353. [PMID: 31306785 DOI: 10.1016/j.actbio.2019.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysms (AAA) are common and potentially life-threatening aortic dilatations, due to the effect of hemodynamic changes on the aortic wall. Previous research has shown a potential pathophysiological role for increased macroscopic aneurysmal wall stiffness; however, not investigating micromechanical stiffness. We aimed to compile a new protocol to examine micromechanical live aortic stiffness (elastic moduli), correlated to histological findings with quantitative immunofluorescence (QIF). Live AAA biopsies (n = 7) and non-dilated aortas (controls; n = 3) were sectioned. Local elastic moduli of aortic intima, media and adventitia were analysed in the direction towards the lumen and vice versa with nanoindentation. Smooth muscle cells (SMC), collagen and fibroblasts were examined using QIF. Nanoindentation of AAA vs. controls demonstrated a 4-fold decrease in elastic moduli (p = 0.022) for layers combined and a 26-fold decrease (p = 0.017) for media-to-intima direction. QIF of AAA vs. controls revealed a 4-, 3- and 6-fold decrease of SMC, collagen and fibroblasts, respectively (p = 0.036). Correlations were found between bidirectional intima and media measurements (ρ = 0.661, p = 0.038) and all QIF analyses (ρ = 0.857-0.905, p = 0.002-0.007). We present a novel protocol to analyse microscopic elastic moduli in live aortic tissues using nanoindentation. Hence, our preliminary findings of decreased elastic moduli and altered wall composition warrant further microscopic stiffness investigation to potentially clarify AAA pathophysiology and to explore potential treatment by wall strengthening. STATEMENT OF SIGNIFICANCE: Although extensive research on the pathophysiology of dilated abdominal aortas (aneurysms) has been performed, the exact underlying pathways are still largely unclear. Previously, the macroscopic stiffness of the pathologic and healthy aortic wall has been studied. This study however, for the first time, studied the microscopic stiffness changes in live tissue of dilated and non-dilated abdominal aortas. This new protocol provides a device to analyse the alterations on cellular level within their microenvironment, whereas previous studies studied the aorta as a whole. Outcomes of these measurements might help to better understand the underlying origin of the incidence and progression of aneurysms and other aortic diseases.
Collapse
Affiliation(s)
- Jorn P Meekel
- Department of Vascular Surgery, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam, The Netherlands; Department of Physiology, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Giorgio Mattei
- Optics11 B.V., Amsterdam, The Netherlands; Biophotonics & Medical Imaging and LaserLaB, VU University Amsterdam, Amsterdam, The Netherlands; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Victor S Costache
- Department of Cardiovascular Surgery, Polisano Medlife Hospital, University "L. Blaga" Sibiu, Sibiu, Romania
| | - Ron Balm
- Department of Vascular Surgery, Amsterdam University Medical Centers, Location Amsterdam Medical Center, Amsterdam, the Netherlands
| | - Jan D Blankensteijn
- Department of Vascular Surgery, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak K Yeung
- Department of Vascular Surgery, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam, The Netherlands; Department of Physiology, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Chester D, Kathard R, Nortey J, Nellenbach K, Brown AC. Viscoelastic properties of microgel thin films control fibroblast modes of migration and pro-fibrotic responses. Biomaterials 2018; 185:371-382. [DOI: 10.1016/j.biomaterials.2018.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
|
12
|
Chang Z, Paoletti P, Hansen ML, Beck HC, Chen PY, Rasmussen LM, Akhtar R. AFM Characterization of the Internal Mammary Artery as a Novel Target for Arterial Stiffening. SCANNING 2018; 2018:6340425. [PMID: 30524642 PMCID: PMC6247466 DOI: 10.1155/2018/6340425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/06/2018] [Indexed: 05/05/2023]
Abstract
Using the atomic force microscopy- (AFM-) PeakForce quantitative nanomechanical mapping (QNM) technique, we have previously shown that the adventitia of the human internal mammary artery (IMA), tested under dehydrated conditions, is altered in patients with a high degree of arterial stiffening. In this study, we explored the nanoscale elastic modulus of the tunica media of the IMA in hydrated and dehydrated conditions from the patients with low and high arterial stiffening, as assessed in vivo by carotid-femoral pulse wave velocity (PWV). In both hydrated and dehydrated conditions, the medial layer was significantly stiffer in the high PWV group. The elastic modulus of the hydrated and dehydrated tunica media was significantly correlated with PWV. In the hydrated condition, the expression activity of certain small leucine-rich repeat proteoglycans (SLRPs), which are associated with arterial stiffening, were found to be negatively correlated to the medial elastic modulus. We also compared the data with our previous work on the IMA adventitia. We found that the hydrated media and dehydrated adventitia are both suitable for reflecting the development of arterial stiffening and SLRP expression. This comprehensive study of the nanomechanical properties integrated with the proteomic analysis in the IMAs demonstrates the possibility of linking structural properties and function in small biological samples with novel AFM methods. The IMA is a suitable target for predicting arterial stiffening.
Collapse
Affiliation(s)
- Zhuo Chang
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, L69 3GH, UK
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Paolo Paoletti
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, L69 3GH, UK
| | - Maria Lyck Hansen
- Department of Clinical Biochemistry and Pharmacology, Center for Individualized Medicine in Arterial Diseases, Odense University Hospital, University of Southern Denmark, Denmark
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Center for Individualized Medicine in Arterial Diseases, Odense University Hospital, University of Southern Denmark, Denmark
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Center for Individualized Medicine in Arterial Diseases, Odense University Hospital, University of Southern Denmark, Denmark
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, L69 3GH, UK
| |
Collapse
|
13
|
Rezvani-Sharif A, Tafazzoli-Shadpour M, Avolio A. Mechanical Characterization of the Lamellar Structure of Human Abdominal Aorta in the Development of Atherosclerosis: An Atomic Force Microscopy Study. Cardiovasc Eng Technol 2018; 10:181-192. [PMID: 30006817 DOI: 10.1007/s13239-018-0370-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is a major risk factor for cardiovascular disease. However, mechanisms of interaction of atherosclerotic plaque development and local stiffness of the lamellar structure of the arterial wall are not well established. In the current study, the local Young's modulus of the wall and plaque components were determined for three different groups of healthy, mildly diseased and advanced atherosclerotic human abdominal aortas. Histological staining was performed to highlight the atherosclerotic plaque components and lamellar structure of the aortic media, consisting of concentric layers of elastin and interlamellar zones. The force spectroscopy mode of the atomic force microscopy was utilized to determine Young's moduli of aortic wall lamellae and plaque components at the micron level. The high variability of Young's moduli (E) at different locations of the atherosclerotic plaque such as the fibrous cap (E = 15.5± 2.6 kPa), calcification zone (E = 103.7±19.5 kPa), and lipid pool (E = 3.5±1.2 kPa) were observed. Reduction of elastin lamellae stiffness (18.6%), as well as stiffening of interlamellar zones (50%), were detected in the diseased portion of the medial layer of abdominal aortic wall compared to the healthy artery. Additionally, significant differences in the stiffness of both elastin lamellae and interlamellar zones were observed between the diseased wall and disease-free wall in incomplete plaques. Our results elucidate the alternation of the stiffness of different lamellae in the human abdominal aortic wall with atherosclerotic plaque development and may provide new insight on the remodeling of the aortic wall during the progression of atherosclerosis.
Collapse
Affiliation(s)
- Alireza Rezvani-Sharif
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | | | - Alberto Avolio
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
14
|
Chang Z, Paoletti P, Barrett SD, Chim YH, Caamaño-Gutiérrez E, Hansen ML, Beck HC, Rasmussen LM, Akhtar R. Nanomechanics and ultrastructure of the internal mammary artery adventitia in patients with low and high pulse wave velocity. Acta Biomater 2018; 73:437-448. [PMID: 29684625 PMCID: PMC5995416 DOI: 10.1016/j.actbio.2018.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
The collagen-rich adventitia is the outermost arterial layer and plays an important biomechanical and physiological role in normal vessel function. While there has been a lot of effort to understand the role of the medial layer on arterial biomechanics, the adventitia has received less attention. In this study, we hypothesized that different ultrastructural and nanomechanical properties would be exhibited in the adventitia of the internal mammary artery (IMA) in patients with a low degree of arterial stiffening as compared to those with a high degree of arterial stiffening. Human IMA biopsies were obtained from a cohort of patients with arterial stiffening assessed via carotid-femoral PWV. Patients were grouped as low PWV (8.5 ± 0.7 ms−1, n = 8) and high PWV (13.4 ± 3.0 ms−1, n = 9). Peakforce QNM atomic force microscopy (AFM) was used to determine the nanomechanical and morphological properties of the IMA. The nano-scale elastic modulus was found to correlate with PWV. We show for the first time that nano-scale alterations in adventitial collagen fibrils in the IMA are evident in patients with high PWV, even though the IMA is not involved in the carotid-femoral pathway. Our approach provides new insight into systemic structure-property changes in the vasculature, and also provides a method of characterizing small biopsy samples to predict the development of arterial stiffening. Statement of Significance Arterial stiffening occurs as part of the natural aging process and is strongly linked to cardiovascular risk. Although arterial stiffening is routinely measured in vivo, little is known about how localised changes in artery structure and biomechanics contributes to in vivo arterial stiffening. This study focusses on the role of the outermost layer of arteries, the adventitia, in arterial stiffening. The study provides data on nano-scale changes in collagen fibril structure and mechanical properties in the adventitia and shows how it relates to in vivo stiffness measurements in the vascular system. This is the first study to link in vivo arterial stiffening with nanomechanical changes in artery biopsy samples. Hence, this approach could be used to develop new diagnostic methods for vascular disease.
Collapse
|