1
|
Jokela A, Aho J, Kosola J, Stenroos A, Sinikumpu JJ, Maffulli N, Lempainen L. Heel pain in young athletes - not always Sever's Disease: A Narrative Review. Foot (Edinb) 2024; 60:102114. [PMID: 39029380 DOI: 10.1016/j.foot.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/21/2024]
Abstract
Heel pain is a prevalent issue in young athletes, often arising from overuse and increased sporting demands. While Sever's Disease is the predominant cause, various other entities, including stress-related injuries and pathologies like tumors and bone lesions, contribute to this condition. The complex hind foot anatomy, encompassing ossicles, physis, and soft tissues, may lead to heel pain. This study aims to provide physicians with a clinically oriented narrative review of adolescent heel pain, supported by illustrative cases. CONCLUSION: This study aims to offer physicians a comprehensive understanding of the concepts surrounding heel pain in adolescents. By presenting clinically relevant information and illustrated cases, it seeks to enhance medical practitioners' ability to diagnose and manage heel pain effectively in this specific demographic.
Collapse
Affiliation(s)
- Aleksi Jokela
- Department of Orthopaedics and Traumatology, Turku University Hospital, Turku, Finland
| | - Joni Aho
- University of Turku, Turku, Finland
| | - Jussi Kosola
- Department of Orthopaedics and Traumatology, Kanta-Häme Central Hospital, Hämeenlinna, Finland; University of Helsinki, Helsinki, Finland; Department of Physical Activity and Health, Paavo Nurmi Centre, University of Turku, Turku, Finland; Department of Orthopaedics and Traumatology, Hyvinkää Hospital, Hyvinkää, Finland
| | - Antti Stenroos
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Juha-Jaakko Sinikumpu
- Department of Children and Adolescents, PEDEGO unit and MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine, Surgery and Dentistry, Salerno, Italy; Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK; Institute of Science and Technology in Medicine, Keele University School of Medicine, Stoke on Trent, UK
| | - Lasse Lempainen
- Department of Physical Activity and Health, Paavo Nurmi Centre, University of Turku, Turku, Finland; FinnOrthopaedics / Hospital Pihlajalinna, Turku, Finland; Ripoll y De Prado, FIFA Medical Centre of Excellence, Madrid, Spain.
| |
Collapse
|
2
|
Huang R, Ning X, Wu L, Zhu J, Tang L, Ma X. An exploratory in-situ dynamic mechanical analysis on the shearing stress-strain mechanism of human plantar soft tissue. Sci Rep 2024; 14:11953. [PMID: 38796594 PMCID: PMC11128022 DOI: 10.1038/s41598-024-62713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
A DMA (dynamic mechanical analysis)-like device based on the principle of classical viscoelasticity testing is invented to investigate the in-situ/in-vivo shear-bearing mechanism of plantar soft tissue. Forty-three volunteers were recruited for the shear-strain test in the longitudinal and transverse directions at five anatomical spots on the plantar surface. Several encouraging observations indicated significant variances among different spots and individuals, implying that the outer forefoot surrounding the second, fifth metatarsal head is a more intensive shear-bearing region on the plantar surface compared to the inner forefoot under the first metatarsal head, and drawing the hypothesis of a significant effect of BMI on the shear-bearing property. The speculations agree with our expectations and other previous research. The feasibility and practical value of this novel approach are substantiated, and these intriguing discoveries provide foundational underpinnings for further in-depth investigations.
Collapse
Affiliation(s)
- Ran Huang
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China.
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, 318000, Zhejiang, China.
| | - Xinyi Ning
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Longyan Wu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jun Zhu
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
| | - Lisheng Tang
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, 318000, Zhejiang, China.
| | - Xin Ma
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
3
|
Wu L, Huang R, Tang L, Ning X, Zhu J, Ma X. A novel in-situ dynamic mechanical analysis for human plantar soft tissue: The device design, definition of characteristics, test protocol, and preliminary results. Heliyon 2024; 10:e29986. [PMID: 38707476 PMCID: PMC11068617 DOI: 10.1016/j.heliyon.2024.e29986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
The in-situ mechanical characterization of elastomers is not highly regarded due to the existence of a well-established set of sample-based standard tests for research and industry. However, there are certain situations or materials, like biological soft tissue, where an in-situ approach is necessary due to the impossibility of sampling from a living body. We have developed a dynamic mechanical analysis (DMA)-like device to approach in-vivo and in-situ multidimensional stress-strain properties of human plantar soft tissues. This work elucidates the operational mechanism of the novel measurement, with the definition of a new set of moduli, test standardization and protocol. Exploratory results of a volunteer's living plantar, silica rubber samples are presented with well preciseness and consistence as expected.
Collapse
Affiliation(s)
- Longyan Wu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Ran Huang
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, Zhejiang, 318000, China
| | - Lisheng Tang
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, Zhejiang, 318000, China
| | - Xinyi Ning
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jun Zhu
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
| | - Xin Ma
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| |
Collapse
|
4
|
Qian Z, Zhuang Z, Liu X, Bai H, Ren L, Ren L. Effects of extreme cyclic loading on the cushioning performance of human heel pads under engineering test condition. Front Bioeng Biotechnol 2023; 11:1229976. [PMID: 37929195 PMCID: PMC10623005 DOI: 10.3389/fbioe.2023.1229976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Human heel pads commonly undergo cyclic loading during daily activities. Low cyclic loadings such as daily human walking tend to have less effect on the mechanical properties of heel pads. However, the impact of cyclic loading on cushion performance, a vital biomechanical property of heel pads, under engineering test condition remains unexplored. Herein, dynamic mechanical measurements and finite element (FE) simulations were employed to explore this phenomenon. It was found that the wavy collagen fibers in the heel pad will be straightened under cycle compression loading, which resulted in increased stiffness of the heel pad. The stiffness of the heel pads demonstrated an inclination to escalate over a span of 50,000 loading cycles, consequently resulting in a corresponding increase in peak impact force over the same loading cycles. Sustained cyclic loading has the potential to result in the fracturing of the straightened collagen fibers, this collagen breakage may diminish the stiffness of the heel pad, leading to a reduction in peak impact force. This work enhances understanding of the biomechanical functions of human heel pad and may provide potential inspirations for the innovative development of healthcare devices for foot complex.
Collapse
Affiliation(s)
- Zhihui Qian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhiqiang Zhuang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xiangyu Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Haotian Bai
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Ansert E, Nirenberg MS, Mukhra R, Kanchan T, Krishan K. Ghosting phenomenon in static and dynamic footprints in India and the United States. Sci Justice 2023; 63:406-413. [PMID: 37169466 DOI: 10.1016/j.scijus.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Ghosting is the phenomenon that exists when a footprint has a lighter area around the tip of one or more toes or a shadow-like area at the back of the heel. To date, ghosting has been considered primarily a finding of dynamic (walking) footprints, rather than static (standing) footprints. The prevalence of ghosting in static footprints is unknown, and research on its presence in static and dynamic footprints from the same participant is sparse, as are studies on its occurrence in different geographic populations. This study is among the first to evaluate the occurrence of ghosting in the static and dynamic footprints from a particular individual with participants in two geographic populations. A combination of both inkless and ink footprint collection systems were used to obtain a total of 206 bare footprints from 103 adult participants from the United States and India. The data comprised 103 static and 103 dynamic footprints. Ghosting occurred significantly in static footprints, though less frequently than in dynamic footprints. Ghosting in static footprints was seen most often at the first toe, followed by the third and second respectively. This aspect appeared least at the heel. In dynamic footprints, it occurred most at the first toe, followed by the second and fourth toes, and then the third toe and the heel. The prevalence of ghosting in footprints from the United States and India differed in their locations, notably at the first and second toes in the static footprints and at the heel in the dynamic footprints.
Collapse
Affiliation(s)
- Elizabeth Ansert
- University of Texas Southwestern, 1801 Inwood Rd, Dallas, TX 75390-9132, USA
| | | | - Richa Mukhra
- Former Research Scholar, Department of Anthropology, Panjab University, 160014, Chandigarh, India
| | - Tanuj Kanchan
- Department of Forensic Medicine & Toxicology, Medical College Building, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Kewal Krishan
- Department of Anthropology, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Hostetler ZS, Caffrey J, Aira J, Gayzik FS. Lower Extremity Validation of a Human Body Model for High Rate Axial Loading in the Underbody Blast Environment. STAPP CAR CRASH JOURNAL 2022; 66:99-142. [PMID: 37733823 DOI: 10.4271/2022-22-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
While the use of Human Body Models (HBMs) in the underbody blast (UBB) environment has increased and shown positive results, the potential of these models has not been fully explored. Obtaining accurate kinematic and kinetic response are necessary to better understand the injury mechanisms for military safety applications. The objective of this study was to validate the Global Human Body Models Consortium (GHBMC) M50 lower extremity using a combined objective rating scheme in vertical and horizontal high-rate axial loading. The model's lower extremity biomechanical response was compared to Post Mortem Human Subjects (PMHS) subjects for vertically and horizontally-applied high rate axial loading. Two distinct experimental setups were used for model validation, comprising a total of 33 distinct end points for validation. A combined Correlation and Analysis (CORA) score that incorporates CORA, time-to-peak (TTP) and peak magnitude of the experimental signals and ISO TS 18571 was used to evaluate the model response. For the horizontal impacts, the combined CORA scores were 0.80, 0.84, and 0.81 for compression, force, and strain respectively. For the vertical impacts combined CORA scores for the knee Z force, compression and heel Z displacement ranged from 0.70-0.81, 0.87-0.91, and 0.82-0.99 respectively. The GHBMC lower extremity model showed good agreement with PMHS experimental data in the horizontal and vertical loading environment in 33 unique tests. The accuracy is demonstrated by using the ISO TS 18571 standard and a combined CORA score that takes into consideration the peak and time to peak of the signal. The results of this study show that GHBMC v 6.0 HBM lower extremity can be used for kinetic and kinematic predictions in the UBB environment.
Collapse
Affiliation(s)
| | | | - Jazmine Aira
- Wake Forest School of Medicine- Biomedical Engineering
| | | |
Collapse
|
7
|
Teng ZL, Yang XG, Geng X, Gu YJ, Huang R, Chen WM, Wang C, Chen L, Zhang C, Helili M, Huang JZ, Wang X, Ma X. Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait. BMC Musculoskelet Disord 2022; 23:254. [PMID: 35292004 PMCID: PMC8925218 DOI: 10.1186/s12891-022-05197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was aimed to develop a novel dynamic measurement technique for testing the material properties and investigating the effect of continuous compression load on the structural and mechanical properties of human heel pad during actual gait. METHODS The dual fluoroscopic imaging system (DFIS) and dynamic foot-ground contact pressure-test plate were used for measuring the material properties, including primary thickness, peak strain, peak stress, elastic modulus, viscous modulus and energy dissipation rate (EDR), both at time zero and following continuous loading. Ten healthy pilot subjects, aged from 23 to 72 (average: 46.5 ± 17.6), were enrolled. A "three-step gait cycle" is performed for all subjects, with the second step striking at a marked position on the force plate with the heel to maintain the location of the tested foot to be in the view of fluoroscopes. The subjects were measured at both relaxed (time-zero group) and fatigue (continuous-loading group) statuses, and the left and right heels were measured using the identical procedures. RESULTS The peak strain, peak stress, elastic modulus, and EDR are similar before and after continuous load, while the viscous modulus was significantly decreased (median: 43.9 vs. 20.37 kPa•s; p < 0.001) as well as primary thicknesses (median: 15.99 vs. 15.72 mm; p < 0.001). Age is demonstrated to be moderately correlated with the primary thicknesses both at time zero (R = -0.507) and following continuous load (R = -0.607). The peak stress was significantly correlated with the elastic modulus before (R = 0.741) and after continuous load (R = 0.802). The peak strain was correlated with the elastic modulus before (R = -0.765) and after continuous load (R = -0.801). The correlations between the viscous modulus and peak stress/ peak strain are similar to above(R = 0.643, 0.577, - 0.586 and - 0.717 respectively). The viscous modulus is positively correlated with the elastic modulus before (R = 0.821) and after continuous load (R = 0.784). CONCLUSIONS By using dynamic fluoroscopy combined with the plantar pressure plate, the in vivo viscoelastic properties and other data of the heel pad in the actual gait can be obtained. Age was negatively correlated with the primary thickness of heel pad and peak strain, and was positively correlated with viscous modulus. Repetitive loading could decrease the primary thickness of heel pad and viscous modulus.
Collapse
Affiliation(s)
- Zhao-Lin Teng
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Xiong-Gang Yang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Xiang Geng
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China.
| | - Yan-Jie Gu
- Academy for Engineering & Technology, Fudan University, No.220 Handan Road, Shanghai, 200438, China
| | - Ran Huang
- Academy for Engineering & Technology, Fudan University, No.220 Handan Road, Shanghai, 200438, China
| | - Wen-Ming Chen
- Academy for Engineering & Technology, Fudan University, No.220 Handan Road, Shanghai, 200438, China
| | - Chen Wang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Li Chen
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Chao Zhang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Maimaitirexiati Helili
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Jia-Zhang Huang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Xu Wang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Xin Ma
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
8
|
Yang XG, Teng ZL, Zhang ZM, Wang K, Huang R, Chen WM, Wang C, Chen L, Zhang C, Huang JZ, Wang X, Ma X, Geng X. Comparison of material properties of heel pad between adults with and without type 2 diabetes history: An in-vivo investigation during gait. Front Endocrinol (Lausanne) 2022; 13:894383. [PMID: 36060939 PMCID: PMC9428762 DOI: 10.3389/fendo.2022.894383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study was aimed to compare the material properties of heel pad between diabetes patients and healthy adults, and investigate the impact of compressive loading history and length of diabetes course on the material properties of heel pad. METHODS The dual fluoroscopic imaging system (DFIS) and dynamic foot-ground contact pressure-test plate were used for measuring the material properties, including primary thickness, peak strain, peak stress, stiffness, viscous modulus and energy dissipation ratio (EDR), both at time zero and following continuous loading. Material properties between healthy adults and DM patients were compared both at time zero and following continuous weight bearing. After then, comparison between time-zero material properties and properties following continuous loading was performed to identify the loading history-dependent biomechanical behaviour of heel pad. Subgroup-based sensitivity analysis was then conducted to investigate the diabetes course (<10 years vs. ≥10 years) on the material properties of heel pad. RESULTS Ten type II DM subjects (20 legs), aged from 59 to 73 (average: 67.8 ± 4.9), and 10 age-matched healthy adults (20 legs), aged from 59 to 72 (average: 64.4 ± 3.4), were enrolled. Diabetes history was demonstrated to be associated with significantly lower primary thickness (t=3.18, p=0.003**), higher peak strain (t=2.41, p=0.021*), lower stiffness (w=283, p=0.024*) and lower viscous modulus (w=331, p<0.001***) at time zero, and significantly lower primary thickness (t=3.30, p=0.002**), higher peak strain (w=120, p=0.031*) and lower viscous modulus (t=3.42, p=0.002**) following continuous loading. The continuous loading was found to be associated with significantly lower primary thickness (paired-w=204, p<0.001***) and viscous modulus (paired-t=5.45, p<0.001***) in healthy adults, and significantly lower primary thickness (paired-w=206, p<0.001***) and viscous modulus (paired-t=7.47, p<0.001***) in diabetes group. No any significant difference was found when conducting the subgroup analysis based on length of diabetes course (<10 years vs. ≥10 years), but the regression analysis showed that the length of diabetes history was positively associated with the peak strain, at time zero (r=0.506, p<0.050) and following continuous loading (r=0.584, p<0.010). CONCLUSIONS Diabetes patients were found to be associated with decreased primary thickness and viscous modulus, and increased peak strain, which may contribute to the vulnerability of heel pad to injury and ulceration. Pre-compression history-dependent behaviour is observable in soft tissue of heel pad, with lowered primary thickness and viscous modulus.
Collapse
Affiliation(s)
- Xiong-gang Yang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao-lin Teng
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen-ming Zhang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kan Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ran Huang
- Academy for Engineering & Technology, Fudan University, Shanghai, China
| | - Wen-ming Chen
- Academy for Engineering & Technology, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Zhang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-zhang Huang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Ma
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiang Geng, ; Xin Ma,
| | - Xiang Geng
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiang Geng, ; Xin Ma,
| |
Collapse
|
9
|
Experimental characterisation of porcine subcutaneous adipose tissue under blunt impact up to irreversible deformation. Int J Legal Med 2021; 136:897-910. [PMID: 34862924 PMCID: PMC9005403 DOI: 10.1007/s00414-021-02755-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022]
Abstract
A deeper understanding of the mechanical characteristics of adipose tissue under large deformation is important for the analysis of blunt force trauma, as adipose tissue alters the stresses and strains that are transferred to subjacent tissues. Hence, results from drop tower tests of subcutaneous adipose tissue are presented (i) to characterise adipose tissue behaviour up to irreversible deformation, (ii) to relate this to the microstructural configuration, (iii) to quantify this deformation and (iv) to provide an analytical basis for computational modelling of adipose tissue under blunt impact. The drop tower experiments are performed exemplarily on porcine subcutaneous adipose tissue specimens for three different impact velocities and two impactor geometries. An approach based on photogrammetry is used to derive 3D representations of the deformation patterns directly after the impact. Median values for maximum impactor acceleration for tests with a flat cylindrical impactor geometry at impact velocities of 886 mm/s, 1253 mm/s and 2426 mm/s amount to 61.1 g, 121.6 g and 264.2 g, respectively, whereas thickness reduction of the specimens after impact amount to 16.7%, 30.5% and 39.3%, respectively. The according values for tests with a spherically shaped impactor at an impact velocity of 1253 mm/s are 184.2 g and 78.7%. Based on these results, it is hypothesised that, in the initial phase of a blunt impact, adipose tissue behaviour is mainly governed by the behaviour of the lipid inside the adipocytes, whereas for further loading, contribution of the extracellular collagen fibre network becomes more dominant.
Collapse
|
10
|
Sun Z, Gepner BD, Lee SH, Rigby J, Cottler PS, Hallman JJ, Kerrigan JR. Multidirectional mechanical properties and constitutive modeling of human adipose tissue under dynamic loading. Acta Biomater 2021; 129:188-198. [PMID: 34048975 DOI: 10.1016/j.actbio.2021.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
The mechanical behavior of subcutaneous adipose tissue (SAT) affects the interaction between vehicle occupants and restraint systems in motor vehicle crashes (MVCs). To enhance future restraints, injury countermeasures, and other vehicle safety systems, computational simulations are often used to augment experiments because of their relative efficiency for parametric analysis. How well finite element human body models (FE-HBMs), which are often used in such simulations, predict human response has been limited by the absence of material models for human SAT that are applicable to the MVC environment. In this study, for the first time, dynamic multidirectional unconfined compression and simple shear loading tests were performed on human abdominal SAT specimens under conditions similar to MVCs. We also performed multiple ramp-hold tests to evaluate the quasilinear viscoelasticity (QLV) assumption and capture the stress relaxation behavior under both compression and shear. Our mechanical characterization was supplemented with scanning electron microscopy (SEM) performed in different orientations to investigate whether the macrostructural response can be related to the underlying microstructure. While the overall structure was shown to be visually different in different anatomical planes, a preferred orientation of any fibrous structures could not be identified. We showed that the nonlinear, viscoelastic, and direction-dependent responses under compression and shear tests could be captured by incorporating QLV in an Ogden-type hyperelastic model. Our comprehensive approach will lead to more accurate computational simulations and support the collective effort on the research of future occupant protection systems. STATEMENT OF SIGNIFICANCE: There is an urgent need to characterize the mechanical behavior of human adipose tissue under multiple dynamic loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We performed the first series of experiments on human adipose tissue specimens to characterize the multi-directional compression and shear behavior at impact loading rates and obtained scanning electron microscope images to investigate whether the macrostructural response can be related to the underlying microstructure. The results showed that human adipose tissue is nonlinear, viscoelastic and direction dependent, and its mechanical response under compression and shear tests at different loading rates can be captured by incorporating quasi-linear viscoelasticity in an Ogden-type hyperelastic model.
Collapse
|
11
|
Sun Z, Gepner BD, Cottler PS, Lee SH, Kerrigan JR. In Vitro Mechanical Characterization and Modeling of Subcutaneous Adipose Tissue: A Comprehensive Review. J Biomech Eng 2021; 143:070803. [PMID: 33625495 DOI: 10.1115/1.4050286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/08/2022]
Abstract
Mechanical models of adipose tissue are important for various medical applications including cosmetics, injuries, implantable drug delivery systems, plastic surgeries, biomechanical applications such as computational human body models for surgery simulation, and blunt impact trauma prediction. This article presents a comprehensive review of in vivo experimental approaches that aimed to characterize the mechanical properties of adipose tissue, and the resulting constitutive models and model parameters identified. In particular, this study examines the material behavior of adipose tissue, including its nonlinear stress-strain relationship, viscoelasticity, strain hardening and softening, rate-sensitivity, anisotropy, preconditioning, failure behavior, and temperature dependency.
Collapse
Affiliation(s)
- Zhaonan Sun
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA 22911
| | - Bronislaw D Gepner
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA 22911
| | - Patrick S Cottler
- Department of Plastic Surgery, University of Virginia, Charlottesville, VA 22903
| | - Sang-Hyun Lee
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA 22911
| | - Jason R Kerrigan
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA 22911
| |
Collapse
|
12
|
An Investigation of Regional Plantar Soft Tissue Hardness and Its Potential Correlation with Plantar Pressure Distribution in Healthy Adults. Appl Bionics Biomech 2021; 2021:5566036. [PMID: 34239603 PMCID: PMC8241530 DOI: 10.1155/2021/5566036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background The plantar soft tissue plays a critical role in absorbing shocks and attenuating excessive stresses during walking. Plantar soft tissue property and plantar pressure are critical information for footwear design and clinical assessment. The aim of this study was to investigate the relationship between plantar soft tissue hardness and plantar pressure during walking. Methods 59 healthy volunteers (27 males and 32 females, aged 20 to 82) participated in this study. The plantar surface was divided into five regions: lateral rearfoot, medial rearfoot, lateral midfoot, lateral forefoot, and medial forefoot, and the plantar tissue hardness was tested using Shore durometer in each region. Average dynamic pressures in each region were analyzed for the five regions corresponding to the hardness tests. The relationship between hardness and average dynamic pressure was analyzed in each region. Results The average hardness of the plantar soft tissue in the above five regions is as follows: lateral rearfoot (34.49 ± 6.77), medial rearfoot (34.47 ± 6.64), lateral midfoot (27.95 ± 6.13), lateral forefoot (29.72 ± 5.47), and medial forefoot (28.58 ± 4.41). Differences of hardness were observed between age groups, and hardness of plantar soft tissues in forefoot regions increased with age (P < 0.05). A negative relationship was found between plantar soft tissue hardness and pressure reduction at lateral rearfoot, medial rearfoot, and lateral midfoot (P < 0.05). Conclusion The hardness of plantar soft tissues changes with age in healthy individuals, and there is a trend of increasing hardness of the plantar soft tissue with age. The plantar soft tissue hardness increases with plantar pressure.
Collapse
|
13
|
Tarrade T, Dakhil N, Behr M, Salin D, Llari M. Real-Time Analysis of the Dynamic Foot Function: A Machine Learning and Finite Element Approach. J Biomech Eng 2021; 143:041005. [PMID: 33156350 DOI: 10.1115/1.4049024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/08/2022]
Abstract
Finite element analysis (FEA) has been widely used to study foot biomechanics and pathological functions or effects of therapeutic solutions. However, development and analysis of such foot modeling is complex and time-consuming. The purpose of this study was therefore to propose a method coupling a FE foot model with a model order reduction (MOR) technique to provide real-time analysis of the dynamic foot function. A generic and parametric FE foot model was developed and dynamically validated during stance phase of gait. Based on a design of experiment of 30 FE simulations including four parameters related to foot function, the MOR method was employed to create a prediction model of the center of pressure (COP) path that was validated with four more random simulations. The four predicted COP paths were obtained with a 3% root-mean-square-error (RMSE) in less than 1 s. The time-dependent analysis demonstrated that the subtalar joint position and the midtarsal joint laxity are the most influential factors on the foot functions. These results provide additionally insight into the use of MOR technique to significantly improve speed and power of the FE analysis of the foot function and may support the development of real-time decision support tools based on this method.
Collapse
Affiliation(s)
- Tristan Tarrade
- Laboratoire de Biomécanique Appliquée, Faculté de Médecine secteur Nord, Aix-Marseille Univ., Univ. Gustave Eiffel, IFSTTAR, LBA, UMR T24, 51 Boulevard Pierre Dramard, Marseille cedex 20 F-13016, France; Podo 3D, 1 Rue Chappe, Les Mureaux 78130, France
| | - Nawfal Dakhil
- Technical Institute of Dewaniya, Al-Furat Al-Awsat Technical University-Kufa, Babylon-najaf Street, Al-Kuf 54003, Iraq
| | - Michel Behr
- Laboratoire de Biomécanique Appliquée, Faculté de Médecine secteur Nord, Aix-Marseille Univ., Univ. Gustave Eiffel, IFSTTAR, LBA, UMR T24, 51 Boulevard Pierre Dramard, Marseille cedex 20 F-13016, France
| | - Dorian Salin
- CADLM, 32 Rue Victor Baloche, Wissous 91320, France
| | - Maxime Llari
- Laboratoire de Biomécanique Appliquée, Faculté de Médecine secteur Nord, Aix-Marseille Univ, Univ Gustave Eiffel, IFSTTAR, LBA, UMR T24, Laboratoire de Biomécanique Appliquée, 51 Boulevard Pierre Dramard, Marseille cedex 20 F-13016, France
| |
Collapse
|
14
|
Clemente CJ, Dick TJM, Glen CL, Panagiotopoulou O. Biomechanical insights into the role of foot pads during locomotion in camelid species. Sci Rep 2020; 10:3856. [PMID: 32123239 PMCID: PMC7051995 DOI: 10.1038/s41598-020-60795-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
From the camel’s toes to the horse’s hooves, the diversity in foot morphology among mammals is striking. One distinguishing feature is the presence of fat pads, which may play a role in reducing foot pressures, or may be related to habitat specialization. The camelid family provides a useful paradigm to explore this as within this phylogenetically constrained group we see prominent (camels) and greatly reduced (alpacas) fat pads. We found similar scaling of vertical ground reaction force with body mass, but camels had larger foot contact areas, which increased with velocity, unlike alpacas, meaning camels had relatively lower foot pressures. Further, variation between specific regions under the foot was greater in alpacas than camels. Together, these results provide strong evidence for the role of fat pads in reducing relative peak locomotor foot pressures, suggesting that the fat pad role in habitat specialization remains difficult to disentangle.
Collapse
Affiliation(s)
- Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Australia. .,School of Biomedical Sciences, University of Queensland, St Lucia, Australia.
| | - Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Christopher L Glen
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Olga Panagiotopoulou
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia. .,Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.
| |
Collapse
|
15
|
Material properties of human lumbar intervertebral discs across strain rates. Spine J 2019; 19:2013-2024. [PMID: 31326631 DOI: 10.1016/j.spinee.2019.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The use of finite element (FE) methods to study the biomechanics of the intervertebral disc (IVD) has increased over recent decades due to their ability to quantify internal stresses and strains throughout the tissue. Their accuracy is dependent upon realistic, strain-rate dependent material properties, which are challenging to acquire. PURPOSE The aim of this study was to use the inverse FE technique to characterize the material properties of human lumbar IVDs across strain rates. STUDY DESIGN A human cadaveric experimental study coupled with an inverse finite element study. METHODS To predict the structural response of the IVD accurately, the material response of the constituent structures was required. Therefore, compressive experiments were conducted on 16 lumbar IVDs (39±19 years) to obtain the structural response. An FE model of each of these experiments was developed and then run through an inverse FE algorithm to obtain subject-specific constituent material properties, such that the structural response was accurate. RESULTS Experimentally, a log-linear relationship between IVD stiffness and strain rate was observed. The material properties obtained through the subject-specific inverse FE optimization of the annulus fibrosus (AF) fiber and AF fiber ground matrix allowed a good match between the experimental and FE response. This resulted in a Young modulus of AF fibers (-MPa) to strain rate (ε˙, /s) relationship of YMAF=31.5ln(ε˙)+435.5, and the C10 parameter of the Neo-Hookean material model of the AF ground matrix was found to be strain-rate independent with an average value of 0.68 MPa. CONCLUSIONS These material properties can be used to improve the accuracy, and therefore predictive ability of FE models of the spine that are used in a wide range of research areas and clinical applications. CLINICAL SIGNIFICANCE Finite element models can be used for many applications including investigating low back pain, spinal deformities, injury biomechanics, implant design, design of protective systems, and degenerative disc disease. The accurate material properties obtained in this study will improve the predictive ability, and therefore clinical significance of these models.
Collapse
|
16
|
Hampton CE, Kleinberger M, Schlick M, Yoganandan N, Pintar FA. Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element Model. STAPP CAR CRASH JOURNAL 2019; 63:267-289. [PMID: 32311060 DOI: 10.4271/2019-22-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lower extremity injuries caused by floor plate impacts through the axis of the lower leg are a major source of injury and disability for civilian and military vehicle occupants. A collection of PMHS pendulum impacts was revisited to obtain data for paired booted/unbooted test on the same leg. Five sets of paired pendulum impacts (10 experiments in total) were found using four lower legs from two PMHS. The PMHS size and age was representative of an average young adult male. In these tests, a PMHS leg was impacted by a 3.4 or 5.8 kg pendulum with an initial velocity of 5, 7, or 10 m/s (42-288 J). A matching LS-DYNA finite element model was developed to replicate the experiments and provide additional energy, strain, and stress data. Simulation results matched the PMHS data using peak values and CORA curve correlations. Experimental forces ranged between 1.9 and 12.1 kN experimentally and 2.0 and 11.7 kN in simulation. Combat boot usage reduced the peak force by 36% experimentally (32% in simulation) by compressing the sole and insole with similar mitigations for calcaneus strain. The simulated Von Mises stress contours showed the boot both mitigating and shifting stress concentrations from the calcaneus in unbooted impacts to the talus-tibia joint in the booted impacts, which may explain why some previous studies have observed shifts to tibia injuries with boot or padding usage.
Collapse
Affiliation(s)
- Carolyn E Hampton
- U.S. Army Research Laboratory, CCDC-WMRD, Aberdeen Proving Ground MD 21005
| | | | - Michael Schlick
- Dept. of Neurosurgery, Medical College of Wisconsin at Zablocki Medical Center, Milwaukee WI 53295
| | - Narayan Yoganandan
- Dept. of Neurosurgery, Medical College of Wisconsin at Zablocki Medical Center, Milwaukee WI 53295
| | - Frank A Pintar
- Dept. of Neurosurgery, Medical College of Wisconsin at Zablocki Medical Center, Milwaukee WI 53295
| |
Collapse
|
17
|
Mo F, Li J, Yang Z, Zhou S, Behr M. In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling. Ann Biomed Eng 2019; 47:2356-2371. [PMID: 31264043 DOI: 10.1007/s10439-019-02314-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/24/2019] [Indexed: 11/30/2022]
Abstract
Plantar heel pain is one of the most common musculoskeletal disorders and generally causing long term discomfort of the patients. The objective of the present study is to combine in vivo experimental measurements and finite element modelling of the foot to investigate the influences of stiffness and thickness variation of individual plantar tissues especially the heel pad on deformation behaviours of the human foot. The stiffness and thickness variance of individuals were measured through supersonic shear wave elastography considering detailed heel pad layers refered to in literature as: dermis, stiffer micro-chamber layer, softer macro-chamber layer. A corresponding foot model with separated heel pad layers was established and used to a sensitivity analysis related to the variance of above-mentioned tissue characteristics. The experimental results show that the average stiffness of the micro-chamber layer ranged from 24.7 (SD 2.4) kPa to 18.8 (SD 3.5) kPa with the age group increasing from 20-29 years old to 60-69 years old, while the average macro-chamber stiffness is 10.6 (SD 1.5) kPa that appears to slightly decrease with the increasing age. Both plantar soft tissue stiffness and thickness of male were generally larger than that of female. The numerical simulation results show that the variance of heel pad strain level can reach 27.5% due to the effects of stiffness and thickness change of the plantar tissues. Their influences on the calcaneus stress and plantar pressure were also significant. This indicates that the most appreciate way to establish a personalized foot model needs to consider the difference of both individual foot anatomic geometry and plantar soft tissue material properties.
Collapse
Affiliation(s)
- Fuhao Mo
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, 410082, Hunan, China.,Aix-Marseille University, IFSTTAR, LBA UMRT24, Marseille, France
| | - Junjie Li
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, 410082, Hunan, China
| | - Zurong Yang
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
| | - Shuangyuan Zhou
- Department of Radiology, Xiangya Hospital, Central South University, 87 XiangYa Road, Changsha, 410011, Hunan, China
| | - Michel Behr
- Aix-Marseille University, IFSTTAR, LBA UMRT24, Marseille, France
| |
Collapse
|
18
|
Chanda A, McClain S. Mechanical Modeling of Healthy and Diseased Calcaneal Fat Pad Surrogates. Biomimetics (Basel) 2019; 4:E1. [PMID: 31105187 PMCID: PMC6477669 DOI: 10.3390/biomimetics4010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022] Open
Abstract
The calcaneal fat pad is a major load bearing component of the human foot due to daily gait activities such as standing, walking, and running. Heel and arch pain pathologies such as plantar fasciitis, which over one third of the world population suffers from, is a consequent effect of calcaneal fat pad damage. Also, fat pad stiffening and ulceration has been observed due to diabetes mellitus. To date, the biomechanics of fat pad damage is poorly understood due to the unavailability of live human models (because of ethical and biosafety issues) or biofidelic surrogates for testing. This also precludes the study of the effectiveness of preventive custom orthotics for foot pain pathologies caused due to fat pad damage. The current work addresses this key gap in the literature with the development of novel biofidelic surrogates, which simulate the in vivo and in vitro compressive mechanical properties of a healthy calcaneal fat pad. Also, surrogates were developed to simulate the in vivo mechanical behavior of the fat pad due to plantar fasciitis and diabetes. A four-part elastomeric material system was used to fabricate the surrogates, and their mechanical properties were characterized using dynamic and cyclic load testing. Different strain (or displacement) rates were tested to understand surrogate behavior due to high impact loads. These surrogates can be integrated with a prosthetic foot model and mechanically tested to characterize the shock absorption in different simulated gait activities, and due to varying fat pad material property in foot pain pathologies (i.e., plantar fasciitis, diabetes, and injury). Additionally, such a foot surrogate model, fitted with a custom orthotic and footwear, can be used for the experimental testing of shock absorption characteristics of preventive orthoses.
Collapse
Affiliation(s)
- Arnab Chanda
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA.
- Department of Aerospace Engineering and Mechanics, University of Alabama, AL 35401, USA.
| | - Stephen McClain
- Department of Aerospace Engineering and Mechanics, University of Alabama, AL 35401, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, GA 30332, USA.
| |
Collapse
|
19
|
Chu W, Liu S, Wang Y, Li J, Liu H. Compressed Fixation Combined with Vacuum-Assisted Closure for Treating Acute Injury of the Heel Fat Pad. Med Sci Monit 2018; 24:9466-9472. [PMID: 30593763 PMCID: PMC6322366 DOI: 10.12659/msm.910440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Treating acute injury of the heel fat pad is different from treating common soft tissue damage. Due to the paucity of literature on the topic, we described our initial experience treating acute injury of the heel fat pad to determine the ideal treatment method. Material/Methods A total of 53 patients with acute injury of the heel fat pad admitted to our hospital were selected for the study and were randomly divided into 2 groups: the compressed fixation combined with vacuum-assisted closure group and the only reimplanted and sewn group. Twenty-seven of the heel fat pads were compressed and fixed using a flat, hard piece of plastic and hollow screws; then, they were covered with a vacuum-assisted closure device. The other 27 were only sewn without tension. The clinical results were evaluated according to the American Orthopedic Foot and Ankle Society hindfoot score and the British Medical Research Council function evaluation criteria Results In the compressed fixation combined with vacuum-assisted closure group, flaps of 12 feet with retrograde avulsion injury survived successfully. Partial flap necrosis occurred in 8 feet. Seven feet underwent repair using the neurocutaneous vascular resupinated island flap. Results were excellent or good for 74% of patients according to the AOFS. However, in the only reimplanted and sewn group, results were excellent or good for 44% of patients according to the AOFS. Conclusions Compressed fixation with vacuum-assisted closure is effective for treating acute injury of the heel fat pad, with high success rates and good utility.
Collapse
Affiliation(s)
- Wanzhong Chu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Shidong Liu
- Department of Orthopedics, Third People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Yeben Wang
- Department of Orthopedics, Third People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Jianmin Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Huashui Liu
- Department of Orthopedics, Third People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| |
Collapse
|
20
|
Early relaxation time assessment for characterization of breast tissue and diagnosis of breast tumors. J Mech Behav Biomed Mater 2018; 87:325-335. [DOI: 10.1016/j.jmbbm.2018.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 11/23/2022]
|
21
|
Newell N, Grigoriadis G, Christou A, Carpanen D, Masouros SD. Material properties of bovine intervertebral discs across strain rates. J Mech Behav Biomed Mater 2016; 65:824-830. [PMID: 27810728 DOI: 10.1016/j.jmbbm.2016.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.
Collapse
Affiliation(s)
- Nicolas Newell
- Department of Bioengineering, Imperial College London, UK.
| | | | | | | | | |
Collapse
|