1
|
Schoonraad SA, Jaimes AA, Singh AJX, Croland KJ, Bryant SJ. Osteogenic effects of covalently tethered rhBMP-2 and rhBMP-9 in an MMP-sensitive PEG hydrogel nanocomposite. Acta Biomater 2023; 170:53-67. [PMID: 37634836 PMCID: PMC10831697 DOI: 10.1016/j.actbio.2023.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
While bone morphogenic protein-2 (BMP-2) is one of the most widely studied BMPs in bone tissue engineering, BMP-9 has been purported to be a highly osteogenic BMP. This work investigates the individual osteogenic effects of recombinant human (rh) BMP-2 and rhBMP-9, when tethered into a hydrogel, on encapsulated human mesenchymal stem cells (MSCs). A matrix-metalloproteinase (MMP)-sensitive hydrogel nanocomposite, comprised of poly(ethylene glycol) crosslinked with MMP-sensitive peptides, tethered RGD, and entrapped hydroxyapatite nanoparticles was used. The rhBMPs were functionalized with free thiols and then covalently tethered into the hydrogel by a thiol-norbornene photoclick reaction. rhBMP-2 retained its full bioactivity post-thiolation, while the bioactivity of rhBMP-9 was partially reduced. Nonetheless, both rhBMPs were highly effective at enhancing osteogenesis over 12-weeks in a chemically-defined medium. Expression of ID1 and osterix, early markers of osteogenesis; collagen type I, a main component of the bone extracellular matrix (ECM); and osteopontin, bone sialoprotein II and dentin matrix protein I, mature osteoblast markers, increased with increasing concentrations of tethered rhBMP-2 or rhBMP-9. When comparing the two BMPs, rhBMP-9 led to more rapid collagen deposition and greater mineralization long-term. In summary, rhBMP-2 retained its bioactivity post-thiolation while rhBMP-9 is more susceptible to thiolation. Despite this shortcoming with rhBMP-9, both rhBMPs when tethered into this hydrogel, enhanced osteogenesis of MSCs, leading to a mature osteoblast phenotype surrounded by a mineralized ECM. STATEMENT OF SIGNIFICANCE: Osteoinductive hydrogels are a promising vehicle to deliver mesenchymal stem cells (MSCs) for bone regeneration. This study examines the in vitro osteoinductive capabilities when tethered bone morphogenic proteins (BMPs) are incorporated into a degradable biomimetic hydrogel with cell adhesive ligands, matrix metalloproteinase sensitive crosslinks for cell-mediated degradation, and hydroxyapatite nanoparticles. This study demonstrates that BMP-2 is readily thiolated and tethered without loss of bioactivity while bioactivity of BMP-9 is more susceptible to immobilization. Nonetheless, when either BMP2 or BMP9 are tethered into this hydrogel, osteogenesis of human MSCs is enhanced, bone extracellular matrix is deposited, and a mature osteoblast phenotype is achieved. This bone-biomimetic hydrogel is a promising design for stem cell-mediated bone regeneration.
Collapse
Affiliation(s)
- Sarah A Schoonraad
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, CO 80309-0613, United States
| | - Alan A Jaimes
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Arjun J X Singh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Kiera J Croland
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Stephanie J Bryant
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, CO 80309-0613, United States; Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States.
| |
Collapse
|
2
|
McKenzie TJ, Cawood C, Davis C, Ayres N. Synthesis of patterned polyHIPE-hydrogel composite materials using thiol-ene chemistry. J Colloid Interface Sci 2023; 645:502-512. [PMID: 37159992 DOI: 10.1016/j.jcis.2023.04.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Elastomeric materials combining multiple properties within a single composite are highly desired in applications including biomaterials interfaces, actuators, and soft robotics. High spatial resolution is required to impart different properties across the composite for the intended application, but many techniques used to prepare these composites rely on multistep and complex methods. There is a need for the development of simple and efficient platforms to design layered composite materials. Here, we report the synthesis of horizontally- and vertically-patterned composites consisting of PDMS-based polymerized high internal phase emulsion (polyHIPE) porous elastomers and PDMS/PEG hydrogels. Composites with defined interfaces that were mechanically robust were prepared, and rheological analysis of the polyHIPE and hydrogel layers showed storage moduli values of ∼ 35 kPa and 45 kPa respectively. The compressive Young's Modulus and maximum strain of the polyHIPEs were dependent on the thiol to ene ratio in the formulation and obtained values ranging from 6 to 25 kPa and 50-65% respectively. The mechanical properties, total porosity of the polyHIPE, and swelling ratio of the hydrogel were unaffected by the patterning technique compared to non-patterned controls. PolyHIPE-hydrogel composite materials having up to 7-different horizontally pattered layers could be prepared that could expand and contract up hydration and drying.
Collapse
Affiliation(s)
- Tucker J McKenzie
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Christian Cawood
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Chelsea Davis
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States.
| |
Collapse
|
3
|
Pei S, Zhou Y, Li Y, Azar T, Wang W, Kim DG, Liu XS. Instrumented nanoindentation in musculoskeletal research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:38-51. [PMID: 35660010 DOI: 10.1016/j.pbiomolbio.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Musculoskeletal tissues, such as bone, cartilage, and muscle, are natural composite materials that are constructed with a hierarchical structure ranging from the cell to tissue level. The component differences and structural complexity, together, require comprehensive multiscale mechanical characterization. In this review, we focus on nanoindentation testing, which is used for nanometer to sub-micrometer length scale mechanical characterization. In the following context, we will summarize studies of nanoindentation in musculoskeletal research, examine the critical factors that affect nanoindentation testing results, and briefly summarize other commonly used techniques that can be conjoined with nanoindentation for synchronized imaging and colocalized characterization.
Collapse
Affiliation(s)
- Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
4
|
Collinson DW, Sheridan RJ, Palmeri MJ, Brinson LC. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
6
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
7
|
Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA, Black W, Winschel L, Soto C, Li Y, Song Y, DeMaria W, Kumar A, Slukvin I, Schwartz MP, Murphy WL, Anand-Apte B, Chung M, Benoit DSW, Singh R. 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell 2021; 28:846-862.e8. [PMID: 33784497 DOI: 10.1016/j.stem.2021.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 11/15/2022]
Abstract
The retinal pigment epithelium (RPE)-choriocapillaris (CC) complex in the eye is compromised in age-related macular degeneration (AMD) and related macular dystrophies (MDs), yet in vitro models of RPE-CC complex that enable investigation of AMD/MD pathophysiology are lacking. By incorporating iPSC-derived cells into a hydrogel-based extracellular matrix, we developed a 3D RPE-CC model that recapitulates key features of both healthy and AMD/MD eyes and provides modular control over RPE and CC layers. Using this 3D RPE-CC model, we demonstrated that both RPE- and mesenchyme-secreted factors are necessary for the formation of fenestrated CC-like vasculature. Our data show that choroidal neovascularization (CNV) and CC atrophy occur in the absence of endothelial cell dysfunction and are not necessarily secondary to drusen deposits underneath RPE cells, and CC atrophy and/or CNV can be initiated systemically by patient serum or locally by mutant RPE-secreted factors. Finally, we identify FGF2 and matrix metalloproteinases as potential therapeutic targets for AMD/MDs.
Collapse
Affiliation(s)
- Kannan V Manian
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Chad A Galloway
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14620, USA
| | - Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Anthony A Emanuel
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY 14642 USA
| | - Whitney Black
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Lauren Winschel
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Celia Soto
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Yiming Li
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - Yuanhui Song
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - William DeMaria
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Igor Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA
| | - Michael P Schwartz
- NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53715, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53715, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53715, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mina Chung
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA
| | - Danielle S W Benoit
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY 14642 USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA; Materials Science Program, University of Rochester, Rochester, NY 14620, USA; Department of Chemical Engineering, University of Rochester, NY 14620, USA
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA.
| |
Collapse
|
8
|
Kim JS, Choi J, Ki CS, Lee KH. 3D Silk Fiber Construct Embedded Dual-Layer PEG Hydrogel for Articular Cartilage Repair - In vitro Assessment. Front Bioeng Biotechnol 2021; 9:653509. [PMID: 33842448 PMCID: PMC8024629 DOI: 10.3389/fbioe.2021.653509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
Since articular cartilage does not regenerate itself, researches are underway to heal damaged articular cartilage by applying biomaterials such as a hydrogel. In this study, we have constructed a dual-layer composite hydrogel mimicking the layered structure of articular cartilage. The top layer consists of a high-density PEG hydrogel prepared with 8-arm PEG and PEG diacrylate using thiol-norbornene photo-click chemistry. The compressive modulus of the top layer was 700.1 kPa. The bottom layer consists of a low-density PEG hydrogel reinforced with a 3D silk fiber construct. The low-density PEG hydrogel was prepared with 4-arm PEG using the same cross-linking chemistry, and the compressive modulus was 13.2 kPa. Silk fiber was chosen based on the strong interfacial bonding with the low-density PEG hydrogel. The 3D silk fiber construct was fabricated by moving the silk fiber around the piles using a pile frame, and the compressive modulus of the 3D silk fiber construct was 567 kPa. The two layers were joined through a covalent bond which endowed sufficient stability against repeated torsions. The final 3D silk fiber construct embedded dual-layer PEG hydrogel had a compressive modulus of 744 kPa. Chondrogenic markers confirmed the chondrogenic differentiation of human mesenchymal stem cells encapsulated in the bottom layer.
Collapse
Affiliation(s)
- Jung Soo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Jaeho Choi
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Chang Seok Ki
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ki Hoon Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Wilmoth RL, Ferguson VL, Bryant SJ. A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology. Adv Healthc Mater 2020; 9:e2001226. [PMID: 33073541 PMCID: PMC7677224 DOI: 10.1002/adhm.202001226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Osteocytes are mechanosensitive cells that orchestrate signaling in bone and cartilage across the osteochondral unit. The mechanisms by which osteocytes regulate osteochondral homeostasis and degeneration in response to mechanical cues remain unclear. This study introduces a novel 3D hydrogel bilayer composite designed to support osteocyte differentiation and bone matrix deposition in a bone-like layer and to recapitulate key aspects of the osteochondral unit's complex loading environment. The bilayer hydrogel is fabricated with a soft cartilage-like layer overlaying a stiff bone-like layer. The bone-like layer contains a stiff 3D-printed hydrogel structure infilled with a soft, degradable, cellular hydrogel. The IDG-SW3 cells embedded within the soft hydrogel mature into osteocytes and produce a mineralized collagen matrix. Under dynamic compressive strains, near-physiological levels of strain are achieved in the bone layer (≤ 0.08%), while the cartilage layer bears the majority of the strains (>99%). Under loading, the model induces an osteocyte response, measured by prostaglandin E2, that is frequency, but not strain, dependent: a finding attributed to altered fluid flow within the composite. Overall, this new hydrogel platform provides a novel approach to study osteocyte mechanobiology in vitro in an osteochondral tissue-mimetic environment.
Collapse
Affiliation(s)
- Rachel L Wilmoth
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
| |
Collapse
|
10
|
Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B 2020; 8:7835-7855. [PMID: 32692329 PMCID: PMC7574327 DOI: 10.1039/d0tb01429j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, dynamic, 'click' hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate '4D' cell culture. The high degree of tunability in crosslinking reactions of orthogonal 'click' chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
11
|
Wang Y, Delgado-Fukushima E, Fu RX, Doerk GS, Monclare JK. Controlling Drug Absorption, Release, and Erosion of Photopatterned Protein Engineered Hydrogels. Biomacromolecules 2020; 21:3608-3619. [DOI: 10.1021/acs.biomac.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Richard X. Fu
- Sensors and Electron Devices Directorate, Advanced Concepts and Modeling Branch, US Army Research Lab, Adelphi, Maryland 20783, United States
| | - Gregory S. Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jin Kim Monclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
- Department of Biomaterials, NYU College of Dentistry, New York, New York 10010, United States
- Department of Radiology, NYU Langone Health, New York, New York 10016, United States
| |
Collapse
|
12
|
Higgins CI, Killgore JP, DelRio FW, Bryant SJ, McLeod RR. Photo-tunable hydrogel mechanical heterogeneity informed by predictive transport kinetics model. SOFT MATTER 2020; 16:4131-4141. [PMID: 32202291 PMCID: PMC7489306 DOI: 10.1039/d0sm00052c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Understanding the three-dimensional (3D) mechanical and chemical properties of distinctly different, adjacent biological tissues is crucial to mimicking their complex properties with materials. 3D printing is a technique often employed to spatially control the distribution of the biomaterials, such as hydrogels, of interest, but it is difficult to print both mechanically robust (high modulus and toughness) and biocompatible (low modulus) hydrogels in a single structure. Moreover, due to the fast diffusion of mobile species during printing and nonequilibrium swelling conditions of low-solids-content hydrogels, it is challenging to form the high-fidelity structures required to mimic tissues. Here a predictive transport and swelling model is presented to model these effects and then is used to compensate for these effects during printing. This model is validated experimentally by photopatterning spatially distinct hydrogel elastic moduli using a single photo-tunable poly(ethylene glycol) (PEG) pre-polymer solution by sequentially patterning and in-diffusing fresh pre-polymer for further polymerization.
Collapse
Affiliation(s)
- Callie I Higgins
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA.
| | | | | | | | | |
Collapse
|
13
|
LeValley PJ, Neelarapu R, Sutherland BP, Dasgupta S, Kloxin CJ, Kloxin AM. Photolabile Linkers: Exploiting Labile Bond Chemistry to Control Mode and Rate of Hydrogel Degradation and Protein Release. J Am Chem Soc 2020; 142:4671-4679. [PMID: 32037819 PMCID: PMC7267699 DOI: 10.1021/jacs.9b11564] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Photolabile moieties have been utilized in applications ranging from peptide synthesis and controlled protein activation to tunable and dynamic materials. The photochromic properties of nitrobenzyl (NB) based linkers are readily tuned to respond to cytocompatible light doses and are widely utilized in cell culture and other biological applications. While widely utilized, little is known about how the microenvironment, particularly confined aqueous environments (e.g., hydrogels), affects both the mode and rate of cleavage of NB moieties, leading to unpredictable limitations in control over system properties (e.g., rapid hydrolysis or slow photolysis). To address these challenges, we synthesized and characterized the photolysis and hydrolysis of NB moieties containing different labile bonds (i.e., ester, amide, carbonate, or carbamate) that served as labile crosslinks within step-growth hydrogels. We observed that NB ester bond exhibited significant rates of both photolysis and hydrolysis, whereas, importantly, the NB carbamate bond had superior light responsiveness and resistance to hydrolysis within the hydrogel microenvironment. Exploiting this synergy and orthogonality of photolytic and hydrolytic degradation, we designed concentric cylinder hydrogels loaded with different cargoes (e.g., model protein with different fluorophores) for either combinatorial or sequential release, respectively. Overall, this work provides new facile chemical approaches for tuning the degradability of NB linkers and an innovative strategy for the construction of multimodal degradable hydrogels, which can be utilized to guide the design of not only tunable materials platforms but also controlled synthetic protocols or surface modification strategies.
Collapse
Affiliation(s)
- Paige J. LeValley
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Raghupathi Neelarapu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Bryan P. Sutherland
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Srimoyee Dasgupta
- Department of Material Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Christopher J. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
14
|
Smithmyer ME, Cassel SE, Kloxin AM. Bridging 2D and 3D culture: probing impact of extracellular environment on fibroblast activation in layered hydrogels. AIChE J 2019; 65. [PMID: 32921797 DOI: 10.1002/aic.16837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many cell behaviors are significantly affected by cell culture geometry, though it remains unclear which geometry from two- to three-dimensional (2D to 3D) culture is appropriate for probing a specific cell function and mimicking native microenvironments. Toward addressing this, we established a 2.5D culture geometry, enabling initial cell spreading while reducing polarization to bridge between 2D and 3D geometries, and examined the responses of wound healing cells, human pulmonary fibroblasts, within it. To achieve this, we used engineered biomimetic hydrogels formed by photopolymerization, creating robust layered hydrogels with spread fibroblasts at the interface. We found that fibroblast responses were similar between 2D and 2.5D culture and different from 3D culture, with some underlying differences in mechanotransduction. These studies established the 2.5D cell culture geometry in conjunction with biomimetic synthetic matrices as a useful tool for investigations of fibroblast activation with relevance to the study of other cell functions and types.
Collapse
Affiliation(s)
- Megan E Smithmyer
- Chemical and Biomolecular Engineering, University of Delaware, Newark DE, 19716
| | - Samantha E Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark DE, 19716
| | - April M Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark DE, 19716
- Materials Science and Engineering, University of Delaware, Newark DE. 19716
| |
Collapse
|
15
|
Muralidharan A, Uzcategui AC, McLeod RR, Bryant SJ. Stereolithographic 3D Printing for Deterministic Control over Integration in Dual-Material Composites. ADVANCED MATERIALS TECHNOLOGIES 2019; 4:1900592. [PMID: 33043126 PMCID: PMC7546532 DOI: 10.1002/admt.201900592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 05/20/2023]
Abstract
This work introduces a rapid and facile approach to predictably control integration between two materials with divergent properties. Programmed integration between photopolymerizable soft and stiff hydrogels was investigated for their promise in applications such as tissue engineering where heterogeneous properties are often desired. Spatial control afforded by grayscale 3D printing was leveraged to define regions at the interface that permit diffusive transport of a second material in-filled into the 3D printed part. The printing parameters (i.e., effective exposure dose) for the resin were correlated directly to mesh size to achieve controlled diffusion. Applying this information to grayscale exposures led to a range of distances over which integration was achieved with high fidelity. A prescribed finite distance of integration between soft and stiff hydrogels led to a 33% increase in strain to failure under tensile testing and eliminated failure at the interface. The feasibility of this approach was demonstrated in a layer-by-layer 3D printed part fabricated by stereolithography, which was subsequently infilled with a soft hydrogel containing osteoblastic cells. In summary, this approach holds promise for applications where integration of multiple materials and living cells is needed by allowing precise control over integration and reducing mechanical failure at contrasting material interfaces.
Collapse
Affiliation(s)
- Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado, Boulder, USA, Boulder, CO 80309, USA
| | - Asais C. Uzcategui
- Materials Science and Engineering Program, University of Colorado, Boulder, USA, Boulder, CO 80309, USA
| | - Robert R. McLeod
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, USA, Boulder, CO 80309, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, USA, Boulder, CO 80309, USA
| |
Collapse
|
16
|
Aziz AH, Eckstein K, Ferguson VL, Bryant SJ. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel. J Tissue Eng Regen Med 2019; 13:946-959. [PMID: 30793536 DOI: 10.1002/term.2827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/26/2018] [Accepted: 02/13/2019] [Indexed: 02/05/2023]
Abstract
Bilayer hydrogels with a soft cartilage-like layer and a stiff bone-like layer embedded with human mesenchymal stem cells (hMSCs) are promising for osteochondral tissue engineering. The goals of this work were to evaluate the effects of dynamic compressive loading (2.5% applied strain, 1 Hz) on osteogenesis in the stiff layer and spatially map local mechanical responses (strain, stress, hydrostatic pressure, and fluid velocity). A bilayer hydrogel was fabricated from soft (24 kPa) and stiff (124 kPa) poly (ethylene glycol) hydrogels. With hMSCs embedded in the stiff layer, osteogenesis was delayed under loading evident by lower OSX and OPN expressions, alkaline phosphatase activity, and collagen content. At Day 28, mineral deposits were present throughout the stiff layer without loading but localized centrally and near the interface under loading. Local strains mapped by particle tracking showed substantial equivalent strain (~1.5%) transferring to the stiff layer. When hMSCs were cultured in stiff single-layer hydrogels subjected to similar strains, mineralization was inhibited. Finite element analysis revealed that hydrostatic pressures ≥~600 Pa correlated to regions lacking mineralization in both hydrogels. Fluid velocities were low (~1-10 nm/s) in the hydrogels with no apparent correlation to mineralization. Mineralization was recovered by inhibiting ERK1/2, indicating cell-mediated inhibition. These findings suggest that high strains (~1.5%) combined with higher hydrostatic pressures negatively impact osteogenesis, but in a manner that depends on the magnitude of each mechanical response. This work highlights the importance of local mechanical responses in mediating osteogenesis of hMSCs in bilayer hydrogels being studied for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Aaron H Aziz
- Chemical and Biological Engineering, University of Colorado, Boulder, Colorado.,BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Kevin Eckstein
- Mechanical Engineering, University of Colorado, Boulder, Colorado
| | - Virginia L Ferguson
- BioFrontiers Institute, University of Colorado, Boulder, Colorado.,Mechanical Engineering, University of Colorado, Boulder, Colorado.,Material Science and Engineering, University of Colorado, Boulder, Colorado
| | - Stephanie J Bryant
- Chemical and Biological Engineering, University of Colorado, Boulder, Colorado.,BioFrontiers Institute, University of Colorado, Boulder, Colorado.,Material Science and Engineering, University of Colorado, Boulder, Colorado
| |
Collapse
|
17
|
Liang X, Gao J, Xu W, Wang X, Shen Y, Tang J, Cui S, Yang X, Liu Q, Yu L, Ding J. Structural mechanics of 3D-printed poly(lactic acid) scaffolds with tetragonal, hexagonal and wheel-like designs. Biofabrication 2019; 11:035009. [DOI: 10.1088/1758-5090/ab0f59] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Sawicki LA, Ovadia EM, Pradhan L, Cowart JE, Ross KE, Wu CH, Kloxin AM. Tunable synthetic extracellular matrices to investigate breast cancer response to biophysical and biochemical cues. APL Bioeng 2019; 3:016101. [PMID: 31069334 PMCID: PMC6481819 DOI: 10.1063/1.5064596] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/15/2019] [Indexed: 01/28/2023] Open
Abstract
The extracellular matrix (ECM) is thought to play a critical role in the progression of breast cancer. In this work, we have designed a photopolymerizable, biomimetic synthetic matrix for the controlled, 3D culture of breast cancer cells and, in combination with imaging and bioinformatics tools, utilized this system to investigate the breast cancer cell response to different matrix cues. Specifically, hydrogel-based matrices of different densities and modified with receptor-binding peptides derived from ECM proteins [fibronectin/vitronectin (RGDS), collagen (GFOGER), and laminin (IKVAV)] were synthesized to mimic key aspects of the ECM of different soft tissue sites. To assess the breast cancer cell response, the morphology and growth of breast cancer cells (MDA-MB-231 and T47D) were monitored in three dimensions over time, and differences in their transcriptome were assayed using next generation sequencing. We observed increased growth in response to GFOGER and RGDS, whether individually or in combination with IKVAV, where binding of integrin β1 was key. Importantly, in matrices with GFOGER, increased growth was observed with increasing matrix density for MDA-MB-231s. Further, transcriptomic analyses revealed increased gene expression and enrichment of biological processes associated with cell-matrix interactions, proliferation, and motility in matrices rich in GFOGER relative to IKVAV. In sum, a new approach for investigating breast cancer cell-matrix interactions was established with insights into how microenvironments rich in collagen promote breast cancer growth, a hallmark of disease progression in vivo, with opportunities for future investigations that harness the multidimensional property control afforded by this photopolymerizable system.
Collapse
Affiliation(s)
- Lisa A. Sawicki
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Elisa M. Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Lina Pradhan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Julie E. Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Karen E. Ross
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Cathy H. Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | | |
Collapse
|
19
|
Vannozzi L, Yasa IC, Ceylan H, Menciassi A, Ricotti L, Sitti M. Self-Folded Hydrogel Tubes for Implantable Muscular Tissue Scaffolds. Macromol Biosci 2018. [DOI: 10.1002/mabi.201700377] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lorenzo Vannozzi
- The BioRobotics Institute; Scuola Superiore Sant'Anna; 56025 Pisa Italy
| | | | - Hakan Ceylan
- Max Planck Institute for Intelligent Systems; 70569 Stuttgart Germany
| | - Arianna Menciassi
- The BioRobotics Institute; Scuola Superiore Sant'Anna; 56025 Pisa Italy
| | - Leonardo Ricotti
- The BioRobotics Institute; Scuola Superiore Sant'Anna; 56025 Pisa Italy
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems; 70569 Stuttgart Germany
| |
Collapse
|
20
|
Fiedler CI, Aisenbrey EA, Wahlquist JA, Heveran CM, Ferguson VL, Bryant SJ, McLeod RR. Enhanced mechanical properties of photo-clickable thiol-ene PEG hydrogels through repeated photopolymerization of in-swollen macromer. SOFT MATTER 2016; 12:9095-9104. [PMID: 27774538 PMCID: PMC5341082 DOI: 10.1039/c6sm01768a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Current hydrogels used for tissue engineering are limited to a single range of mechanical properties within the replicated tissue construct. We show that repeated in-swelling by a single hydrogel pre-cursor solution into an existing polymerized hydrogel followed by photo-exposure increases hydrogel mechanical properties. The process is demonstrated with a photo-clickable thiol-ene hydrogel using a biocompatible precursor solution of poly(ethylene glycol) dithiol and 8-arm poly(ethylene glycol) functionalized with norbornene. The polymer fraction in the precursor solution was varied by 5, 10, and 20 percent by weight and an off-stoichiometric ratio of thiol : ene was used, leaving free enes available for subsequent reaction. Multiple swelling and exposure cycles for the same precursor solution were performed. The compressive modulus increased by a factor between three and ten (formulation dependent), while volume swelling ratio decreased by a factor of two, consistent with increased crosslink density. The modified hydrogels also demonstrate increased toughness by fracturing at compressive forces five times greater than the initial hydrogel. We attribute the increased toughness to subsequent increases in crosslink density created by the repeated photopolymerization of in-swollen macromer. This technique demonstrates the ability to significantly modify hydrogel network properties by exploiting swelling and polymerization processes that can be applied to traditional three-dimensional printing systems to spatially control local mechanical properties.
Collapse
Affiliation(s)
- C I Fiedler
- Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - E A Aisenbrey
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - J A Wahlquist
- Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - C M Heveran
- Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - V L Ferguson
- Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA. and Material Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, USA and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - S J Bryant
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA. and Material Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, USA and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - R R McLeod
- Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA. and Material Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|