1
|
Poudrel AS, Bouffandeau A, Rosi G, Dubory A, Lachaniette CHF, Nguyen VH, Haiat G. 3-D finite element model of the impaction of a press-fitted femoral stem under various biomechanical environments. Comput Biol Med 2024; 174:108405. [PMID: 38613890 DOI: 10.1016/j.compbiomed.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Uncemented femoral stem insertion into the bone is achieved by applying successive impacts on an inserter tool called "ancillary". Impact analysis has shown to be a promising technique to monitor the implant insertion and to improve its primary stability. METHOD This study aims to provide a better understanding of the dynamic phenomena occurring between the hammer, the ancillary, the implant and the bone during femoral stem insertion, to validate the use of impact analyses for implant insertion monitoring. A dynamic 3-D finite element model of the femoral stem insertion via an impaction protocol is proposed. The influence of the trabecular bone Young's modulus (Et), the interference fit (IF), the friction coefficient at the bone-implant interface (μ) and the impact velocity (v0) on the implant insertion and on the impact force signal is evaluated. RESULTS For all configurations, a decrease of the time difference between the two first peaks of the impact force signal is observed throughout the femoral stem insertion, up to a threshold value of 0.23 ms. The number of impacts required to reach this value depends on Et, v0 and IF and varies between 3 and 8 for the set of parameters considered herein. The bone-implant contact ratio reached after ten impacts varies between 60% and 98%, increases as a function of v0 and decreases as a function of IF, μ and Et. CONCLUSION This study confirms the potential of an impact analyses-based method to monitor implant insertion and to retrieve bone-implant contact properties.
Collapse
Affiliation(s)
- Anne-Sophie Poudrel
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France
| | - Arthur Bouffandeau
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Arnaud Dubory
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, Créteil, France
| | - Charles-Henri Flouzat Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, Créteil, France
| | - Vu-Hieu Nguyen
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Guillaume Haiat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France.
| |
Collapse
|
2
|
Poudrel AS, Rosi G, Nguyen VH, Housset V, Flouzat-Lachaniette CH, Haiat G. Detection of periprosthetic fractures around the femoral stem by resonance frequency analysis: An in vitro study. Proc Inst Mech Eng H 2023:9544119231163632. [PMID: 36992542 DOI: 10.1177/09544119231163632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Periprosthetic femoral bone fractures are frequent complications of Total Hip Arthroplasty (THA) and may occur during the insertion of uncemented Femoral Stems (FS), due to the nature of the press-fit fixation. Such fracture may lead to the surgical failure of the THA and require a revision surgery, which may have dramatic consequences. Therefore, an early detection of intra-operative fractures is important to avoid worsening the fracture and/or to enable a peroperative treatment. The aim of this in vitro study is to determine the sensitivity of a method based on resonance frequency analysis of the bone-stem-ancillary system for periprosthetic fractures detection. A periprosthetic fracture was artificially created close to the lesser-trochanter of 10 femoral bone mimicking phantoms. The bone-stem-ancillary resonance frequencies in the range (2-12) kHz were measured on an ancillary instrumented with piezoelectric sensors, which was fixed to the femoral stem. The measurements were repeated for different fracture lengths from 4 to 55 mm. The results show a decrease of the resonance frequencies due to the fracture occurrence and propagation. The frequency shift reached up to 170 Hz. The minimum fracture length that can be detected varies from 3.1±1.7 mm to 5.9±1.9 mm according to the mode and to the specimen. A significantly higher sensitivity (p = 0.011) was obtained for a resonance frequency around 10.6 kHz, corresponding to a mode vibrating in a plane perpendicular to the fracture. This study opens new paths toward the development of non-invasive vibration-based methods for intra-operative periprosthetic fractures detection.
Collapse
Affiliation(s)
- Anne-Sophie Poudrel
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-96010 Créteil
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-96010 Créteil, France
| | - Vu-Hieu Nguyen
- Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-96010 Créteil, France
| | - Victor Housset
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est Créteil, Créteil, France
- INSERM U955, IMRB, Université Paris-Est Créteil, Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est Créteil, Créteil, France
- INSERM U955, IMRB, Université Paris-Est Créteil, Créteil, France
| | - Guillaume Haiat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-96010 Créteil
| |
Collapse
|
3
|
Poudrel AS, Nguyen VH, Rosi G, Haiat G. Influence of the biomechanical environment on the femoral stem insertion and vibrational behavior: a 3-D finite element study. Biomech Model Mechanobiol 2022; 22:611-628. [PMID: 36542227 DOI: 10.1007/s10237-022-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
The long-term success of cementless surgery strongly depends on the implant primary stability. The femoral stem initial fixation relies on multiple geometrical and material factors, but their influence on the biomechanical phenomena occurring during the implant insertion is still poorly understood, as they are difficult to quantify in vivo. The aim of the present study is to evaluate the relationship between the resonance frequencies of the bone-implant-ancillary system and the stability of the femoral stem under various biomechanical environments. The interference fit IF, the trabecular bone Young's modulus [Formula: see text] and the bone-implant contact friction coefficient [Formula: see text] are varied to investigate their influence on the implant insertion phenomena and on the system vibration behavior. The results exhibit for all the configurations, a nonlinear increase in the bone-implant contact throughout femoral stem insertion, until the proximal contact is reached. While the pull-out force increases with [Formula: see text], IF and [Formula: see text], the bone-implant contact ratio decreases, which shows that a compromise on the set of parameters could be found in order to achieve the largest bone-implant contact while maintaining sufficient pull-out force. The modal analysis on the range [2-7] kHz shows that the resonance frequencies of the bone-implant-ancillary system increase with the bone-implant contact ratio and the trabecular bone Young's modulus, with a sensitivity that varies over the modes. Both the pull-out forces and the vibration behavior are consistent with previous experimental studies. This study demonstrates the potential of using vibration methods to guide the surgeons for optimizing implant stability in various patients and surgical configurations.
Collapse
|
4
|
Influence of Artificial Soft Tissue on Intra-Operative Vibration Analysis Method for Primary Fixation Monitoring in Cementless Total Hip Arthroplasty. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In cementless Total Hip Arthroplasty (THA), achieving high primary implant fixation is crucial for the long-term survivorship of the femoral stem. While orthopedic surgeons traditionally assess fixation based on their subjective judgement, novel vibration-analysis fixation-monitoring techniques show promising potential in providing the surgeon with objective and quantifiable fixation measurements. This study presents a dynamic response measurement protocol for implant endpoint insertion and evaluates this protocol in the presence of artificial soft tissue. After the artificial femur was prepared in accordance with the THA protocol, the implant was inserted and progressively hammered into the cavity. The Pearson Correlation Coefficient (PCC) and Frequency Response Assurance Criterion (FRAC) corresponding to each insertion hammer hit were derived from the Frequency Response Functions (FRF) corresponding to each insertion step. The protocol was repeated with the artificial femur submerged in artificial soft tissue to imitate the influence of anatomical soft tissue. The FRAC appeared overall more sensitive than the PCC. In the presence of the artificial soft tissue the technique yielded higher PCC and FRAC values earlier in the insertion process. The measurements with artificial soft tissue produced FRFs with fewer peaks, lower resonance frequencies, and overall higher damping factors. The soft tissue appears to limit the fixation-change detection capabilities of the system and a promising potential remedy to this limitation is suggested.
Collapse
|
5
|
Modal Analysis of the Ancillary During Femoral Stem Insertion: A Study on Bone Mimicking Phantoms. Ann Biomed Eng 2022; 50:16-28. [PMID: 34993695 DOI: 10.1007/s10439-021-02887-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/03/2021] [Indexed: 11/01/2022]
Abstract
The femoral stem primary stability achieved by the impaction of an ancillary during its insertion is an important factor of success in cementless surgery. However, surgeons still rely on their proprioception, making the process highly subjective. The use of Experimental Modal Analysis (EMA) without sensor nor probe fixation on the implant or on the bone is a promising non destructive approach to determine the femoral stem stability. The aim of this study is to investigate whether EMA performed directly on the ancillary could be used to monitor the femoral stem insertion into the bone. To do so, a cementless femoral stem was inserted into 10 bone phantoms of human femurs and EMA was carried out on the ancillary using a dedicated impact hammer for each insertion step. Two bending modes could be identified in the frequency range [400-8000] Hz for which the resonance frequency was shown to be sensitive to the insertion step and to the bone-implant interface properties. A significant correlation was obtained between the two modal frequencies and the implant insertion depth (R2 = 0.95 ± 0.04 and R2 = 0.94 ± 0.06). This study opens new paths towards the development of noninvasive vibration based evaluation methods to monitor cementless implant insertion.
Collapse
|
6
|
|
7
|
Proof of Concept for the Detection of Local Pressure Marks in Prosthesis Sockets Using Structural Dynamics Measurement. SENSORS 2021; 21:s21113821. [PMID: 34073104 PMCID: PMC8198458 DOI: 10.3390/s21113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022]
Abstract
The wear comfort of a prosthesis is of great importance for amputee patients. The wear comfort can be affected by changes in the interface between the residual limb and prosthesis socket, which can be caused by time-dependent volume fluctuations of the tissue, leading to unwanted local pressure marks. The basis to ensure time-independent wear comfort of a prosthesis is to identify these changes. Common techniques for identifying these variations have a negative impact on the sensitive interface between the residual limb and prosthesis. The following paper contains a proof of concept for the detection of local pressure marks without affecting the described interface using structural dynamics measurements, exemplarily shown at a prosthetic socket for transfemoral amputees in a test bench scenario. The dynamical behaviour of the investigated system is analysed in the form of frequency response functions acquired for different pressure locations and preloads using an impact hammer for excitation and a triaxial acceleration sensor. The frequency response functions show major changes for the various boundary conditions with respect to their frequency-dependent compositions. The results demonstrate how the utilised method enables the identification of changes in local pressure marks regarding the variation of position and magnitude.
Collapse
|
8
|
Leuridan S, Goossens Q, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K. Development of an Instrument to Assess the Stability of Cementless Femoral Implants Using Vibration Analysis During Total Hip Arthroplasty. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2021; 9:2500210. [PMID: 35103118 PMCID: PMC8791654 DOI: 10.1109/jtehm.2021.3128276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 11/06/2022]
Abstract
Objective: The level of primary implant fixation in cementless total hip arthroplasty is a key factor for the longevity of the implant. Vibration-based methods show promise for providing quantitative information to help surgeons monitor implant fixation intraoperatively. A thorough understanding of what is driving these changes in vibrational behavior is important for further development and improvement of these methods. Additionally, an instrument must be designed to enable surgeons to leverage these methods. This study addresses both of these issues. Method: An augmented system approach was used to develop an instrument that improves the sensitivity of the vibrational method and enables the implementation of the necessary excitation and measurement equipment. The augmented system approach took into account the dynamics of the existing bone-implant system and its interaction with the added instrument. Results: Two instrument designs are proposed, accompanied by a convergence-based method to determine the insertion endpoint. The modal strain energy density distribution was shown to affect the vibrational sensitivity to contact changes in certain areas. Conclusion: The augmented system approach led to an instrument design that improved the sensitivity to changes in the proximal region of the combined bone-implant-instrument system. This fact was confirmed both in silico and in vitro. Clinical Impact: The presented method and instruments address practical intraoperative challenges and provide perspective to objectively support the surgeon’s decision-making process, which will ensure optimal patient treatment.
Collapse
Affiliation(s)
- Steven Leuridan
- KU LeuvenDepartment of Mechanical EngineeringBiomechanics Section 3000 Leuven Belgium
| | - Quentin Goossens
- KU LeuvenDepartment of Mechanical EngineeringBiomechanics Section 3000 Leuven Belgium
| | - Leonard Cezar Pastrav
- KU LeuvenDepartment of Mechanical EngineeringBiomechanics Section 3000 Leuven Belgium
| | - Michiel Mulier
- University Hospital LeuvenDepartment of Orthopaedics 3000 Leuven Belgium
| | - Wim Desmet
- KU LeuvenDepartment of Mechanical EngineeringLMSD Section 3000 Leuven Belgium
| | - Jos Vander Sloten
- KU LeuvenDepartment of Mechanical EngineeringBiomechanics Section 3000 Leuven Belgium
| | - Kathleen Denis
- KU LeuvenDepartment of Mechanical EngineeringBiomechanics Section 3000 Leuven Belgium
| |
Collapse
|
9
|
Goossens Q, Vancleef S, Leuridan S, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K. The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model. J Funct Biomater 2020; 11:jfb11040069. [PMID: 32987709 PMCID: PMC7712050 DOI: 10.3390/jfb11040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further insights in the evaluation of the mechanical behavior of orthopedic implants. An accurate numerical representation of the experimental model is important to draw meaningful conclusions from the numerical predictions. This study aims to determine the elastic material constants of a commonly used composite clavicle model by combining acoustic experimental and numerical modal analysis. The difference between the experimental and finite element (FE) predicted natural frequencies was minimized by updating the elastic material constants of the transversely isotropic cortical bone analogue that are provided by the manufacturer. The longitudinal Young's modulus was reduced from 16.00 GPa to 12.88 GPa and the shear modulus was increased from 3.30 GPa to 4.53 GPa. These updated material properties resulted in an average natural frequency difference of 0.49% and a maximum difference of 1.73% between the FE predictions and the experimental results. The presented updated model aims to improve future research that focuses on mechanical simulations with clavicle composite bone models.
Collapse
Affiliation(s)
- Quentin Goossens
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
- Correspondence:
| | - Sanne Vancleef
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Steven Leuridan
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Leonard Cezar Pastrav
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Michiel Mulier
- Division of Orthopaedics, University Hospital Leuven, 3000 Leuven, Belgium;
| | - Wim Desmet
- Department of Mechanical Engineering, MSD Section, KU Leuven, 3000 Leuven, Belgium;
| | - Jos Vander Sloten
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Kathleen Denis
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| |
Collapse
|